

ВИДЫ УПАКОВКИ

ЭЛЕКТРОДЫ

КАРТОННЫЕ КОРОБКИ: экономичное решение для обычной сварки без особых требований

PROTECH™: вакуумная упаковка для сварочных электродов

SAHARA READYPACK®: лучшая вакуумная упаковка для самых требовательных задач, где требуется абсолютная гарантия низкого содержания влаги и/или диффузионного водорода в наплавленном металле

LINC CAN™: для работ в тяжелых условиях и при необходимости в защите от влаги

LINC PACK: 1-килограммовая упаковка для ремонтных работ и других мелких задач

ПЭ тибисы

ЭЛЕКТРОДНЫЕ ПЕЧИ HYDROGUARD™
Защищает электроды от накапливания влаги и предотвращает растрескивание и пористость

ВИДЫУПАКОВКИ

СПЛОШНАЯ И ПОРОШКОВАЯ ПРОВОЛОКА

S 200

Прутки TIG ПЭ тубусы

S 300

Бочки ACCUTRAK® 250 / 500 kz

МАТЕРИАЛЫ ДЛЯ СВАРКИ ПОД ФЛЮСОМ

Кассеты 25 kz: Упаковка с оптимальной защитой от коррозии во время транспортировки и хранения

Розетты 100 kz: Большегрузная упаковка для горизонтальной / вертикальной истановки. оптимально подходит для многодуговой сварки

Деревянные катишки

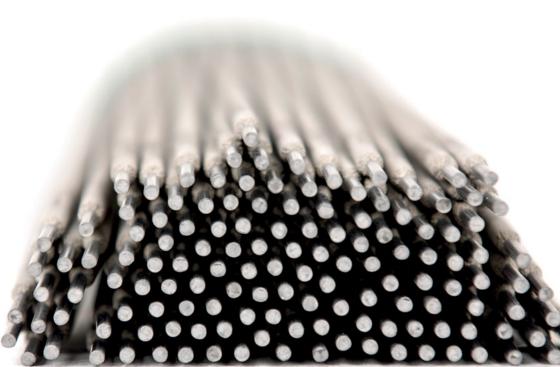
Розетта 1000 kz Для подъема краном

Бочка SPEED FEED

Бочки ACCUTRAK® u SPEED FEED 600kz/1000 kz

Стальные бочки 220/250 кг Пластиковые мешки и Оптимальная защита флюса om влаги

влагостойкая ипаквовка


Sahara Ready Bag 25 kz

AA

Big Bag, 1000 kz

СОДЕРЖАНИЕ

4	ОБЩИЕ СВЕДЕНИЯ
63	СВАРОЧНЫЕ ЭЛЕКТРОДЫ
296	СВАРОЧНАЯ ПРОВОЛОКА МІБ/МАБ
357	СВАРОЧНЫЕ ПРУТКИ TIG
405	ПОРОШКОВАЯ ПРОВОЛОКА
526	МАТЕРИАЛЫ ДЛЯ СВАРКИ ПОД ФЛЮСОМ
603	ЛИНЕЙКА PIPELINER
640	КЕРАМИЧЕСКИЕ ПОДКЛАДКИ
642	ПРОДУКЦИЯ МЕЖГОСМЕТИЗ-МЦЕНСК

<u>ОБЩИЕ СВЕДЕНИЯ</u>
Химический состав и классификация8
Соответствие сварочных материалов25
Классификация EN/ISO30
Числа А/F/М35
Пространственные положения сварки36
Рекомендации по выбору38
Расчеты стоимости сварки металло- конструкций электродами для РДС48
Феррит в наплавленном металле51
Bugы ynako8ku54
Sahara® ReadyPack®57
Хранение и обращение58
ХАРАКТЕРИСТИКИ: ЭЛЕКТРОДЫ СПОКРЫТИЕМ
Углеродистая сталь и сталь с мелкозернистой структурой
Fleetweld® 5P+64
Supra®
Umnia**
Pantafix®
Omnia® 46
Numal74
Cumulo®
Ferrod® 165A 82
Ferrod® 135T
130012 1811 88
Baso® 48SP
Rasn® 51P 94
Baso® 51P
Baso * 10098
Baso® 120100
Baso® G
Vandal
Conarc® 48 108
I nnarc ♥ 49 110
t onarc* 49t
Conarc® One
Conarc® 50
Conarc® 52
Lincoln /U18-1122
Conarc® 150 124
Conarc® V180 126 Kardo 128
Низколегированная сталь Shield Arc® HYP+130
Shield Arc® HYP+
Conarc® 55CT 134
Innarc® 60G 136
Conarc® 70G 138
Conarc® 74140
Conarc [®] 80
Kryo® 1

Kryo® 1N. 1 Kryo® 1P. 1 Kryo® 1-145 1 Kryo® 2. 1 Kryo® 3. 1 Kryo® 4. 1 SL®12G. 1 SL®19G. 1 SL®20G. 1 SL®20G. 1 SL®20G. 1 SL®20G. 1 SL®20G. 1 SL®9Cr[P91]. 1	50 52 54 56 58 60 64 66 68
Нержавеющая и жаростойкая сталь	
Arosta® 304L	/4 76
Limarosta® 304L	/0 70
	0 0 0
Jungo® 304L	87
lungo R 7.47	0.4
Arosta® 316L	86
Limarosta® 316L1	88
Vertarosta® 316L1	90
Juligo 34/	92
Limarosta 9 316L-130	94
Arosta 318	96
Jungo® 4465. 1 Jungo® 4500. 2 Arosta® 4462. 2	98 100
Arosta® 4462	บบ
Jungo® 4462	.02 ΩΔ
Jungo® 309L	06
Arosta® 309S2	208
Limarosta® 309S2	210
Jungo® 4462	212
INICIII UIII d	. 14
Nichroma 160	16
Arosta® 207	วก
Arosta® 307	20
Arosta® 304H	24
Arosta® 304H	26
Arosta® 309H2	28
Intherma® 310	30
Intherma® 310B2	32
Linox P 308L	
Linox P 316L	20
Linox 316L	.30 ΔN
Linox P 309L2	42
Linox 309L2	44
Никелевые сплавы	
NICro 60/20	40
NiCro 70/15	40 50
NiCro 3/0/20	52
NiCro 70/19	54
NYLOID 2	56
NIĈro 70/19	.56 .58
NYLOID 42	258
NYLOID 42	258
NYLOID 4	!58 !60
NYLOID 4	!58 !60
NYLOID 42	!58 !60
NYLOID 4	!58 !60 !62 !64
NYLOID 4	!58 !60 !62 !64
NYLOID 4	!58 !60 !62 !64
NYLOID 4	158 160 162 164 166 168
NYLOID 4	258 260 262 264 268 270 272

Wearshield® MI (e)278	SuperGlaze® MIG 2319	345
Wearshield® ABR280	SuperGlaze® MIG 4043SuperGlaze® MIG 4047	346
Wearshield® ME (e) 282 Wearshield® 60 (e) 284 Wearshield® 70 286	SuperGlaze® MIG 4047	347
Wearshield 60 (e)284	SuperGlaze® MIG 5087 SuperGlaze® MIG 5183	348
Wearshield® 70286	SuperGlaze® MIG 5183	349
Wearshield® 420288	SuperGlaze® MIG 5356	350
	SuperGlaze® MIG 5356 TM	351
Чугун	SuperGlaze® MIG 5356 TM SuperGlaze® MIG 5556	352
RepTec Cast 1290	Superblaze® MIb 5556A	
RepTec Cast 3292	SuperGlaze® MIG 5754	354
RepTec Cast 31294		
	<u>Наплавка</u>	
	LNM 420FM	
<u>ХАРАКТЕРИСТИКИ: ПРОВОЛОКА МІБ</u>	LNM 4M	356
Типовые настройки297		
<u>Углеродистая сталь</u>	<u> ХАРАКТЕРИСТИКИ: ПРУТКИ ТІБ</u>	
LNM 25298	v	
UltraMag®	<u>Углеродистая сталь</u>	25.0
UltraMag® 645i1300	LNT 25	358
	LNT 26	359
SupraMIG® CF	Huntananana0a	
Supratvig HU303	Низколегированная сталь	
Supramic Ultra® CF	LNT 28	
Supraiving Ultra Lt	LNT Ni1	
SupraMig® LF 302 SupraMig® HD 303 SupraMig Ultra® 304 SupraMig Ultra® CF 305 SupraMig Ultra® HD 306	LNT NiMo1	
	LNT Ni2.5	
Низколегированная сталь	LNT 12	
LNM 28	LNT 19	
LNM MoNi	LNT 20	
LNM MoNiVa309	LNT 502	
LNM MoNiCr310	LNT 9Cr(P91)	368
LNM Ni1311	11	
LNM Ni2.5312	<u>Нержавеющая сталь</u>	260
LNM 12313	LNT 304LSiLNT 304L	569
LNM 19314	LINT 347C:	3/U
LNM 20315	LNT 347Si	3/1
Hamila Calaura a ama ar	LNT 316LSi LNT 316L	3/2
Нержавеющая сталь	LNT 210C:	3/3
LNM 304LSi316	LNT 318Si	3/4
LNM 304L317	LNT 4439Mn	
LNM 347Si	LNT 4500 LNT 4462	
LNM 316LSi319		
LNM 318Si320 LNM 4439Mn321	LNT Zeron* 100X	
	LNT 309LHF	
LNM 4455322	LNT 309LSi	
LNM 4362	LNT 309L	
	LNT 304H	
LNM 4500	LNT 310	383
LNM 2507	0	
LNM 309LSi	<u>Никелевые сплавы</u>	5
LNM 307	LNT NiCro 60/20	
LNM 304H	LNT NiCro 70/19	
LNM 309H330 LNM 310331	LNT NiCroMo 59/23	
	LNT NiCu 70/30	
LNM 312332	LNT NiTi	388
Никелевые сплавы	Maguera en angle :	
LNM CuAl8338	<u>Медные сплавы</u>	300
LNM CuAl8Ni6338	LNT CuSps	389
LNM CuNi30339	LNT CuSia	
LNM CuSn341	LNT CuSi3	391
	A alexania & 0	
LNM CuSi3342	<u>Алюминиевые сплавы</u>	303
Medune cudagn	SuperGlaze® TIG 1070 SuperGlaze® TIG 1100 SuperGlaze® TIG 4043	392
<u>Медные сплавы</u> LNM CuAl8340	Superclaze® TIC 1000	393
	Superblaze TIG 4043	394
LNM CuAl8Ni6341 LNM CuNi30342	SuperGlaze® TIG 4047	395
I NIM CUCh	SuperGlaze® TIG 5183 SuperGlaze® TIG 5183	396
LNM CuSn	SuperGlaze® TIG 5183	397
LINIVI CUDID	Superblaze IIb 5356	398
A alexanderio en angles	SuperGlaze® TIG 5356 SuperGlaze® TIG 5554 SuperGlaze® TIG 5754	399
Алюминиевые сплавы SuperGlaze® MIG 1070 343 SuperGlaze® MIG 1100 344	วนทยางเล่วย - 116 5/54	400
SunorGlazo® MIG 1100		
Juper Gluze Mile 1100344		

Hackonoko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

<u>Автогенные прутки</u>	Cor-A-Rosta® P309MoL	502
LNG I401	Cor-A-Rosta® 4462 Cor-A-Rosta® P4462	504
LNG II402	Cor-A-Rosta® P4462	506
LNG IV403	LINCORE, наплавка, самозащитная	
	Lincore® 33	508
	Lincore® 40-0	
ХАРАКТЕРИСТИКИ: ПОРОШКОВАЯ ПРОВОЛОКА	Lincore® 50	
	Lincore [®] 55	514
OUTERSHIELD (газозащитная)	Lincore® 60-0	516
Металлопорошковая проволока для сварки углеро-	Lincore® T&D	518
дистых и низколегированных сталей	Lincore® 15CrMn Lincore® 420	52N
Nutershield® MC700° 406	Lincore® 420	522
Outershield® MC710-H408	Lincore® M	524
Outershield® MC710C-H410	LITICOTE IVI	JZ4
Outershield® MC715-H410	VADAUTEDIACTIANIA. CDADNA DOG MON	OCOM
Outorchiold® MC715 Ni1 U 414	ХАРАКТЕРИСТИКИ: СВАРКА ПОД ФЛН	<u>UCUIVI</u>
Outershield® MC715-N11-H	V	
Outershield® MC4c0VD II	Углеродистая сталь, проволока спло	<u>шного сечения</u>
Outersmeid* MC460VD-H418	L-60	
	L-61	
Рутилово-основная, нелегированная Outershield® 70-H 420 Outershield® 71E-H 422 Outershield® 71M-H 424 Outershield® 71MS-H 426	LNS 135	
Outershield® 70-H420	L-50M	530
Outershield® 71E-H422		
Outershield® 71M-H424	Низколегированная сталь, проволока спл	пошного сечени
Outershield® 71MS-H426	L-70	
Outershield® T55-H428	LNS 140A	
Outer 5 in Cia 1 55 11420	LNS 133TB	
Рутиловая, низколегированная, газозащитная		
Cutorchiold® 01Ni1 LL 420	LNS 140TB	
Outershield® 81Ni1-H430	LNS 150	
Outershield® 81Ni1-HSR432	LNS 151	
Outershield® 81NiC-H434	LNS 160	537
Outershield® 81K2-H436	LNS 162	
Outershield® 81K2-HSR	LNS 163	
Outershield® 91Ni1-HSR440	LNS 164	
Outershield® 91K2-HSR442	LNS 165	
Outershield® 101Ni1-HSR444		
Outershield® 690-H446	LNS 168	
Outersilield 690-H446	LNS 175	543
Outershield® 690-HSR448	Углеродистая сталь, порошковая про	волока
Outershield® 690-HSR448 Рутиловая металлопорошковая проволока для сталей. истойчивых к атмостепноми возрействию	LNS T55	544
Outershield® 690-HSR448 Рутиловая металлопорошковая проволока для сталей. истойчивых к атмостепноми возрействию	LNS T55 Нержавеющая сталь, проволока спло	544 шного сечени я
Outershield® 690-HSR448 Рутиловая металлопорошковая проволока для сталей. истойчивых к атмостепноми возрействию	LNS T55 Нержавеющая сталь, проволока спло	544 шного сечени я
Outershield® 690-HSR448 Рутиловая металлопорошковая проволока для	LNS T55 Нержавеющая сталь, проволока спло LNS 304L LNS 304H	544 шного сечения 545 546
Outershield® 690-HSR	LNS T55 Hepkaвeющая сталь, проволока спло LNS 304L LNS 304H LNS 307	544 шного сечения 545 546 547
Outershield® 690-HSR	LNS T55 Hepkaßeюшая сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L	544 шного сечения 545546547
Outershield® 690-HSR	LNS T55 HepkaBelowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L	544 WHOZO CEЧЕНИЯ 545 546 547 548 549
Outershield® 690-HSR	LNS T55	
Outershield® 690-HSR	LNS T55 Hepkaßelowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318L LNS 318	
Outershield® 690-HSR	LNS T55 Hepkaßeющая сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 318 LNS 347 LNS 347 LNS 4455	544 WHOZO CEVERHUS 545 546 547 548 549 550 551
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500СТ-Н 450 Outershield® 555СТ-Н 452 Outershield® MC555СТ-Н 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 20-H 460	LNS T55 Hepkaßelowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318L LNS 318	544 WHOZO CEVERHUS 545 546 547 548 549 550 551
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 12-H 458 Outershield® 20-H 460 INNERSHIELD (самозашитная)	LNS T55 Hepkaßeющая сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 318 LNS 347 LNS 347 LNS 4455	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 12-H 458 Outershield® 20-H 460 INNERSHIELD (самозашитная)	LNS T55 Hepkaßelowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347 LNS 347 LNS 4455 LNS 4455 LNS 4450	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553
Outershield® 690-HSR	LNS T55 Hepkaßelowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 318 LNS 347 LNS 4455 LNS 4462	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553
Outershield® 690-HSR	LNS T55 Hepkaßeющая сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 316L LNS 318 LNS 347. LNS 4455 LNS 4455 LNS 4450 LNS 2eron* 100X	544 WHOZO CEVEHUS 545 546 547 548 549 550 551 552 553 554 555
Outershield® 690-HSR	LNS T55 Hepkaßelowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347. LNS 347. LNS 4455 LNS 4452 LNS 4500 LNS Zeron* 100X Hukeлевые сплавы, проволока сплошь	
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 20-H 460 INNERSHIELD (самозащитная) Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203NiI 466 Innershield® NR®-211-MP 468	LNS T55 Hepxkaвeюwaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4462 LNS 4460 LNS Zeron* 100X Hukeneвые сплавы, проволока сплошн	544 WHOZO CEVEHUS 545 546 547 548 549 550 551 552 553 554 6020 CEVEHUS 556
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 20-H 460 INNERSHIELD (самозащитная) Innershield® NR® 152 462 Innershield® NR® 203 NiC 464 Innershield® NR® 203 NiC 466 Innershield® NR® 211-MP 468 Innershield® NR® 232 470	LNS T55 Hepkabelowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4452 LNS 4500 LNS Zeron* 100X Hukenebue сплавы, проволока сплошь LNS NiCro 70/19	544 WHOZO CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 HOZO CEVEHUS 556
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 20-H 460 INNERSHIELD (самозащитная) Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203NiT 466 Innershield® NR®-211-MP 468 Innershield® NR®-232 470 Innershield® NR®-232 472	LNS T55 Hepxkaвeюwaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4462 LNS 4460 LNS Zeron* 100X Hukeneвые сплавы, проволока сплошн	544 WHOZO CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 HOZO CEVEHUS 556
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 12-H 458 Outershield® 19-H 468 Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-233 NiC 466 Innershield® NR®-231-MP 468 Innershield® NR®-233 470 Innershield® NR®-233 472 Innershield® NR®-233 472 Innershield® NR®-207-H 474	LNS T55 Hepxabelowar cmans, npobonoka cnno LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4450 LNS 4500 LNS Zeron* 100X Hukenebie cnnabi, npobonoka cnnowe LNS NiCro 60/20 LNS NiCro 70/19 LNS NiCro Mo 60/16	544 WHOZO CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 HOZO CEVEHUS 556
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500СТ-Н 450 Outershield® 555СТ-Н 452 Outershield® MC555СТ-Н 454 Рутиловая проволока для жаростойких и жаропрочных сталей Waponpoчных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 19-H 450 INNERSHIELD (самозащитная) Innershield® NR® 152 462 Innershield® NR® 203 NiC 464 Innershield® NR® 203 NiC 464 Innershield® NR® 233 470 Innershield® NR® 233 470 Innershield® NR® 233 472 Innershield® NR® 207-H 474 Innershield® NR® 208-H 476	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 307 LNS 316L LNS 316L LNS 318 LNS 347. LNS 4455 LNS 4462 LNS 4462 LNS 4500 LNS Zeron* 100X Hukene8ые сплавы, проволока сплоше LNS NiCro 60/20 LNS NiCro 70/19 LNS NiCro Mo 60/16	544 WHOZO CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 HOZO CEVEHUS 556 557
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® NP- 460 INNERSHIELD (самозащитная) Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203 NiC 466 Innershield® NR®-211-MP 468 Innershield® NR®-231 472 Innershield® NR®-233 472 Innershield® NR®-233 472 Innershield® NR®-208-H 476 Innershield® NR®-305 478	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 307 LNS 316L LNS 316L LNS 318 LNS 347. LNS 4455 LNS 4462 LNS 4462 LNS 4500 LNS Zeron* 100X Hukene8ые сплавы, проволока сплоше LNS NiCro 60/20 LNS NiCro 70/19 LNS NiCro Mo 60/16	544 WHOZO CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 HOZO CEVEHUS 556 557
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® D0CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 19-H 460 INNERSHIELD (самозащитная) Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203Ni1 466 Innershield® NR®-231 470 Innershield® NR®-233 472 Innershield® NR®-207-H 474 Innershield® NR®-208-H 476 Innershield® NR®-208-H 476 Innershield® NR®-311 480	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347. LNS 4455 LNS 4452 LNS 4452 LNS 4500 LNS Zeron* 100X Hukeneвые сплавы, проволока сплошь LNS NiCro 60/20 LNS NiCro Mo 60/16 Флюс 842- H	
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 19-H 460 INNERSHIELD (самозащитная) Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203Ni 466 Innershield® NR®-231-MP 468 Innershield® NR®-233 472 Innershield® NR®-233 472 Innershield® NR®-208-H 476 Innershield® NR®-208-H 476 Innershield® NR®-305 478 Innershield® NR®-310 480 Innershield® NR®-400 482	Hepxabelowar cmans, npobonoka cnno LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4450 LNS 4500 LNS Zeron* 100X Hukenebie cnnabi, npobonoka cnnowe LNS NiCro 60/20 LNS NiCro 70/19 LNS NiCro Mo 60/16 Onkoc 842-H 8500	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 HO20 CEVEHUS 556 557 558
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 19-H 460 INNERSHIELD (самозащитная) Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203Ni 466 Innershield® NR®-231-MP 468 Innershield® NR®-233 472 Innershield® NR®-233 472 Innershield® NR®-208-H 476 Innershield® NR®-208-H 476 Innershield® NR®-305 478 Innershield® NR®-310 480 Innershield® NR®-400 482	LNS T55 Hepxabelowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 316L LNS 317 LNS 4455 LNS 4455 LNS 4452 LNS 4450 LNS Zeron* 100X Hukenebie сплавы, проволока сплошн	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 555 6557 556 557 558
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® D0CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 19-H 460 INNERSHIELD (самозащитная) Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203Ni1 466 Innershield® NR®-231 470 Innershield® NR®-233 472 Innershield® NR®-207-H 474 Innershield® NR®-208-H 476 Innershield® NR®-208-H 476 Innershield® NR®-311 480	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347. LNS 4455 LNS 4455 LNS 4455 LNS 4462 LNS 4500 LNS Zeron* 100X Hukene8ые сплавы, проволока сплошних проволока сплошних проводения проводе	544 WHO20 CEVEHUS 545 546 547 548 548 559 551 552 553 554 555 HO20 CEVEHUS 558 557 557 572 574
Оитегshield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® 555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 12-H 458 Outershield® 12-H 460 INNERSHIELD (самозащитная) Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203 NiC 466 Innershield® NR®-211-MP 468 Innershield® NR®-233 470 Innershield® NR®-233 472 Innershield® NR®-208-H 476 Innershield® NR®-305 478 Innershield® NR®-311 480 Innershield® NR®-311 480 Innershield® NS®-334 484 Innershield® NS®-334 484	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4455 LNS 4450 LNS 2eron* 100X Hukeneвые сплавы, проволока сплоши LNS NiCro 60/20 LNS NiCro 70/19 LNS NiCro Mo 60/16 Флюс 842-H 8500 860 888	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 H020 CEVEHUS 556 557 558 572 574 576 578
Оитегshield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500СТ-Н 450 Outershield® MC555СТ-Н 452 Outershield® MC555СТ-Н 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 19-H 460 INNERSHIELD (самозащитная) 460 Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203 NiC 468 Innershield® NR®-211-MP 468 Innershield® NR®-232 470 Innershield® NR®-233 472 Innershield® NR®-208-H 476 Innershield® NR®-305 478 Innershield® NR®-311 480 Innershield® NR®-400 482 Innershield® NS®-3M 484 COR-A-ROSTA (нержавеющая сталь, газозащитная)	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4452 LNS 4450 LNS Zeron* 100X Hukeneвые сплавы, проволока сплошних образования образо	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 6555 6557 556 557 557 572 576 578 580 582
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® MC555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 10-H 460 INNERSHIELD (самозащитная) Innershield® NR® - 152 462 Innershield® NR® - 203 NiC 464 Innershield® NR® - 203 NiC 466 Innershield® NR® - 211-MP 468 Innershield® NR® - 233 472 Innershield® NR® - 233 472 Innershield® NR® - 207-H 474 Innershield® NR® - 305 478 Innershield® NR® - 311 480 Innershield® NR® - 400 482 Innershield® NS® - 3M 484 COR-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-Rosta® 304L 480	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 307 LNS 316L LNS 316L LNS 318 LNS 347. LNS 4455 LNS 4455 LNS 4455 LNS 4462 LNS 4500 LNS Zeron* 100X Hukeneвые сплавы, проволока сплоше LNS NiCro 60/20 LNS NiCro 60/20 LNS NiCro 60/20 LNS NiCro Mo 60/16 Onloc 842-H 8500 860 888 960 980	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 HO20 CEVEHUS 556 557 558 572 574 578 580 582 582
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® MC555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 10-H 460 INNERSHIELD (самозащитная) Innershield® NR® - 152 462 Innershield® NR® - 203 NiC 464 Innershield® NR® - 203 NiC 466 Innershield® NR® - 211-MP 468 Innershield® NR® - 233 472 Innershield® NR® - 233 472 Innershield® NR® - 207-H 474 Innershield® NR® - 305 478 Innershield® NR® - 311 480 Innershield® NR® - 400 482 Innershield® NS® - 3M 484 COR-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-Rosta® 304L 480	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4455 LNS 4450 LNS 2eron* 100X Hukeneвые сплавы, проволока сплоши LNS NiCro 60/20 LNS NiCro 70/19 LNS NiCro Mo 60/16 Флюс 842-H 8500 860 888 960 980	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 H020 CEVEHUS 556 557 558 572 574 576 578 580 582 584
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® MC555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 10-H 460 INNERSHIELD (самозащитная) Innershield® NR® - 152 462 Innershield® NR® - 203 NiC 464 Innershield® NR® - 203 NiC 466 Innershield® NR® - 211-MP 468 Innershield® NR® - 233 472 Innershield® NR® - 233 472 Innershield® NR® - 207-H 474 Innershield® NR® - 305 478 Innershield® NR® - 311 480 Innershield® NR® - 400 482 Innershield® NS® - 3M 484 COR-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-Rosta® 304L 480	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 307 LNS 316L LNS 316L LNS 318 LNS 347. LNS 4455 LNS 4455 LNS 4455 LNS 4462 LNS 4500 LNS Zeron* 100X Hukeneвые сплавы, проволока сплоше LNS NiCro 60/20 LNS NiCro 60/20 LNS NiCro 60/20 LNS NiCro Mo 60/16 Onloc 842-H 8500 860 888 960 980	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 H020 CEVEHUS 556 557 558 572 574 576 578 580 582 584
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® MC555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 10-H 460 INNERSHIELD (самозащитная) Innershield® NR® - 152 462 Innershield® NR® - 203 NiC 464 Innershield® NR® - 203 NiC 466 Innershield® NR® - 211-MP 468 Innershield® NR® - 233 472 Innershield® NR® - 233 472 Innershield® NR® - 207-H 474 Innershield® NR® - 305 478 Innershield® NR® - 311 480 Innershield® NR® - 400 482 Innershield® NS® - 3M 484 COR-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-Rosta® 304L 480	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 304H LNS 307 LNS 309L LNS 316L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4450 LNS 4450 LNS Zeron* 100X Hukeneвые сплавы, проволока сплошних образования образован	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 H020 CEVEHUS 556 557 558 572 574 576 578 580 582 584
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® MC555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 10-H 460 INNERSHIELD (самозащитная) Innershield® NR® - 152 462 Innershield® NR® - 203 NiC 464 Innershield® NR® - 203 NiC 466 Innershield® NR® - 211-MP 468 Innershield® NR® - 233 472 Innershield® NR® - 233 472 Innershield® NR® - 207-H 474 Innershield® NR® - 305 478 Innershield® NR® - 311 480 Innershield® NR® - 400 482 Innershield® NS® - 3M 484 COR-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-Rosta® 304L 480	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 307 LNS 316L LNS 316L LNS 318 LNS 4455 LNS 4455 LNS 4455 LNS 4450 LNS 700 LNS Zeron* 100X Hukene8ые сплавы, проволока сплош LNS NiCro 60/20 LNS NiCro 60/20 LNS NiCro 60/20 LNS NiCro Mo 60/16 Onloc 842-H 8500 888 960 988 960 980 995N 998N P223	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 HO20 CEVEHUS 556 557 558 572 574 578 580 580 582 584 588
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® MC555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 10-H 460 INNERSHIELD (самозащитная) Innershield® NR® - 152 462 Innershield® NR® - 203 NiC 464 Innershield® NR® - 203 NiC 466 Innershield® NR® - 211-MP 468 Innershield® NR® - 233 472 Innershield® NR® - 233 472 Innershield® NR® - 207-H 474 Innershield® NR® - 305 478 Innershield® NR® - 311 480 Innershield® NR® - 400 482 Innershield® NS® - 3M 484 COR-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-Rosta® 304L 480	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4455 LNS 4450 LNS Zeron* 100X Hukeneвые сплавы, проволока сплоши LNS NiCro 60/20 LNS NiCro 70/19 LNS NiCro Mo 60/16 Флюс 842-H 8500 860 888 995N 998N 995N	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 H020 CEVEHUS 556 557 558 572 574 576 578 580 582 584 588 592
Outershield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500CT-H 450 Outershield® MC555CT-H 452 Outershield® MC555CT-H 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 10-H 460 INNERSHIELD (самозащитная) Innershield® NR® - 152 462 Innershield® NR® - 203 NiC 464 Innershield® NR® - 203 NiC 466 Innershield® NR® - 211-MP 468 Innershield® NR® - 233 472 Innershield® NR® - 233 472 Innershield® NR® - 207-H 474 Innershield® NR® - 305 478 Innershield® NR® - 311 480 Innershield® NR® - 400 482 Innershield® NS® - 3M 484 COR-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-ROSTA (нержавеющая сталь, газозащитная) Cor-A-Rosta® 304L 480	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 304H LNS 307 LNS 309L LNS 316L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4450 LNS 4500 LNS Zeron* 100X Hukeneвые сплавы, проволока сплошних образований образовании образований образовании образований образовании образований образовании образован	544 WHO20 CEVEHUS 545 546 547 548 549 550 551 552 553 554 555 HO20 CEVEHUS 556 557 558 572 574 576 578 580 582 584 588 592 594
Оитегshield® 690-HSR. 448 Рутиловая металлопорошковая проволока для сталей, устойчивых к атмосферному воздействию Outershield® 500СТ-Н 450 Outershield® MC555СТ-Н 452 Outershield® MC555СТ-Н 454 Рутиловая проволока для жаростойких и жаропрочных сталей Outershield® 12-H 456 Outershield® 19-H 458 Outershield® 19-H 460 INNERSHIELD (самозащитная) 460 Innershield® NR®-152 462 Innershield® NR®-203 NiC 464 Innershield® NR®-203 NiC 468 Innershield® NR®-211-MP 468 Innershield® NR®-232 470 Innershield® NR®-233 472 Innershield® NR®-208-H 476 Innershield® NR®-305 478 Innershield® NR®-311 480 Innershield® NR®-400 482 Innershield® NS®-3M 484 COR-A-ROSTA (нержавеющая сталь, газозащитная)	LNS T55 Hepxa8elowaя сталь, проволока спло LNS 304L LNS 304H LNS 307 LNS 309L LNS 316L LNS 318 LNS 347 LNS 4455 LNS 4455 LNS 4455 LNS 4450 LNS Zeron* 100X Hukeneвые сплавы, проволока сплоши LNS NiCro 60/20 LNS NiCro 70/19 LNS NiCro Mo 60/16 Флюс 842-H 8500 860 888 995N 998N 995N	544 WHO20 CEVEHUS 545 546 547 548 548 559 551 552 553 554 555 HO20 CEVEHUS 556 557 558 572 574 578 580 580 588 588 588 588 588 588 588 58

ХАРАКТЕРИСТИКИ: ЛИНЕЙКА PIPELINER®

Электроды с покрытием целлюлозного тип PIPELINER® 6P+ PIPELINER® 7P+ PIPELINER® 8P+ Электроды с покрытием основного типа PIPELINER® 16P	.606 .608
Электроды с покрытием основного типа ал	. 612
высокопрочной стали PIPELINER® LH-D80 PIPELINER® LH-D90	. 616 . 618
Проволока сплошного сечения PIPELINER® 70S-G PIPELINER® 80S-G PIPELINER® 80Ni1	.621
NOPOWKOBAR NPOBOJOKA	.626 .628 .630 .632 .634 .636
КЕРАМИЧЕСКИЕ ПОДКЛАДКИ	.640
ХАРАКТЕРИСТИКИ: ПРОДУКТЫ МЕЖГОСМЕТИЗ-МЦЕНСК	

ПРОДУКТЫ МЕЖТОСМЕТИЗ-МЦЕНСК
Электроды для РДС
Basic One644
Omnia 46
Conarc 52
Conarc 53650
Conarc 74652
AHO-4
AHO-21
AHO-36658
MFM-50K660
MP-3
MP-3C
O3N-6
ТМЛ-1У
ТМЛ-3У670
TMY-21Y
УОНИ-13/45
УОНИ-13/55676
УОНИИ-13/55678
УОНИИ-13/55R
ЭЖТ-1682

Проволока для сварки в среде защитных газов или

под слоем флюса	
S2Mo	684
Св-08А	685
C6-08F2C	686
C6-08FA	687
Св-08ГНМ	688
CB-08FCMT	689
CB-08XFCMA	690
Св-08ХГСМФА	691
CB-08XM	
Св-08ХМФА	693
C8-10HMA	694

<u>Прутки для аргонодуговой сварки</u> Св-08Г2С6	<u>35</u>
КОНТАКТНЫЕ ДАННЫЕ ЛИНКОЛЬН ЭЛЕКТРИК РОССИЯ61	96

LINCOLN®
ELECTRIC
THE WELDING EXPERTS®

эдектролы с покрытием дда свурки угдеродистой и медкозернистой студи

		Хими	Химический состав в %	% 9 9 1			, in the second		
название	U	Mn	is	۵	s		AWS		EN/ISO
Fleetweld® 5P+	0,20	95'0	71,0	1		A5.1	E6010	ISO 2560-A	E 42 3 C 2 5
Supra	0,12	6,0	9'0			A5.1	E6012	ISO 2560-A	E 38 0 RC11
Omnia*	20'0	5'0	6'0	1	1	A5.1	E6013	ISO 2560-A	E 42 0 RC 11
Pantafix	60'0	6'0	0,4			A5.1	E6013	ISO 2560-A	E 38 0 RC11
Omnia* 46	90'0	6'0	0,45	1	ı	A5.1	E6013	ISO 2560-A	E 38 0 R 11
Numal	90'0	0,5	0,45	i	i	A5.1	E6013	ISO 2560-A	E 38 0 R 11
Cumulo®	0,1	0,5	0,4			A5.1	E6013	ISO 2560-A	E380R12
Universalis*	1,0	9,0	0,4	i	i	A5.1	E6013	ISO 2560-A	E 42 0 RR 12
Rental	20'0	8,0	5'0		ı	A5.1	E7024	ISO 2560-A	E 38 0 RR 73
Ferrod 165A	0,07	0,95	6'0	i	i	A5.1	E7024-1	ISO 2560-A	E 42 2 RA 73
Ferrod 135T	80'0	0,5	0,35		1	A5.1	E7024	ISO 2560-A	E 38 0 RR 53
Ferrod 160T	0,07	6'0	9'0	i		A5.1	E7024	ISO 2560-A	E 42 0 RR 73
Gonia 180	20'0	1,0	0,35		ı	A5.1	E7024	ISO 2560-A	E 42 0 RR 73
Baso* 48 SP	0,075	1,4	0,45	ı		A5.1	E7018-1 H8	ISO 2560-A	E 463 B 32 H10*
Basic 7018	90'0	1,3	0,4			A5.1	E7018 H4	ISO 2560-A	E 42 2 B 12 H10
Baso* 51P	90'0	1,3	6'0	0,015	0,01	A5.1	E7018-1	ISO 2560-A	E 46 3 B 3 2 H5
Lincoln 7016 DR	80'0	1,2	9'0		1	A5.1	E7016	ISO 2560-A	E 42 3 B 12 H5
Baso*100	80'0	1,0	9'0	1	ı	A5.1	E7016 H4R	ISO 2560-A	E 42 3 B 12 H5
Baso*120	80'0	1,2	9'0		1	A5.1	E7018 H4R	ISO 2560-A	E 42 3 B 3 2 H5
Baso® G	90'0	1,3	0,4	i		A5.1	E7018-1 H4R	ISO 2560-A	E 42 5 B 3 2 H5
Baso* 26V	60'0	1,1	2'0			A5.1	E 7048 H8	ISO 2560-A	E 42 3 B 1 5 H 10
Vandal	0,07	1,2	9'0		1	A5.1	E7018-1 H4R	ISO 2560-A	E 42 4 B 3 2 H 5
Conarc* 48	90'0	1,3	6'0			A5.1	E7018-1 H4	ISO 2560-A	E 46 4 B 4 2 H 5
Conarc* 49	60'0	1,1	9'0	0,015	0,010	A5.1	E7018 H4	ISO 2560-A	E 46 3 B 4 2 H5
Conarc® 49C	90'0	4,1	6,0	0,015	0,010	A5.1	E7018-1 H4R	ISO 2560-A	E 46 4B 32 H5
Conarc [®] One	90'0	1,3	6,4	0,015	0,010	A5.1	E7018-1 H4R	ISO 2560-A	E 42 5 B 3 2 H5
Conarc* 50	90'0	1,0	6'0	:		A5.1	E7018-1 H4	ISO 2560-A	E 46 5 B 4 2 H5
Conarc* 51	90'0	1,4	6'0	0,015	0,010	A5.1	E7016-1 H4R	ISO 2560-A	E 42 4 B 12 H5
Conarc* 52	90'0	1,2	0,4	0,015	0,010	A5.1	E7016	ISO 2560-A	E 422B12H5
LINCOLN® 7018-1	90'0	1,0	6,0	0,015	0,010	A5.1	E7018-1	ISO 2560-A	E 46 3 B 3 2 H5
Conarc* L150	20'0	0,95	0,4	0,015	0,010	A5.1	E7028 H4R	ISO 2560-A	E 42 2 B 5 3 H5
Conarc® V180	80'0	1,2	6'0	0,015	0,010	A5.1	E7028 H4R	ISO 2560-A	E 42 4 B 7 3 H5
Kardo	0.03	70	30.0	3100	0100	٧٦,	1,000		

¹) no knaccuфukayuu 1966 * makжe coom 8em cm 8yem E 46 3 BR32 H10

электроды с покрытием ода сварки низкодетированной стали (высокотемпературные жаропрочные и с высоким препедом текучести)

Название				XuN	ınaecku	Химический состав в %	9 %							AWS		FN/ISD
	U	M	ï	Z	ت	Mo	3	>	N _o	z	۵	s				}
Shield Arc® HYP+	0,13-0,17	0,49-0,63	0,08-0,18		-	0,27-0,31	,	<0,01			,	-	A5.5	E 7010-P1	ISO 2560-A	E 42 2 Mo C 2 5
hield Arc® 70+	0,13-0,17	0,6-1,2	0,05-0,3	0,75-0,97	0,01-0,2	0,01-0,2 0,05-0,15	٦	0,02-0,04			0,012	0,013	A5.5	E 8010-G	ISO 2560-A	E 46 4 1NI C 2 5
Conarc® 55CT	0,05	1,5	0,4	6'0			0,4				0,010	0,015 A5.5		E8018-W2-H4R 1 ISO 2560-A	ISO 2560-A	E 46 5 Mn1Ni B 32 H5
Conarc" 60G	90'0	1,0	0,4	9'1		6,0					0,015	0,010	A5.5	E9018M-H4	EN-ISO 18275	E 554ZB32H5
Conarc® 70G	90'0	1,2	0,4	1,0	1	0,4					0,014	0,009 A5.5	15.5	E9018-G-H4R	EN-ISO 18275	E 5541NIMo B 32 H5
Conarc® 74	0,05	1,5	0,5	0,95	1						0,010	0,005 A5.5	15.5	E8018-G-H4R	ISO 2560-A	E 50 6 Mn1Ni B 32 H5
Conarc® 80	90'0	1,5	0,4	2,2	1	0,4					0,015	0,01	A5.5	E11018M-H4	EN-ISO 18275	E 69 5 Z B 3 2 H5
Conarc" 85	90'0	1,4	6,0	2,0	0,4	0,4					0,01	0,01	A5.5	E12018-G-H4R	EN-ISO 18275	E 69 5 Mn2NiCrMo B 3 2 H5
Kryo" 1	0,05	1,5	0,4	6'0	1	•	,				0,01	0,01	A5.5	E7018-G-H4R2	ISO 2560-A	E 50 6 Mn1Ni B 32 H5
Kryo" 1N	0,07	1,7	0,5	6'0	,		,				0,02	0,005 A5.5	15.5	E8016-G-H4R	ISO 2560-A	E 50 6 Mn1Ni B 12 H5
Kryo" 1P	0,05	1,5	0,5	0,95	1						0,010	0,005 A5.5	15.5	E 8018-G-H4R	ISO 2560-A	E 50 6 Mn1Ni B 32 H5
Kryo" 1-145	90'0	1,5	0,5	6'0			,			,	0,010	0,010	A5.5	E8018-G-H4R	ISO 2560-A	E 50 6 Mn1Ni B 53 H5
Kryo* 1-180	0,07	1,2	6,0	6'0	1		,				0,020	0,010 A5.5	15.5	E 8018-G-H4R	ISO 2560-A	E 50 5 1Ni B 7 3 H5
Kryo" 2	0,05	1,6	6,0	1,5	,		,				0,015	0,01	A5.5	E9018-G-H4R	EN-ISO 18275	E 55 6 Z B 3 2 H5
Kryo" 3	0,05	2'0	6,0	2,5	1		,				0,015	0,010	A5.5	E8018-C1-H4	ISO 2560-A	E 46 8 3Ni B 3 2 H5*
Kryo° 4	0,03	9'0	0,4	3,6	,		,				0,010	0,005 A5.5	15.5	E7016-C2L-H4R	ISO 2560-A	E 38 8 3N i B 3 2 H 5
SL*12G	0,05	8,0	9,0	1	1	0,55	,				0,02	0,01	A5.5	E7018-A1-H4R	ISO 3580-A	E Mo B 3 2 H 5
SL*19G	90'0	0,75	9,0	•	1,1	0,5					0,015	0,01	A5.5	E8018-B2-H4	ISO 3580-A	E CrMo1 B 3 2 H5
SL*20G	90'0	8,0	9,0		2,3	1,0	,				0,015	0,01	A5.5	E9018-B3-H4	ISO 3580-A	E CrMo2 B 3 2 H5
SL*22G	90'0	8'0	9,0		0,5	0,5	,	6,0		,	0,02	0,01	A5.5	E8018-B1-H4	ISO 3580-A	E Z B 3 2 H5
SL*502	0,07	8,0	9,0	1	5,3	9,0	,				0,020	0,010 A5.5	15.5	E8018-B6-H4R	ISO 3580-A	E CrMo5 B 3 2 H5
SI "9Cr(P91)	0.09	9.0	0.2	9.0	9.0	1.0		0.2	0.04	0.04	0.010	0.010 A5.5	5.5	E9016-B9-H4	ISO 3580-A	E CrMo91 B 3 2 H5

⁴Отклонения от классификации приведены на странице с техническими характерист ² Также соответствует AWS A5.5: E8018-G-H4R

LINCOLN .
ELECTRIC
THE WELDING EXPERTS*

ЭЛЕКТРОДЫ СПОКРЫТИЕМ ДЛЯ СВАРКИ НЕРЖАВЕЮЩЕИ И ЖАРОСТОИКОИ СТАЛИ	KPbI I NE) KILLI M	BAPKN	HFFX	ABEHUII	ĮΕΝ Ν γ	KAPUL	IONKC	N L I A	<u> </u>				
Пээвэнно			×	Химический состав в %	kuŭ co	:ma8 8	%					7/4/0		EN/ICO
חמפסמחתב	u	M	ız	ئ	Έ	₩	윤	3	z	>		700		EIVISO
Arosta 304L	0,02	08'0	08'0	19,5	2,6						A5.4	E308L-16	ISO 3581-A	E199LR12
Limarosta® 304L	0,025	0,75	0,95	19,0	2,6	,		,		,	A5.4	E308L-17	ISO 3581-A	E 19 9 L R 12
Vertarosta® 304L	0,02	8,0	2,0	20,0	8,6	,		,	ì	,	A5.4	E308L-15	ISO 3581-A	E199LR21
Jungo [®] 304L	0,025	1,8	0,4	19,0	10,0	,		,		,	A5.4	E308L-15	ISO 3581-A	E199LB22
Arosta 347	0,03	8,0	8,0	19,5	8,6	,	0,35	,	,	,	A5.4	E347-16	ISO 3581-A	E 19 9 Nb R 12
Jungo [®] 347	0,02	1,6	0,5	20,0	10,01	,	0,40	,		,	A5.4	E347-15	ISO 3581-A	E 19 9 Nb B 22
Arosta 316L	0,02	8,0	8,0	18,0	11,5	2,85				,	A5.4	E316L-16	ISO 3581-A	E 19 12 3 L R 12
Limarosta® 316L	0,02	8,0	1,0	18,0	11,5	2,8		,	,	,	A5.4	E316L-17	ISO 3581-A	E 19 12 3 L R 12
Vertarosta® 316L	0,02	2,0	0,85	18,0	11,5	2,8		,	,	,	A5.4	E316L-15	ISO 3581-A	E 19 12 3 L R 21
Jungo [®] 316L	0,025	1,6	0,4	18,5	11,0	2,7				,	A5.4	E316L-15	ISO 3581-A	E 19 12 3 L B 22
Limarosta® 316L-130	0,02	0,65	1,0	18,0	11,5	2,8				,	A5.4	E316L-17	ISO 3581-A	E 19 12 3 L R 53
Arosta [®] 318	0,03	8,0	0,85	18,0	11,5	2,7	0,35	ì	ì		A5.4	E318-16	ISO 3581-A	E 19 12 3 Nb R 12
Jungo 4465	0,03	4,5	0,4	25,0	22,0	2,2			0,13	,	A5.4	E310Mo-15*	ISO 3581-A	E 25 22 2 N L B 22*
Jungo 4500	0,02	1,2	6,0	20,0	25,0	5,0		7,5	,	,	A5.4	E385-16*	ISO 3581-A	E 20 25 5 Cu N L R 12
Arosta® 4462	0,02	8,0	1,0	22,5	9,5	3,2		,	91,0	,	A5.4	E2209-16	ISO 3581-A	E2293NLR32
Jungo ^a 4462	0,025	1,6	0,5	23,5	9,0	3,0		,	0,15	,	A5.4	E2209-15	ISO 3581-A	E2293NLB22
Jungo [®] 309L	0,025	1,5	0,4	23,0	13,0					,	A5.4	E309L-15	ISO 3581-A	E 23 12 L B 22
Arosta 3095	0,02	8,0	8,0	23,5	12,5	·		,		,	A5.4	E309L-16	ISO 3581-A	E 23 12 L R 32
Limarosta® 3095	0,02	8,0	1,0	23,0	12,5	·		ı		,	A5.4	E309L-17	ISO 3581-A	E 23 12 L R 32
Arosta"309Mo	0,02	8,0	8,0	23,0	12,5	2,7		,		,	A5.4	E309LMo-16	ISO 3581-A	E 23 12 2 L R 32
Nichroma	0,025	8,0	1,0	20,0	9,5	2,3		,	,	,	A5.4	E308LMo-16	ISO 3581-A	E 20 10 3 R 32
Nichroma 160	0,05	0,7	1,0	23,7	12,8	2,4		,		,	A5.4	E309Mo-26	ISO 3581-A	E 23 12 2 LR 53*
Arosta [®] 329	90'0	2,0	1,2	25,0	4,5	,		,		,			ISO 3581-A	E 25 4 R 12*
Limarosta® 312	11,0	6'0	1,0	29,0	9,0	,		,	ì	,	A5.4	E312-17	ISO 3581-A	E 29 9 R 12
Arosta 307	60'0	5,0	9'0	18,5	8,5	,		,		,	A5.4	E307-16*	ISO 3581-A	E 18 8 Mn R 12
Arosta [®] 307-160	90'0	0,9	1,0	18,0	8,0	,		,		,	A5.4	E307-26*	ISO 3581-A	E 18 8 Mn R 53
Jungo 307	80'0	5,5	6,0	19,0	8,5					,	A5.4	E307-15*	ISO 3581-A	E 18 8 Mn B 22
Arosta 304H	0,05	0,75	0,85	18,5	9,5	,		,	,	,	A5.4	E308H-16	ISO 3581-A	E 19 9 H R 12
Arosta 309H	0,10	8,0	1,6	22,0	11,0					,	A5.4	E309H-16*	ISO 3581-A	E 23 12 R 32*
Intherma" 310	0,12	2,5	0,5	26,0	20,5	·		,		,	A5.4	E310-16	ISO 3581-A	E 25 20 R 12
Intherma® 310B	1,0	3,0	6,0	25,0	21,0	,		,		,	A5.4	E310-15*	ISO 3581-A	E 25 20 B 12
Linox P 308L	0,025	8,0	9'0	19,0	9,5						A5.4	E308L-16	ISO 3581-A	E 19 9 L R 32
Linox 308L	0,025	8,0	8,0	19,0	9,5						A5.4	E308L-17	ISO 3581-A	E199LR32
Linox P 316L	0,025	8'0	9'0	19,0	12,0	2,5					A5.4	E316L-16	ISO 3581-A	E 19 12 3 L R 32
Linox 316L	0,025	8'0	8,0	18,0	12,0	2,5					A5.4	E316L-17	ISO 3581-A	E 19 12 3 L R 32
Linox P 309L	0,025	8'0	9'0	23,5	13,0						A5.4	E309L-16	ISO 3581-A	EE 23 12 L R 32
Linox 309L	0,025	2,0	2,0	24,0	12,5						A5.4	E309L-17	ISO 3581-A	E 23 12 L R 32

Отклонения от классификации приведены на странице с техническими характеристиками

ЭЛЕКТРОДЫ С ПОКРЫТИЕМ ДЛЯ СВАРКИ НИКЕЛЕВЫХ СПЛАВОВ

Название C Mn Si Fe Cr Ni Mo Cu Ti S ASATIAS:TIM ENIGNES							, coming	2 8	8								
C Mn Si Fe Cr Ni Mo Cu Nb VT Ti S 0,02 0,8 0,9 6an. 27 31,0 3,5 0,9 -	Название				•	Nama d	ברעמת כס		2					Ā	NS		ENISO
0,02 0,8 0,9 6an 271 31,0 3,5 0,9 A5.4 E383-16 ISO 3881-A 0,03 0,5 0,35 0,9 22 62 9 - 3,4 - A5.11/A5.11M ENICrMo-3 ISO 14772 0,02 4,4 0,45 6 16 6an - 1,9 - - - A5.11/A5.11M ENICrFe-2* ISO 14772 0,03 4,7 0,6 4,0 6an 6an 1,5 - 1,5 1,5 - - A5.11/A5.11M ENICrMo-6 ISO 14772 0,05 3,0 0,4 6 13 6an 6,5 1,5 1,5 - - A5.11/A5.11M ENICrMo-6 ISO 14772 0,05 3,0 0,4 6 13 6an 6,5 - 1,5 1,5 - A5.11/A5.11M ENICrMo-6 ISO 14772 0,05 3,0 0,4 6 13 6an 6,5 - 1,5 1,5 - A5.11/A5.11M ENICrMo-6 ISO 14772 0,05 3,0 0,4 6 13 6an 6,5 - 1,5 1,5 - A5.11/A5.11M ENICrMo-6 ISO 14772 0,05 3,0 0,4 6 13 6an 6,5 - 1,5 1,5 - A5.11/A5.11M ENICrMo-6 ISO 14772 0,05 3,0 0,4 6 13 6an 6,5 - 1,5 1,5 - A5.11/A5.11M ENICRMO-6 ISO 14772 0,05 3,0 0,4 6 13 6an 6,5 - 1,5 1,5 - A5.11/A5.11M ENICRMO-6 ISO 14772 0,05 3,0 0,4 6 13 6an 6,5 - 1,5 1,5 - - A5.11/A5.11M ENICRMO-6 ISO 14772 0,05 3,0 0,4 6 13 0,4 0		ں	Æ	ız	굔	ئ	æ	₽	3	ą		 ≔	S				
0,03	NiCro 31/27	0,02	8'0	6'0	бал.	1,77		3,5	6'0					A5.4	E383-16	ISO 3581-A	
4, 6, 02 4, 6, 6 18 6an. - 1, 9 - - - ASTIVAS.11M ENICFRe-2* ISO 1472 0, 02 5, 5 0, 4 6, 5 16 6an. 1, 5 - - - - ASTIVAS.11M ENICFRe-2* ISO 1472 0,05 4, 7 6, 6 1, 5 -	NiCro 60/20	0,03	6'0	0,35	6,0	22	62	6		3,4		,		A5.11/A5.11M	ENICrMo-3	ISO 14172	E Ni 6625 (NiCr22Mo9Nb)
Mn 0,025 5,5 0,4 6,5 16 6an. - 2,0 - - - ASTI/AS:IIM ENICrFe-3 ISO 1472 0,03 4,7 0,6 4,0 6an. 6an. 1,5 - 1,9 - - - ASTI/AS:IIM ENICrFe-2* ISO 1472 0,05 3,0 0,4 6 13 6a 6 1,5 - - ASTI/AS:IIM ENICrMo-6* ISO 1472	NiCro 70/15	0,02	4,4	0,45	9	82	бал.			1,9				A5.11/A5.11M	ENICrFe-2*	ISO 14172	E Ni 6182* (NiCr15Fe6Mn)*
0,03 4,7 0,6 4,0 6an. 1,5 - 1,9 A5.TI/A5.TIM ENICTRE-2* ISO 14772 0,05 3,0 0,4 6 13 68 6 - 1,5 1,5 A5.TI/A5.TIM ENICTMO-6 ISO 14772	NiCro 70/15Mn	0,025	5,5	0,4		16	бал.			2,0				A5.11/A5.11M	ENICrFe-3	ISO 14172	E Ni 6182 (NiCr15Fe6Mn)
0,05 3,0 0,4 6 13 68 6 - 1,5 1,5 ASTIVAS.TIM ENICHMO-6 ISO14172 E	NiCro 70/19	0,03	4,7	9'0	4,0	бал.		1,5		1,9				A5.11/A5.11M	ENICrFe-2*	ISO 14172	E Ni 6082 (NiCr20Mn3Nb)
0,05 3,0 0,4 6 13 6an. 6,5 · 1,5 1,5 · · A511/A5,11M ENICMO-6 ISO 1472	NYLOID 2	0,05	3,0	0,4	9	13	89	9		1,5	1,5	,		A5.11/A5.11M	ENICrMo-6	ISO 14172	E Ni 6620 (NICr14Mo7Fe)
	NYLOID 4	0,05	3,0	0,4	9	13	рал.	6,5		1,5	1,5			A5.11/A5.11M	ENICrMo-6		E Ni 6620 (NiCr14M07Fe)

[.] Отклонения от классификации приведены на странице с техническими характеристиками

ЭЛЕКТРОДЫ С ПОКРЫТИЕМ ДЛЯ СВАРКИ АЛЮМИНИЕВЫХ СПЛАВОВ

EN/ISO		273 AI 3103 (AIMn1)	273 AI 4043A* [AISi5[A]]	273 AI 4047A [AISi12(A]]
		150 18273	150 18273	150 18273
AWS	<u>!</u>	E3003*	E4043	
		A5.3	A5.3	
	Apyzue	макс. 0,15		-
	F			-
	Zu	макс. 0,09		-
8 %	Mg	Makc. 0,15		-
состав	₹	бал.	бал.	бал.
Химический состав в 9	3	Makc. 0,02		-
	굔	Makc. 0,6		-
	iΣ	Makc. 0,3	5,0	12,0
	M	0,9-1,2		
Название		AlMn	AISi5	AISi12

* Отклонения от классификации приведены на странице с техническими характеристиками

ЭЛЕКТРОДЫ С ПОКРЫТИЕМ ДЛЯ РЕМОНТНЫХ РАБОТ

			χ	Muyeck	Химический состав в %	maß ß	%				, in the second				Ç
пазоание	J	Mn	Si	៦	Mo	8	>	Nb	В	;=	AWS		N C		EINISO
Wearshield® BU-30	0,2	8,0	1,0	1,5	5,0							DIN 8555	E1-UM-350-GP	EN 14700	E Fe1
Wearshield® Mangjet (e)	2'0	15		3,7								DIN 8555	E7-UM-200-KP	EN 14700	E Fe9
Wearshield*15CrMn	0,35	14,0	9,0	15,0						- A5	A5.13 E Fe9	DIN 8555	E7-UM-250-KP	EN 14700	E Fe9
Wearshield* MM 40	0,2	9'0	<u>1,</u>	3,4	6,0							DIN 8555	E1-UM-400-G*	EN 14700	E Fe1
Wearshield [®] MM	0,55	9'0	7,	4,5	6,0	0,5						DIN 8555	E2-UM-55-G*	EN 14700	E Fe2
Wearshield* T&D	0,65	0,4	0,5	4	6,5	2,6	1,			- A5	A5.13 E Fe6*	DIN 8555	E4-UM-60-SZ	EN 14700	E Fe4
Wearshield* MI [e]	6'0	0,4	1,8	6						- A5	A5.13 E Fe6	DIN 8555	E6-UM-60-GPS	EN 14700	E Fe6
Wearshield* ABR	2,1	1,1	0,75	6,5	0,40							DIN 8555	E10-UM-50-GPZ	EN 14700	E Fe6
Wearshield® ME [e]	9	1	6,	æ								DIN 8555	E10-UM-60-GRZ	EN 14700	E Fe14
Wearshield® 60 (e)	2		4	35								DIN 8555	E10-UM-60-GR	EN 14700	E Fe15
Wearshield* 70	4,2		7,7	8	8,5	7		6				DIN 8555	E10-UM-65-GRZ	EN 14700	E Fe16
Wearshield* 420	0,5	6,0	0,4	12,4	0,4		1,3					DIN 8555	E6-UM-55-RZ	EN 14700	EFe8
* самый близкий класс															

электроды с покрытием для Ремонтных Работ

JIENI PUMBI CITURPE	DINEM	ПИЕМ ДЛЯ РЕМОП ПОПА РАБОТ	מחוחטוי	IN PADO						
9		~	имический состав в	uŭ cocm	a8 8 %			2,947		CN/ICO
пазоание	U	Mn	Si	Ν	ט	Fe		ANY		CIVIDO
RepTec Cast 1	2'0			46		2,0	A5:15	ENi-CI	1501071	E C Ni-CI 1
RepTec Cast 3	9'0			бал.		40 A5.15	A5.15	ENiFe-CI	1501071	E C NiFe-CI1
RepTec Cast 31	2,0			рал.		45	A5.15	ENiFe-CI	150 1071	E C NiFe-CI1

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности. LINCOLN ELECTRIC

9-11	Χnκ	Химический состав в %	%!		57474		
пазрание	J	Mn	iΣ		AVVS		EIVISO
LNM 25	80'0	1,10	09'0	A5.18/A5.18M	ER70S-3	EN ISO 14341-A G 42 4 M 2Si	G 42 4 M 2Si
UltraMag®	0,078	1,40	0,85	A5:18/A5:18M	ER705-6	EN ISO 14341-A	G 46 4 M 3 Si 1 / G 42 3 C 3 Si 1
JltraMag [®] G4Si1	80'0	1,70	0,85	A5:18/A5:18M	ER705-6	EN ISO 14341-A	G 46 5 M 4Si1/G 463 C 4Si1
SupraMIG*	80'0	1,40	0,85	A5.18/A5.18M	ER705-6	EN ISO 14341-A	G 46 4 M 3Si1 / G 42 3 C 3Si1
SupraMIG* CF	80'0	1,40	0,85	A5.18/A5.18M	ER70S-6	EN ISO 14341-A	G 46 4 M 35i1 / G 42 3 C 35i1
SupraMIG* HD	80'0	1,40	0,85	A5.18/A5.18M	ER70S-6	EN ISO 14341-A	N ISO 14341-A G 46 4 M 3Si1 / G 42 3 C 3Si1
SupraMIG Ultra®	80'0	1,70	0,85	A5.18/A5.18M	ER705-6	EN ISO 14341-A	G 50 5 M 4Sit / G 463 C 4Sit
SupraMIG Ultra®CF	80'0	1,70	0,85	A5:18/A5:18M	ER705-6	EN ISO 14341-A	G 50 5 M 4Si1 / G 463 C 4Si1
SupraMIG Ultra® HD	80'0	1,70	0,85	A5.18/A5.18M	ER70S-6	EN ISO 14341-A	EN ISO 14341-A 6 50 5 M 4Sit / G 463 C 4Sit

проволоку міс пля гвурки низколегировунной гтупи

				Хими	Химический состав в %	состав	% 9							
Название	U	Mn	Si	Z	3	Cu Cr Mo	Мо	>	ı=	z		AWS		EN/ISO
LNM28	0,10	1,4	0,75	8,0	6,0						A5.28	ER805-G	EN/ISO 16834-A	N/ISO 16834-A G Z Mn3NitCu*
LNM MoNi	0,10	1,65	0,75	0,55	80'0	09'0	0,30				A5.28	ER100S-G	EN/ISO 16834-A	EWISO 16834-A G 62 4 M Mn3NiCrMo
LNM MoNiVa	80,0	1,7	0,44	1,35	0,25	0,23	6,0	80'0	,	,	A5.28	ER110S-G	EN/ISO 16834-A	EN/ISO 16834-A G 69 4 M Mn3Ni1CrMo
LNM MoNiCr	60'0	1,8	08'0	2,20		0,30	0,55				A5.28	ER1205-G	EN/ISO 16834-A	:N/ISO 16834-A G 89 4 M Mn4Ni2CrMo
LNM Ni1	60'0	1,2	9,0	60					,	,	A5.28	ER805-Nit	EN/ISO 14341-A G 46 5 M 3N ii	G 46 5 M 3Ni1
LNM Ni2.5	0,10	Ε.	0,55	2,4							A5.28	ER80S-Ni2	EN ISO 14341-A G 46 6 M 2NI2	G 46 6 M 2Ni2
LNM 12	0,10	1,12	9,0				6,0			,	A5.28	ER70S-A1	EN ISO 14341-A	G 46 3 M 2Mo
LNM 19	0,10	1,0	0,5			1,2	0,5				A5.28	ER805-B2*	ISO 21952-A	G CrMo1Si
LNM 20	80'0	6'0	9,0			2,5	1,0				A5.28	ER905-B3*	ISO 21952-A	G CrMo2Si

* самый близкий класс

DEPOPOSON MIS AND CEADING MEDWARE WILL IN TAKIN

				*	омпие)	Химический состав в %	:ma8 8	%						, in the second		
назрание	U	Ā	ıъ	<u>ت</u>	Z	Mo	Nb N Cu	z	3	۵	S	≥		AWS		EINISO
NM 304LSi	0,020	1,9	8'0	20,0	10,01	1,0						-	A5.9	ER308LSi	ISO 14343-A	G 19 9 L Si
NM 304L	0,010	9,1	0,4	20,0	10,0	0,3		÷	ì	ì	,	-	45.9	ER308L	ISO 14343-A	G199L
NM 347Si	0,05	1,4	2,0	19,2	6'6	0,1	9'0					_	45.9	ER347Si	ISO 14343-A	G 19 9 NbSi
NM 316LSi	0,010	1,8	8,0	18,5	12,2	2,5	- 1					-	45.9	ER316LSi	ISO 14343-A	G 19 12 3 L Si
NM 318Si	0,05	1,4	2,0	18,6	11,7	2,5	2,0					_	45.9	ER318*	ISO 14343-A	G 19 12 3 NbSi
NM 4439Mn	0,01	5,2	0,4	19,0	17,0	4,0	i	0,15							ISO 14343-A	G 18 16 5 N L*
NM 4455	0,015	0,2	0,4	20,0	16,0	3,0		0,15				-	45.9	ER316LMn	ISO 14343-A	G 20 16 3 Mn L
NM 4500	0,01	1,7	0,3	20,0	25,0	4,4	,		1,5			-	A5.9	ER385	ISO 14343-A	G 20 25 5 Cu L
NM 4362	0,01	4,1	9,0	23,0	0,7	0,3		0,14					뿐	Не имеет соответс	ствий стандар	mam EN u AWS
NM 4462	0,01	[1	0,5	23,0	8,5	3,0	í	0,15			í	-	45.9		ISO 14343-A	G 22 9 3 N L
NM 2507	0,03	2,5	0,1	24,0-27,0	4,0-27,0 8,0-10,5 2,5-4,5	2,5-4,5	0,03	0,15	0,05	0,03	0,02	_	45.9		ISO 14343-A	G 25 9 4 N L
NM 309LSi	0,02	1,8	8,0	23,3	13,8	0,14						-	45.9	ER309LSi	ISO 14343-A	ISO 14343-A G 23 12 L Si
NM 307	0,07	₽	8,0	18,6	8,0				,			_	45.9		ISO 14343-A	G 18 8 Mn
NM 304H	0,07	1,9	0,4	20,0	9,2	1,0		÷	ì	ì	,	-	45.9		ISO 14343-A	G 19 9 H
NM 309H	80,0	1,8	0,4	23,6	13,2	1,0			,			_	45.9			
.NM 310	0,1	1,7	0,45	26,0	21,0	0,1						-	45.9	ER310	ISO 14343-A	6 25 20
NM 312	0.1	1,8	0,4	30,7	8,9							_	45.9	ER312	ISO 14343-A	6 29 9

ПРОВОЛОКА МІБ ДЛЯ СВАРКИ НИКЕЛЕВЫХ СПЛАВОВ

:				nχ	мичес	kuŭ co	Химический состав в %	3 %							
Назбание	u	M		Z	ت	Mo	Si Ni Cr Mo Cu Nb Fe Al W Ti	£	굔	₹	8	ı=	AWS		EN/ISO
LNM NiCro 31/27	10,0		1,6 1,0 31,0 27,0 3,5 1,0	31,0	27,0	3,5	1,0					,	A5.9 ER383	ISO 14343-A	G27314CuL
LNM NiCro 60/20	0,02	90'0	0,07	64	21,9	0,6	- 3,5	3,5	0,4			,	45.14/A5.14M ERNICrMo-3	150 18274	S Ni 6625 (NiCr22M09N
LNM NiCro 70/19	0,03	3,1	80'0	72,5	20,5		0,01 2,6	5,6	8,0			,	A5.14/A5.14M ERNICr-3	150 18274	S Ni 6082 (NiCr20Mn3N
LNM NITi	0,02	0,4	0,2	бал.					90'0			3,1	3,1 A5.14/A5.14M ERNi1	150 18274	S Ni 2061 (NiTi3)
LNM NiFe	0,05	0,83		0,14 55			- 0,4		бал.			- A5.15	A5.15 ENIFe-CI	150 1071	S NiFe-CI

пРОВОЛОКА МІСДЛЯ НАПЛАВКИ

0	OCIVIE	S F E 8	S F E 2
ī	ū		
		EN 14700	EN 14700
27414	AVVS		
	Mo		
	ïZ		
% 9 8	S		
состав	۵		
veckuŭ	ت	0,6	1,0
Хими	iΣ	6,0	6,0
	Ā	0,4	1,9
	U	6,0	2'0
0-11	пазоание	LNM 420FM	LNM 4M

^{*} самый близкий класс

ПРОВОЛОКА МІБ ДЛЯ СВАРКИ МЕДНЫХ СПЛАВОВ

				Хими	(имический состав в %	тостав	% 9					, in the second		
пазоание	U	A	Mn		Ni Si Ti Fe Sn	i=	윤	S	٩	Zn		AWS		EIVISO
LNM CuAl8	рач.	8	6,0								A5.7	ERCuAl-A1	EN ISO 24373	S Cu 6100 (CuA18)
LNM CuAl8Ni6	бал.	6	2,5	5,0			4,0			,	A5.7	ERCuNIAI	EN ISO 24373	S Cu 6328 (CuAI9Ni5)
LNM CuNi30	рач.		8,0	윤						,	A5.7	ERCuNi	EN ISO 24373	S Cu 7158 (CuNi30)
LNM CuSn	бал.		0,2	0,1	6,0			8'0		,	A5.7	ERCu	EN ISO 24373	S Cu 1898 (CuSn1)
LNM CuSi3	рал.		1,0		3,0			1,0		1,0	A5.7	ERCuSi-A	EN ISO 24373	S Cu 6560 [CuSi3Mn1]

ПРОВОЛОКА МІБ ДЛЯ СВАРКИ АЛЮМИНИЕВЫХ СПЛАВОВ

III OBOJIONA MIG APIN CBALNI AJINIMINIE BBIA CINIABOE	אוא כשלו	NA ANIO	MINITIFE		ana										
uu. Ha c					Химический состав в %	kuŭ cocn	1a8 8 %						01900	C 073 N 3	CZ CO 1 O 21
aŭme e	A	Mn	iS	F	Ti Fe	Zu	Zn Mg	ڻ	n	Si+Fe	Zr	>	01.66704	C,C,C NII	5/701 051
SuperGlaze* MIG 1070	7,66.ним	Makc. 0,03		makc. 0,2 makc. 0,03 makc. 0,25 makc. 0,04 makc. 0,03	Makc. 0,25	Makc. 0,04	макс. 0,03		Makc. 0,04		- M3	макс. 0,05			S AI 1070 [AI99,7]
SuperGlaze® MIG 1100	мин.99,0	мин.99,0 макс. 0,05				Makc. 0,10			0,05-0,20 Makc. 0,95	akc. 0,95			ER1100	EN AW-Al99,0Cu	S AI 1100 (AI99,0Cu)
SuperGlaze® MIG 2319	бал.	0,2-0,4	Makc. 0,2 (0,1-0,2	0,1-0,2 makc. 0,3 makc. 0,1 makc. 0,02	Makc. 0,1	Makc. 0,02		5,8-6,8				ER2319	EN AW-AICu6Mn	S AI 2319 [AICu6MnZrTi]
SuperGlaze® MIG 4043	бал.	Makc. 0,05	4,5-6,0	Makc. 0,2	макс. 0,2 макс. 0,6 макс. 0,1 макс. 0,05	Makc. 0,1	Makc. 0,05		Makc. 0,3	,			ER4043	EN AW-Alsi5	S AI 4043 (Alsi5)
SuperGlaze® MIG 4047	бал.	Makc. 0,15	11-13		makc. 0,8 makc. 0,2 makc. 0,10	Makc. 0,2	макс. 0,10		Makc. 0,3	,	,	-	ER4047	EN AW-AISi12	S AI 4047 [AIsi12]
SuperGlaze MIG 5087	бал.	1,1-7,0	Makc. 0,25	makc. 0,25 makc. 0,15 makc. 0,4 makc. 0,25 4,5-5,2	макс. 0,4	Makc. 0,25	4,5-5,2	0,05-0,25	макс. 0,05	-	0,10-0,20			EN AW-AIMg4,5MnZr	EN AW-AIM84,5MnZr SAI 5087 (AIM84,5MnZr)
SuperGlaze® MIG 5183	бал.	0,5-1,0	Makc. 0,4	makc. 0,4 makc. 0,15 makc. 0,4 makc. 0,25	макс. 0,4	Makc. 0,25	4,3-5,2	0,05-0,25	макс. 0,1				ER5183	EN AW-AIMg4,5Mn	EN AW-AIMg4,5Mn S AI 5183 (AIMg4,5Mn0,7(/
E SuperGlaze MIG 5356	бал.	0,05-0,2	Makc. 0,25	0,06-0,2	0,06-0,2 makc.0,4 makc.0,1 4,5-5,5	Makc. 0,1	4,5-5,5	0,05-0,20	макс. 0,1				ER5356	EN AW-AIMg5	S AI 5356 (AIMg5Cr(A))
SuperGlaze MIG 5356 TMTM	. еди.	0,05-0,2	Makc. 0,25		0,06-0,2 makc. 0,4 makc. 0,1	Makc. 0,1	4,5-5,5	0,05-0,20	макс. 0,1			-	ER5356	EN AW-AIMg5	S AI 5356 (AIMg5Cr(A))
SuperGlaze® MIG 5556	бал.	0,5-1,0	макс. 0,25	0,05-0,2	0,05-0,2 makc. 0,4 makc. 0,25	Makc. 0,25	4,7-5,5	0,05-0,20	макс. 0,1				ER5556		S AI 5556 (AIMg5Mn1Ti)
SuperGlaze® MIG 5556A	бал.	0,6-1,0	Makc. 0,25	0,05-0,2	0,05-0,2 makc. 0,4 makc. 0,2	макс. 0,2	5,0-5,5	0,05-0,20	макс. 0,1				_	EN AW AIMg5Mn	S AI 5556A [AIMg5Mn]
SuperGlaze® MIG 5754	бал.	макс. 0,5	makc. 0,5 makc. 0,4 makc. 0,15 makc. 0,4 makc. 0,2	Makc. 0,15	макс. 0,4	макс. 0,2	2,6-3,6	макс. 0,3	макс. 0,1			-		EN AW AIMg3	S AI 5754 [AIMg3]

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасностии.

ПРУТКИ ТІБ ДЛЯ СВАРКИ УГЛЕРОДИСТОЙ СТАЛИ

g	Xur	(имический состав в ^с	%		Di Vicio		OSTAL
пазоание	U	Mn	ıs		AVVS		EIVISO
LNT 25	80'0	1,	9'0	A5.18/A5.18M	ER70S-3	EN/ISO 636-A	W 42 5 W2Si
LNT 26	0,10	1,5	6'0	A5:18/A5:18M	ER70S-6	EN/ISO 636-A	W 42 5 W3Sit

ПРУТКИ ТІĞ ДЛЯ СВАРКИ НИЗКОЛЕГИРОВАННОЙ СТАЛИ

ПРУТКИ ПЬ ДЛЯ СВАРКИ НИ	IN LBAF	КИ НИ:	SKUJIET	пРОБАІ	SAHHUN LIAJII	АЛИ								
:				Хими	uecku ŭ	Химический состав в %	% 9							
Название	J	M	ıъ	Ξ	ت	ٿ	ω	>	S S	z		AWS		EN/ISO
LNT 28	0,10	1,4	0,75	8,0	6'0		1				A5.28	ER805-6		
LNT Ni1	0,10	1,2	9'0	6'0							A5.28	ER80S-Nit	EN/ISO 636-A	W 42 6 W3Ni1
LNT NiMo1	80'0	1,7	2'0	0,4			0,35				A5.28	ER1005-G	EN/IS016834-A	W Mn3Ni1Mo
LNT Ni2.5	0,10	1,	0,55	2,4		,					A5.28	ER80S-Ni2	EN/ISO 636-A	W 2Ni2
LNT 12	0,10	1,2	9'0				6,0				A5.28	ER705-A1	ISO 21952-A	W MoSi
LNT 19	0,10	1,0	9,0			1,2	6,0		,		A5.28	ER805-B2*	ISO 21952-A	W CrMo1Si
LNT 20	80'0	1,0	9'0			2,5	0,1				A5.28	ER905-B3*	ISO 21952-A	W CrMo2Si
LNT 502	60'0	9,0	6,0			5,7	9,0		,		A5.28	ER805-B6	ISO 21952-A	W CrMo5Si
LNT 9Cr(P91)	11,0	8,0	0,25	0,5	90'0	8,9	1,0	0,2	90'0		A5.28	ER90S-B9	ISO 21952-A	W CrMo91

ПРУТКИ ТІБ ДЛЯ СВАРКИ НЕРЖАВЕЮЩЕЙ СТАЛИ

				×	имиче	ckuŭ	Химический состав в %	18 8 %	۰							
Назбание	U	M	īS	ت	z	Mo	Nb	z	3	۵	S	≥		AWS		EN/ISO
LNT 304LSi	0,02	2,0	8'0	20,0	10,01	1,0							A5.9	ER308LSi	ISO 14343-A	W199LSi
LNT 304L	0,01	1,7	0,4	20,0	10,0	0,1			,				A5.9	ER308L	ISO 14343-A	W199L
LNT 347Si	0,05	4,1	2,0	19,5	9,5	10,0	9,0						A5.9	ER347Si	ISO 14343-A	W 19 9 NbSi
LNT 316L	0,01	7,	0,5	18,5	12	2,7	,		,				A5.9	ER316L	ISO 14343-A	W19123L
LNT 316LSi	0,03	1,9	8,0	18,5	12,0	2,7							A5.9	ER316LSi	ISO 14343-A	W 19 12 3 L Si
LNT 318Si	0,05	1,4	0,7	18,7	11,7	2,5	2,0		,				A5.9	ER318*	ISO 14343-A	W 19 12 3 NbSi
LNT 4439Mn	0,02	0,4	0,4	18,0	16,0	4,5	,	0,15							ISO 14343-A	W18165NL*
LNT 4500	0,01	1,7	0,4	20,02	25,0	4,5	,		1,5		,		A5.9	ER385	ISO 14343-A	W 20 25 5 Cu L
LNT 4462	0,01	1,6	0,5	22,5	8,5	3,0		0,15					A5.9	ER2209	ISO 14343-A	W 22 9 3 N L
LNT Zeron * 100X	0,02	9'0	0,23	25,0	93	3,6	i	0,22	9,0			9,0	A5.9	ER2594	ISO 14343-A	W 25 9 4 N L
LNT 309LSi	0,02	2,0	8,0	23,5	13,0	1,0							A5.9	ER309LSi	ISO 14343-A	W 23 12 L Si
LNT 309L	10,0	1,65	0,5	24,0	13,0	1,0	,			,	,		A5.9	ER309L	ISO 14343-A	W 23 12 L
LNT 309LHF	0,02	2,0	0,35	54	13	1,0							A5.9	ER309L	ISO 14343-A	W 23 12 L
LNT 307	0,07	r.	8,0	18,6	8,0	,	,			,	,		A5.9	ER307*	ISO 14343-A	W 188 Mn
LNT 304H	0,07	6,1	0,4	20,02	9,2	1,0							A5.9	ER308H	ISO 14343-A	W199H
LNT 310	0,1	1,7	0,5	26,0	77	1,0		ì				·	A5.9	ER310	ISO 14343-A	W 25 20

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

ПРУТКИ ТІБ ДЛЯ СВАРКИ НИКЕЛЕВЫХ СПЛАВОВ

:				Xux	nuveck	Химический состав в %	тав в	%					9			
Название	U	Mn	١ <u>۲</u>	Si Ni Cr Mo Cu Nb Fe Al	ڻ	Mo	3	Nb	관	A	M	i=	AWS			EN/ISO
.NT NiCro 60/20	0,03	1,0	1,0	бал. 22,0 9,0	22,0	0,6		3,5	0,4	1		- A	A5.14/A5.14M ERI	:RNiCrMo-3	ISO 18274	S Ni 6625 (NiCr22Mo9Nb)
.NT NiCro 70/19	0,03	3,0	0,2	бал.	20,0	,	1,0	2,5	0,1			Ā.	A5.14/A5.14M ERI	ERNICr-3	ISO 18274	S Ni 6082 (NiCr20Mn3Nb)
.NT NICroMo 59/23	0,015	0,5	90'0	29	23	16			1,5 0,4	0,4		¥ .	A5.14/A5.14M ERI	<u>m</u>	ISO 18274	S Ni 6059 (NiCr23Mo16)
.NT NiCu 70/30	90'0	3,5	6,0	65	,	1	8		Ε,		- 2	,0	2,0 A5.14/A5.14M ERI	ERNICu-7	150 18274	S Ni 4060 (NiCu30MnTi)
.NT NiTi	0,03	0,5	0,4	бал.		1			90'0		- 2	8,	0,5 0,4 ban 0,06 2,8 A5,14/A5,14M ERI	ERNi1	ISO 18274	S Ni 2061 (NiTi3)

ПРУТКИ ТІБ ДЛЯ СВАРКИ МЕДНЫХ СПЛАВОВ

:				Хими	Химический состав в %	состав	8%					!		
Название	u	ৰ	Ā	æ	١Σ	 =	æ	동	_	Zn		AWS		EN/ISO
LNT CuNi30	рал.		0,75	30	0,05 0,35	0,35	6,0	1		- A5.7	A5.7	ERCuNi	EN ISO 24373	S Cu 7158 (CuNi30)
LNT CuSn6	бал.							9	0,2		A5.7	ERCuSn-A	EN ISO 24373	S Cu 5180 (CuSn6P)
LNT CuSi3	бал.		0,1	·	3,0			1,0		1,0	A5.7	ERCuSi-A	EN ISO 24373	S Cu 6560 [CuSi3Mn1]

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасностии.

KN TIG DAS CBAPKN AMOMNHUEBЫX CHAABOB

	62C8LO3I	6/201 0.61	S AI 1070 (AI99,7)	S AI 1100 (AI99,0Cu)	S AI 4043 (AISI5)	S AI 4047 (AISi12)	S AI 5087 (AIMg4,5MnZr)	S AI 5183 (AIMg4,5Mn0,7(A))	S AI 5356 (AIMg5Cr(A))	S AI 5556 (AIMg5Mn1Ti)	S AI 5554	S AI 5754 (AIMg3)
	EN 573 3	EN 3/3		EN AW-A199,0Cu	EN AW-Alsi5	EN AW-Alsi12		EN AW-AIMg4,5Mn	EN AW-AIMg5			EN AW AIMg3
	A1A/C E 10	AW 2 2:10		R1100	R4043	R4047		R5183	R5356	R5556	R5554	
		>	макс. 0,05									
		Zr					0,10-0,20					
		Si+Fe		rakc. 0,95			,	,	,			
		3	макс. 0,04	0,05-0,20 makc. 0,95	макс. 0,3	макс. 0,3	Makc. 0,05	Makc. 0,1	Makc. 0,1	Makc. 0,1	Makc. 0,1	макс. 0,1
		ڻ					0,7-1,1 makc. 0,25 makc. 0,15 makc. 0,4 makc. 0,25 4,5-5,2 0,05-0,25 makc. 0,05	0,05-0,25 M	0,05-0,20 makc. 0,1	0,05-0,20 makc. 0,1	0,05-0,20	makc. 0,5 makc. 0,4 makc. 0,7 makc. 0,7 2,6-3,6 makc. 0,3 makc. 0,1
	na 8 8 %	Mg	макс. 0,03		Makc. 0,05	Makc. 0,10	4,5-5,2	makc. 0,4 makc. 0,15 makc. 0,4 makc. 0,25 4,3-5,2	4,5-5,5	4,7-5,5	0,5-1,0 makc. 0,25 makc. 0,20 makc. 0,4 makc. 0,25 4,7-5,5	2,6-3,6
	Химический состав в %	Ti Fe Zn Mg	макс. 0,04	- макс. 0,10 -	Makc. 0,8 Makc. 0,1 Makc. 0,05	макс. 0,8 макс. 0,2 макс. 0,10	Makc. 0,25	Makc. 0,25	makc. 0,25 0,06-0,2 makc. 0,4 makc. 0,1 4,5-5,5	makc. 0,25 0,05-0,2 makc. 0,4 makc. 0,25	Makc. 0,25	Makc. 0,2
В	Химичес	윤	Makc. 0,25		Makc. 0,8	макс. 0,8	Makc. 0,4	Makc. 0,4	Makc. 0,4	макс. 0,4	Makc. 0,4	Makc. 0,4
.ПЛАВО		F	макс. 0,03				Makc. 0,15	Makc. 0,15	0,06-0,2	0,05-0,2	макс. 0,20	макс. 0,15
NEBBIX (Si	макс. 0,2		4,5-6,0	11-13	Makc. 0,25	Makc. 0,4	Makc. 0,25	Makc. 0,25	Makc. 0,25	макс. 0,4
члюмин		Mn	.99,7 makc. 0,03 makc. 0,2 makc. 0,03 makc. 0,25 makc. 0,04 makc. 0,03	мин.99,0 макс. 0,05	Makc. 0,05	Makc. 0,15 11-13	1,1-7,0	0,5-1,0	0,05-0,2	0,5-1,0	0,5-1,0	Makc. 0,5
CBAPKN A		A	7,66.нпм	мин.99,0	бал.	бал.	бал.	бал.	бал.	бал.	бал.	бал.
ПРУТКИ ТІБ ДЛЯ СВАРКИ АЛЮМИНИЕВЫХ СПЛАВОВ	סווויר	пазоание	SuperGlaze® TIG 1070	SuperGlaze® TIG 1100	SuperGlaze® TIG 4043	SuperGlaze® TIG 4047	SuperGlaze® TIG 5087	SuperGlaze® TIG 5183	SuperGlaze® TIG 5356	SuperGlaze® TIG 5556	SuperGlaze® TIG 5554	SuperGlaze® T1G 5754

\leq
×
늗
ш
4
Ŧ
声
6
눖
¥
публи
าลูเหก

ā	Ē	2536	EN 12536	2536
		EN	EN	EN
r, e c	AWS	R45*	R60*	R65*
		A5,2	A5,2	A5,2
	3			
	Mo			9'0
.0	Z		,	
maß B %	s	10,0	0,01	0,010
Химический состав в %	-	0,01	0,01	0,010
лмичес	۵		,	
×	ᅜ	0,07	0,15	61,0
	M	0,4	1,1	1,0
	U	20'0	1,0	60'0
9-11	назрание	INGI	LNGII	LNGIV

0 = 0

Hackonьko нам известно, все сведения в этих таблицах были верны на момент публикации. На caûme www.lincolnelectric.ru Вы сможете найти самую последною информацию. Также на нашем сайте доступны спецификации безопасности.

газозаннитная пороннковая проволока (углеродистая и низколегированная сталь)

			ναw	AUMUYELKUU LULINAD 0 %	יחם כני						27474		00/14/1
пазоание	Gas	ں	Ā	ᅜ	۵	S	S.	Mo	٥		AWS		EIVISO
Outershield*70-H	5	90'0	1,30	0,50	0,015	0,010		•	'	A5.20/A5.20M	E70T1C-H4/E70T-1M-H4	EN ISO 17632-A	T460RC3H5/T460RM3H5
	M21	90'0	1,70	0,35	0,015	0,010		1		A5.20/A5.20M	E70T1C-H4 / E70T-1M-H4	EN ISO 17632-A	T 46 0 R C 3 H5 / T 46 0 R M 3 H5
Outershield" 71E-H	M21	0,04	1,4	9,0	0,013	0,010		•	•	A5.20/A5.20M	E71T-1C-H4	EN ISO 17632-A	T 42 0 P C 1 H5
	5	0,05	1,3	9,0	0,015	0,010							
Outershield 71M-H	5	0,05	1,3	0,4	0,015	600'0				A5.20/A5.20M	E71T-1/9C-H4/E71T-1/9M-H4	EN ISO 17632-A	T 46 3 P C 1 H5/T 46 2 P M 2 H5
	M21	0,05	1,47	0,5	0,015	600'0							
Outershield * 71MS-H	5	0,05	1,3	0,4	0,015	0,010			•	A5.20/A5.20M	E71T-9C-JH4	EN ISO 17632-A	T 46 4 P C 2 H5
Outershield T55-H	٦	0,05	1,5	0,55	0,012	0,010		•	•	A5.20/A5.20M	E71T-5C-JH4 / E71T-5M-JH4	EN ISO 17632-A	T 42 4 B C 2 H5 / T 42 4 B M 2 H5
Outershield T55-H	M21	90'0	1,5	9'0	0,012	0,010		•	•	A5.20/A5.20M	E71T-5C-JH4 / E71T-5M-JH4	EN ISO 17632-A	T 42 4 B C 2 H5 / T 42 4 B M 2 H5
Outershield MC700	M21	0,05	1,35	9,0	0,015	0,023		•	•	A5.18/A5.18M	E70C-6M H8	EN ISO 17632-A	T 46 2 M M 2 H10
Outershield MC710-H	M21	0,05	1,35	9'0	0,015	0,023		•		A5.18/A5.18M	E70C-6M H4	EN ISO 17632-A	T 46 3 M M 2 H5 11 / T 46 2 M M 2 H5
Outershield® MC710C-H	۵	0,05	1,35	9,0	0,015	0,023				A5.18/A5.18M	E70C-6C H4	EN ISO 17632-A	T 46 3 M C 2 H5
Outershield MC715Ni1-H	M21	0,05	1,35	0,45	0,002	0,020,0	- 56'0	•		A5.28	E80C-Ni1M H4	EN ISO 17632-A	T 46 5 1Ni M M 2 H5
Outershield MC715-H	M21	0,04	1,5	0,4	0,012	0,02			•	A5.18/A5.18M	E70C-6M H4	EN ISO 17632-A	T 46 4 M M 2 H5
Outershield MC460VD-H	M21	0,05	1,25	9'0	0,015	0,015		'	•	A5.18/A5.18M	E70C-6M H4	EN ISO 17632-A	T 46 2 M M 1 H 5
Outershield MC420N-H*	M21	0,03	9,0	0,45	0,017	0,023	- 6'2		0,03	3 A5.28/A5,28M	E70C-GM H4	EN ISO 17632-A	T 38 Z Z M M 2 H5
Outershield * MC555CT-H	M21	0,03	1,3	0,4	0,015	0,020 0	0,55 0,55	55	0,55	5 A5.28/A5,28M	E80C-W2-H4	EN ISO 17632-B	T554T15-0MA-NCC1-UH5
Outershield 81NnC-H	ប	0,05	1,4	0,2	0,013	0,010	- 56'0	•	•	A5.29/A5.29M	E81T1-Ni1C-JH4 ³⁾	EN ISO 17632-A	T 50 41Ni P C 2 H54
Outershield*81Ni1-H	M21	0,05	1,4	0,2	0,013	0,010,0	- 56'0	'	•	A5.29/A5.29M	E81T1-Ni1M-JH43]	EN ISO 17632-A	T 50 5 1Ni P M 2 H54
Outershield 81Nn-HSR	M21	0,05	1,4	0,2	0,013	0,010	- 56'0	•	•	A5.29/A5.29M	E81T1-Ni1M-JH4	EN ISO 17632-A	T 50 5 1Ni P M 2 H5 T
Outershield 81K2-H	M21	0,04	1,4	0,2	0,012	0,010	1,4	'		A5.29/A5.29M	E81T1-K2M-JH431	EN ISO 17632-A	T 50 61,5Ni P M 2 H54
Outershield 81K2-HSR	M21	90'0	1,3	6,0	0,012	0,010	- 4,1			A5.29/A5.29M	E81T1-K2M-JH4	EN ISO 17632-A	T 50 61,5Ni P M 2 H5 T
Outershield 500CT-H	M21	0,04	1,3	0,2	0,014	0,010,0	0,84 0,3	0,39		A5.29/A5.29M	E81T1-GM-H4	EN ISO 17632-A	T 50 5 Z P M 2 H 5
Outershield * 555CT-H	M21	0,03	1,1	0,4	0,015	0,010	0,6 0,5	- 95'0	0,5	0,55 A5.29/A5.29M	E81T1-W2M-JH4	EN ISO 17632-B	T555T1-1MA-NCC1-UH5
Outershield 91Ni1-HSR	M21	0,05	1,4	05	0,013	0,010,0	- 56'0	0,4		A5.29/A5.29M	E91T1-GM-H4	ISO 18276-A	T 55 41NiMo P M 2 H5
Outershield 91K2-HSR	M21	0,05	1,4	0,2	0,013	. 010,0	- 4,1	0,4		A5.29/A5.29M	E91T1-GM-H4	ISO 18276-A	T 55 41,5NiMo P M 2 H5
Outershield® 690-H	M21	90'0	1,5	0,2	0,015	0,010	- 0,2	0,5	'	A5.29/A5.29M	E111T1-K3M-JH4	ISO 18276-A	T 69 4 Z P M 2 H5
Outershield 690-HSR	M21	90'0	1,5	0,2	0,015	0,010	- 0'2	0,5	'	A5.29/A5.29M	E111T1-K3M-JH4	ISO 18276-A	T 69 4 Z P M 2 H5 T
Outershield*101Ni1-HSR	M21	90'0	2,0	6,3	0,013	0,010 0	- 56'0	0,4	•	A5.29/A5.29M	E101T1-G-H4		
Outershield 12-H	M21	0,065	8,0	0,2	0,014	0,010		0,46	, S	A5.29/A5.29M	E 81T1-A1M-H4	IS0 17634-A	T MoL P M 2 H5
Outershield 19-H	M21	20'0	0,74	0,24	0,013	0,010		0,52	2 1,24	4 A5.29/A5.29M	E 81T1-B2M-H4	IS017634-A	T CrMo1 P M 2 H5
Outershield * 20-H	M21	0,07	0,75	0,21	0,013	800'0		1,09	9 2,23	3 A5.29/A5.29M	E 91T1-B3M-H4	ISO 17634-A	T CrMo2 P M2 H5

у Указанная классификация отражает механические характеристики наплабленного металла в состоянии после сварки. Однако МС420N-Н предназначена для применения толюк с последующей нормализацией. Так как ни АМS, ни ЕМ не описывают свойства металла после нормализации, классификция проволоки не соответствует реальным условиям, для которых она была разработана. 4) только guamemp 1,2 мм 🕯 все диаметры 2) Ø 2,0 u 2,4 MM 1 g 1,2 u 1,6 MM

LINCOLN ELECTRIC
THE WELDING EXPERTS®

САМОЗАЩИТНАЯ ПОРОШКОВАЯ ПРОВОЛОКА

9,,,,				Хими	Химический состав в %	состав	% 9					NAVC.		CONTRA
Tasoanue	U	Mn	ιz	۵	s	Z	ڻ	A	>	Mo	τ 	0		EINIO
Innershield NR -152	0,30	66'0	0,24	0,013	200'0			1,63			A5.20/A5.20M	E71T-14	EN ISO 17632-A	T 42 Z Z N 5
Innershield NR -203 NiC	90'0	0,83	0,05	0,004	0,003	0,57	80'0	0,73	¢0,1	<0,1	A5.29/A5.29M	E61T8-K6		
Innershield NR - 203 Ni1	80'0	1:	0,27	800'0	0,003	6,0		0,85			A5.29/A5.29M	E71T8-Ni	EN ISO 17632-A	T 42 41Ni Y N1 H10
Innershield NR -211-MP	0,21	0,65	0,25	0,010	0,003			1,30			A5.20/A5.20M	E71T-11	EN ISO 17632-A	T 42 Z Z N 1 H10
Innershield NR -232	81,0	0,65	0,27	900'0	0,004			0,55			A5.20/A5.20M	E71T-8	EN ISO 17632-A	T 42 2 Y N 2 H10
nnershield NR -233	91,0	0,65	0,21	0,010	0,003		,	09'0			A5.20/A5.20M	E71T-8	EN ISO 17632-A	T 42 3 Y N 2 H10
nnershield® NR®-207-H	20'0	6'0	0,20	0,005	0,003	0,85		1,0			A5.29/A5.29M	E71T8-K6		
nnershield®NR®-208-H	0,05	1,65	0,25	0,007	<0,003	8,0		0,85			A5.29/A5.29M	E91T8-G		
nnershield NR*-305	60'0	6'0	0,20	0,007	800'0			08'0		1	A5.20/A5.20M	E70T-6	EN ISO 17632-A	T 42 0 W N 3 H15
nnershield NR -311	0,27	0,40	0,08	0,007	0,005		,	7,5		,	A5.20/A5.20M	E70T-7		
nnershield" NR*-400	90'0	0,74	0,17	0,004	0,002	0,75	0,13	0,74			A5.29/A5.29M	E71T8-K6	EN ISO 17632-A	T 42 61Ni Y N 2 H10
nnershield" NS*-3M	0,23	0,45	0,25	900'0	900'0			1,40			A5.20/A5.20M	E70T-4	EN ISO 17632-A	T 46 Z V N 3

¹¹ Takke coombemcmbyem E81T8-Ni2

* Химический состав проволоки может варыроваться в зависимости от плавки стали

FA3A3AIIIMTHAG DABAIIIKABAG DBABAAAA (HEDWABEWIIIAG CTAAAL)

I ASUSAUMI I HAMIIUFU	III NO DAY	ILLOPO	DI AVIO			NABERU WAY CIANIB							
			'nX	auчeckι	Химический состав в %	% g ge							
назрание	Gas	U	M	Si	ت	Ë	N	Mo	z	•	4WS		ENVISO
Cor-A-Rosta® 304L	M21/C1	0,03	1,3	2,0	19,5	10,0				A5.22	E308LT0-1/-4	ISO 17633-A	T199LRC/M3
Cor-A-Rosta® P304L	MZ1/C1	0,03	1,3	2,0	19,5	10,0				A5.22	E308LT1-1/-4	IS0 17633-A	T199LPC/M2
Cor-A-Rosta® 347	M21	0,05	1,4	9,0	19,5	10,0	0,5			A5.22	E347T1-1/4	ISO 17633-A	T 19 9 Nb R M 3
Cor-A-Rosta® 316L	MZ1/C1	0,03	1,3	0,5	19,0	12,0	,	2,7		A5.22	E316LT0-1/ -4	ISO 17633-A	T19123LRC/M3
Cor-A-Rosta® P316L	M21/C1	0,03	1,3	0,5	19,0	12,0		2,7		A5.22	E316LT1-1/-4	ISO 17633-A	T19123LPC/M2
Cor-A-Rosta® 309L	M21/C1	0,03	1,3	9,0	24,0	12,5				A5.22	E309LT0-1/-4	ISO 17633-A	T2312 L R C/M3
Cor-A-Rosta® P309L	MZ1/C1	0,04	1,3	9,0	24,0	12,5	,			A5.22	E309LT1-1/-4	ISO 17633-A	T2312LP C/M2
Cor-A-Rosta® 309MoL	MZ1/C1	0,03	1,3	2,0	23,0	12,8		2,3		A5.22	E309LMoT0-1/-4	IS0 17633-A	T23122LRC/M3
Cor-A-Rosta® P309MoL	M21/C1	0,03	8,0	9,0	22,7	12,5		2,3		A5.22	E309LMoT1-1/-4	ISO 17633-A	T23122LPC/M2
Cor-A-Rosta* 4462	M21	0,03	1,2	2,0	23,0	9,2	,	3,1	0,12	A5.22	E2209T0-4	ISO 17633-A	T2293NLRM3
Cor-A-Rosta® P4462	M21	0,03	1,2	2,0	23,0	9,2		3,1	0,12	A5.22	E2209T1/-4	ISO 17633-A	T2293NLPC/M2

САМОЗАШИТНАЯ ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ

Вание 0	M	×	ייייייייייייייייייייייייייייייייייייייי	Y.IMIII or Line R R 9%	8				
	M	Valvia	אברונות כי	0.000	~			/NJ	ENVICE
0		ιz	ت	Mo	₹	≥	z		2
0	2,0	2,0	2,0		1,6			EN 14700	TFe1
	1,5	2,0	3,5	0,4	1,8		÷	EN 14700	T Fe 1
	1,2	1,0	11,0	0,5	9'0		,	EN 14700	TFe 8
Lincore® 55 0,45	1,4	0,55	5,3	8'0	1,4		,		
Lincore® 60-0 4,2	1,6	<u>5</u>	25,4	,	9'0		,		
Lincore* T&D 0,65	1,5	8'0	2,0	1,4	1,8	1,6		EN 14700	TFe 8
Lincore* 15CrMn 0,4	15,0	0,25	16,0					EN 14700	TFe 9
Lincore* 420 ø 1,6 0,5	1,7	1,7	Ħ						
ø2,0 0,5	4,1	2,0	E	,	,		,		
Lincore* M 0,6	13,0	0,4	4,9				0,5	EN 14700	TFe 9

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

)	200					
		XUMUYE	Xumuyeckuu cocmab b %	nab b %			2,414		
назрание	נ	C Mn	:S	Ь	S		AWS		EIVISU
L-60	60'0	6,0	90'0	1		A5.17	EL12	ISO 14171-A S1	19
LNS 135	1,0	1,0	0,10		,	A5.17	EM12	ISO 14171-A S2	25
L-61	1,0	1,0	0,25			A5.17	EM12K	ISO 14171-A S2Si	iszsi
L-50M (LNS 133U)	0,1	1,6	0,25			A5.17	EH12K	ISO 14171-A S3Si	33Si

0-11				Химический состав в %	kuŭ cocm	a8 8 %					414	<u>y</u>		0
назбание	U	Mn	is	۵	S	ڻ	i =	z	Mo	3	AWS	ر د		EIVISU
L-70	0,10	6'0	0,10						0,5	4	A5.23/A5.23M	EA1	ISO 14171-A	S2 Mo
LNS 140A	0,10	1,0	0,10						6,0	⋖	A5.23/A5.23M	EA2	ISO 14171-A	S2 Mo
LNS 133TB	80,0	1,55	0,25				0,15			⋖	A5.23/A5.23M	EG	ISO 14171-A	ZS
LNS 140TB (LA 81)	90'0	1,1	0,20				0,13		0,5	⋖	A5.23/A5.23M	EA2TiB	ISO 14171-A	S2MoTiB
LNS 150 (LA 92)	0,13	8,0	0,15	<0,010		1,2		,	0,5	⋖	A5.23/A5.23M	EB2	ISO 21952-A	S Cr Mo1
LNS 151 (LA 93)	0,10	9,0	0,12	<0,010		2,5			1,0	⋖	A5.23/A5.23M	EB3	ISO 21952-A	S Cr Mo2
LNS 160	0,10	1,1	0,15		•			1,0	-	⋖	A5.23/A5.23M	ENi1	ISO 14171-A	S2 Ni1*
LNS 162	0,10	1,1	0,15					2,2		⋖	A5.23/A5.23M	ENIZ	ISO 14171-A	S2 Ni2*
LNS 163	11,0	1,0	0,25	0,2	0,2	0,2		2,0		0,5 A	A5.23/A5.23M	EG	ISO 14171-A	S2 Ni1Cu
LNS 164 (LA 84)	0,10	1,75	0,10					6'0	0,5	⋖	A5.23/A5.23M	EF3	ISO 14171-A	S3 Ni1Mo
LNS 165 (LA 85)	80'0	1,4	0,20					1,0	0,2	⋖	A5.23/A5.23M	ENIS	ISO 14171-A	ZS
LNS 168	0,10	1,6	0,15		•	2,0		2,3	9,0			1	ISO 26304-A	S3 Ni2,5CrMo
LNS 175	80'0	1,0	0,10					3,5		⋖	A5.23/A5.23M	ENi3	ISO 14171-A	SZNi3
LNS T55 **	90'0	1,5	09'0	<0,020	<0,010					4	A5.17/A5.17M	EC1 H4	ISO 14171-A	TZ

^{*} Отклонения от классификации приведены на странице с техническими характеристиками

** порошковая проволока

пРоволока SAW для сварки нержавеющей стали

C Mn Si Cr Ni Mo Nb N Glpgzue Mat.Nr.															
C Mn Si Cr Ni Nb N Appgre Mat.Nr. 0,015 1,8 0,4 20 10 0,1 - - 1,4316 AS,9/AS,9M ER30R 150 1343-A 0,05 1,2 0,6 20,1 10,5 - - - 1,4370 AS,9/AS,9M ER30R 150 1433-A 0,07 7,0 0,6 19,0 8,9 - - - 1,4370 AS,9/AS,9M ER30R 150 1433-A 0,015 1,75 0,4 18,5 12 2,75 - - - 1,4370 AS,9/AS,9M ER30F 150 1433-A 0,015 1,75 0,4 18,5 11,3 2,6 - - - 1,4320 AS,9/AS,9M ER31G 150 1433-A 0,015 1,75 0,4 18,5 11,3 2,6 - - - - 1,4320 AS,9/AS,9M ER31G 150 1433-A 0,03	Название				×	имичес	kuŭ cocı	na8 8 %	.0				5/V		OSINI
1,8 0,4 20 10 0,1 - - - 1,4316 A5,9/A5.9M ER30BL ISO 14343-A 1,2 0,6 20,1 10,5 - - - 1,4948 A5,9/A5.9M ER30BH ISO 14343-A 7,0 0,6 19,0 8,9 - - - - 1,4370 A5,9/A5.9M ER30BH ISO 14343-A 1,7 0,4 13,4 13,8 0,07 - - - 1,4370 A5,9/A5.9M ER30BH ISO 14343-A 1,7 0,4 13,5 1,2 2,75 - - - 1,4370 A5,9/A5.9M ER30BL ISO 14343-A 1,6 0,4 13,5 1,1 0,6 - - 1,4457 A5,9/A5.9M ER31B ISO 14343-A 1,6 0,4 10,6 - 0,16 - 0,14455 A5,9/A5.9M ER31B ISO 14343-A 1,6 0,4 10,5 1,6 -		U	Mn	iz	۲	Z		Nb	Z	Apyzue	Mat.Nr.				
0,05 1,2 0,6 20,1 10,5 - - - 1,4948 A5,9/A5,9M ER308H 150 чаза-а 0,07 7,0 0,6 19,0 8,9 - - - 1,4370 A5,9/A5,9M ER308H 150 чаза-а 0,01 1,8 0,4 23,4 13,8 0,07 - - - 1,4370 A5,9/A5,9M ER30F 150 чаза-а 0,015 1,75 0,4 18,5 12 2,75 - - - 1,4370 A5,9/A5,9M ER30F 150 чаза-а 0,03 1,7 0,4 19,5 1,3 2,6 0,5 - - 1,4370 A5,9/A5,9M ER316 150 чаза-а 0,03 1,6 0,1 0,6 - - - 1,4370 A5,9/A5,9M ER316 150 чаза-а 0,01 1,6 0,1 0,6 - - 1,445 A5,9/A5,9M ER316 150 чаза-а 0,01	NS 304L	0,015	1,8	0,4	20	10	1,0			1	1,4316	A5.9/A5.9M		ISO 14343-A	S 19 9 L
0,07 7,0 0,6 19,0 8,9 - - - 1,4370 A5,9/A5.9M ER307 ISO 4833-A 0,01 1,8 0,4 23,4 13,8 0,07 - - - 1,4332 A5,9/A5.9M ER309L ISO 18343-A 0,015 1,75 0,4 18,5 12 2,75 - - - 1,4332 A5,9/A5.9M ER309L ISO 18343-A 0,03 1,75 0,4 19,5 11,3 2,6 0,5 - - - 1,4453 A5,9/A5.9M ER316 ISO 18343-A 0,03 1,6 0,4 19,5 11,3 2,6 0,5 - - 1,4457 A5,9/A5.9M ER318 ISO 18343-A 0,01 1,6 0,7 0,16 - 0,16 - 1,4455 A5,9/A5.9M ER2209 ISO 18343-A 0,01 1,6 2,7 - 0,16 - 1,4455 A5,9/A5.9M ER2209 ISO	NS 304H	0,05	1,2	9'0	20,1	10,5					1,4948	A5.9/A5.9M		ISO 14343-A	S 19 9 H
0,01 1,8 0,4 23,4 13,8 0,07 - 1 1,432 A5,9/45.9M ER309L ISO 14343-A 1,4450 A5,9/45.9M	NS 307	0,07	2,0	9'0	19,0	6'8					1,4370	A5.9/A5.9M		ISO 14343-A	S 18 8 Mn
0,015 1,75 0,4 18,5 12 2,75 1,4430 A5,9/A5,9M ER316L ISO 14343-A 0,0 1,7 0,4 19,5 11,3 2,6 0,5 1,4576 A5,9/A5,9M ER316L ISO 14343-A 0,0 1 1,0 0,4 19,5 11,3 2,6 0,5 1,4576 A5,9/A5,9M ER316 ISO 14343-A 15,0 1,4 19,5 9,7 0,1 0,6 1,4457 A5,9/A5,9M ER347 ISO 14343-A 15,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	NS 309L	0,01	1,8	0,4	23,4	13,8	70,0				1,4332	A5.9/A5.9M		ISO 14343-A	S 23 12 L
0,04 1,7 0,4 19,5 11,3 2,6 0,5 - 1,4576 A5,9/A5,9M ER318 ISO 14343-A 0,03 1,6 0,4 19,5 9,7 0,1 0,6 - 1,4451 A5,9/A5,9M ER347 ISO 14343-A 0,01 7,0 0,4 20 16 2,7 - 0,16 - 1,4462 A5,9/A5,9M ER329 ISO 14343-A 0,01 1,8 0,3 25 2,3 4,6 - 0,23 (Lu=0,6 1,4410 A5,9/A5,9M ER359 ISO 14343-A 0,02 0,7 0,3 25 9,3 3,7 - 0,23 (Lu=0,6 1,4410 A5,9/A5,9M ER359 ISO 14343-A 0,03 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	NS 316L	0,015	1,75	0,4	18,5	12	2,75			ı	1,4430	A5.9/A5.9M		ISO 14343-A	S 19 12 3 L
0,03 1,6 0,4 19,5 9,7 0,1 0,6 - - 1,4451 A5.9/A5.9M ER347 ISO 14343-A 0,01 7,0 0,4 20 16 2,7 - 0,16 - 1,4455 - ISO 14343-A 0,015 1,6 0,5 23 8,6 3,1 - 0,16 - 1,4452 R2209 ISO 14343-A 0,01 1,8 0,3 20 25,2 4,6 - - Cu=1,5 1,4539 A5.9/A5.9M ER385 ISO 14343-A 0,02 0,7 0,3 25 9,3 3,7 - 0,23 Cu=0,6 1,4410 A5.9/A5.9M ER2594 ISO 14343-A W=0,6 0,7 0,3 25 9,3 3,7 - 0,23 Cu=0,6 1,4410 A5.9/A5.9M ER2594 ISO 14343-A	NS 318	0,04	1,7	0,4	19,5	11,3	2,6	9,5			1,4576	A5.9/A5.9M		ISO 14343-A	S19 12 3 Nb
0,01 7,0 0,4 20 16 2,7 - 0,16 - 1,4455 0,015 1,6 0,5 23 8,6 3,1 - 0,16 - 1,4462 A5.9/A5.9M ER2209 ISO 14343-A 0,01 1,8 0,3 20 25,2 4,6 - Cu=1,5 1,4539 A5.9/A5.9M ER385 ISO 14343-A 0,02 0,7 0,3 25 9,3 3,7 - 0,23 Cu=0,6 1,4410 A5.9/A5.9M ER2594 ISO 14343-A W=0,6	NS 347	0,03	1,6	0,4	19,5	2,6	1,0	9'0			1,4451	A5.9/A5.9M		ISO 14343-A	S 19 9 Nb
0,015 1,6 0,5 23 8,6 3,1 - 0,16 - 1,4462 A5,9/A5,9M ER2209 ISO 14343-A 0,01 1,8 0,3 20 25,2 4,6 - Cu=1,5 1,4539 A5,9/A5,9M ER385 ISO 14343-A 0,02 0,7 0,3 25 9,3 3,7 - 0,23 Cu=0,6 1,4410 A5,9/A5,9M ER2594 ISO 14343-A W=0,6	NS 4455	0,01	2,0	0,4	20	16	2,7		91,0		1,4455			ISO 14343-A	S 20 16 3 Mn L
0,01 1,8 0,3 20 25,2 4,6 Cu=1,5 1,4539 A5,9/A5,9M ER385 ISO 14343-A 0,02 0,7 0,3 25 9,3 3,7 - 0,23 Cu=0,6 1,4410 A5,9/A5,9M ER2594 ISO 14343-A W=0,6	NS 4462	0,015	1,6	9'0	23	9,8	3,1		91,0		1,4462	A5.9/A5.9M		ISO 14343-A	S 22 9 3 N L
0,02 0,7 0,3 25 9,3 3,7 - 0,23 Cu=0,6 1,4410 A5.9/A5.9M ER2594 ISO 14343-A W=0,6	NS 4500	0,01	1,8	0,3	20	25,2	4,6			Cu=1,5	1,4539	A5.9/A5.9M		ISO 14343-A	S 20 25 5 Cu L
W=0,6	VS Zeron* 100X	0,02	2,0	6,0	25	6,3	3,7		0,23	Cu=0,6	1,4410	A5.9/A5.9M		ISO 14343-A	S 25 9 4 N L
										W=0,6					

ПРОВОЛОКА SAW ДЛЯ СВАРКИ НИКЕЛЕВЫХ СПЛАВОВ

01	OCIVNI	S Ni 6625	S Ni 6082	S Ni 6276
14.		150 18274	ISO 18274	ISO 18274
5747	CAAF	ERNICrMo-3	ERNICr-3	ERNICrMo-4
•	τ	A5.14/A5.14M ERNICrMo-3	A5.14/A5.14M	A5.14/A5.14M
	W.Nr.	2,4831		2,4886
	Другие	Fe=0,1	Fe=0,8	W=3,6
% 9 9	N Q	3,7	5,6	
имический состав в %	Ni Mo	8,7		16
uveckui		65	72,5	58
Хим	ت	0,1 22 65	20,5	0,04 16,0 58
	is		90'0	0,04
	Mn	0,02	3,1	0,5
	u	0,05	0,03	900'0
0	пазоание	LNS NICro 60/20	LNS NICro 70/19	LNS NICroMo 60/16

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

UNHENKA PIPFI INFR

JINHENKA PIPELINER	Æ													
סיייירמררון				Химический состав в %	kuŭ coc	:maß ß	%					3////		ENVEO
пазодние	J	Mn	Si	N	Mo	Ь	5	ŗ	; =	А		CANA		EIVIO
PIPELINER® 6P+	11,0	0,55	81,0			600'0	600'0				A5.1	E6010	ISO 2560-A	E 42 3 C 25
PIPELINER® 7P+	0,15	9,0	1,0	0,85	1,0	0,015	0,015				A5.1	E7010-P1	ISO 2560-A	E 42 3 Z C 25
PIPELINER® 8P+	0,17	2,0	0,25	8,0	0,2	0,01	10,0				A5.5	E8010-P1	ISO 2560-A	E 4641Ni C 25
PIPELINER® 16P	90'0	1,3	9,5			0,013	600'0				A5.1	E7016 H4	ISO 2560-A	E 42 3 B 12 H5
PIPELINER® 18P	0,05	1,5	0,5	0,95	,	0,010	600'0				A5.5	E8018-G-H4R	ISO 2560-A	E 50 6 Mn1Ni B 32 H5
PIPELINER® LH-D80	0,05	1,15	0,45		٠	0,010	0,010				A5.5	E8045-P2 H4R	ISO 2560-A	E 46 4 Z B 45 H5
PIPELINER* LH-D90	0,05	<u>L</u>	0,50	0,925	0,2	600'0	0,009	0,05			A5.5	E8010-45-P2 H4R	150 18275	E 55 4 ZB 45 H5
PIPELINER* LH-D100	0,05	1,55	0,45	6'0	0,45	600'0	600'0				A5.5	E10045-P2 H4R		
PIPELINER® 705-G	0,07	1,25	0,55			0,010	0,020		-		A5.18	ER70S-G	ISO 14341-A	G 38 3 M G2SI / G 38 3 C G2SI
PIPELINER® 805-G	60'0	1,55	0,61		٠	0,012	0,007				A5.28	ER805-G	IS014341-A	G 50 3 M G4Si1
PIPELINER® 80Ni1	0,07	1,55	2,0	6'0	<0,01	1,0	0,10		0,08	<0,01	A5.28	ER805-G	ISO 14341-A	G 3Ni
PIPELINER® G70M-E	90'0	1,5	0,20	0,95	0,15	0,013	0,010				A5.29	E81T1-GM-H4	EN 758	T505ZPM2H5
PIPELINER® G80M-E	90'0	1,5	0,30	6'0	0,40	0,013	0,010				A5.29	E91T1-GM-H4	ISO 18276-A	T554ZPM2H5
PIPELINER® G90M-E	90'0	1,5	0,20	2,0	05'0	0,015	0,010				A5.29	E1111T1-GM-H4	ISO 18276-A	T 69 4 Z P M 2 H5
PIPELINER® NR®-207+	0,05	1,22	0,25	0,82	,	0,010	0,010			1	A5.29	E71T8-K6		
PIPELINER* NR*-208XP	0,02	2,15	0,12	0,75	0,02	0,005	0,002	0,04		0,1	A5.29	E81T8-G		

Hackonsko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасностии.

	-	2	m	4	2	9	7	80	6	10	1	12	13	7	5	16	17	18	19	20	17	22	23	24	25	26	27
Проволока SAW / флюс							L-60, L-61, LNS 135	сочетается с флюсом	761, 780, 781, 782, 960, 980														L-61, L50M (LNS 133U), LNS 140A (L-70), LNS T-55	860, 960, 8500, 888, P223, P230, P240			
Самозащитная порошковая проволока	Innershield NR204-H, NR207-H	Innershield NR204-H, NR207-H			Innershield NR-211-MP	Innershield NR-232			Innershield NR-232	Innershield NR-311	Innershield NS-3M			•		Innershield NR-203Ni	Innershield NR-203NiC	Innershield NR-204-H	Innershield NR-207-H	Innershield NR-208-H	Innershield NR-400						Innershield NR-203NiC
Газозащитная порошковая проволока									Outershield 70-H	Outershield 71E-H	Outershield 71M-H	Outershield MC700	Outershield MC710-H	Outershield 71C	Outershield MC715-H	Outershield MC460VD-H	Outershield T55-H										
Проволока МІБ/МАБ												LNM 25		SupraMIG	SupraMIG Ultra												
Прутки ТІБ														LNT 25, LNT 26													
Электроды для РДС	1 Fleetweld 5P+	2 Supra	3 Panta	4 Pantafix	5 Omnia	6 Omnia 46	7 Cumulo	8 Universalis	9 Ferrod 165A	10 Ferrod 135T	11 Ferrod 160T	12 Gonia 180	13 Baso 48SP	14 Baso 51P	15 Baso 100	16 Baso 120	17 Baso G	18 Baso 26V	19 Conarc 48	20 Conarc 49	21 Conarc 49C	22 Conarc 51	23 Conarc 52	24 Lincoln 7018-1	25 Conarc L150	26 Conarc V180	27 Kardo

Hackonoko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Эле	Электроды	F :: \\	Проволока	Газозащитная	Самозащитная		
<u> </u>	для РДС	nipgilika ila	MIG/MAG	порошковая проволока	порошковая проволока	ipodojioka SAW / Wilde	
1 Shiel	ld Arc HYP+	Shield Arc HYP+ LNT 25, LNT 26	LNM 25	Outershield 71E-H	Innershield NR208-H	OLEG 000 005	-
2 Shiel	Shield Arc 70+	LNT Ni1	LNM Ni1	Outershield 81Ni1-H/HSR	Innershield NR208-H	LINS 135, LINS 140A (L-70) C #JIROCOM 780, 860, P230	2
3 Cona	Conarc 55CT	LNT 28	LNM 28	Outershield 500CT-H		¹ LNS 163 с флюсом 960	m
4 Conarc 60G	nrc 60G	LNT Ni1	LNM Ni1, LNM 28	Outershield 81K2-H/HSR		000 0010 000 C	4
5 Conarc 70G	arc 70G	LNT Ni2.5	LNM Ni2.5	Outershield 91K2-HSR		LINS 164 C WITHOLD M P.240, 8500, 888	2
6 Conarc 74	ırc 74	LNT Ni1	LNM Ni1	Outershield 81Ni1-H/HSR			9
7 Conarc 80	ırc 80					OCC COTO CALCO CAL	7
8 Conarc 85	ırc 85	1	LNM MoNiVa	Outershield 690-H/HSK		LINS 168, LINS 1690 C WITHOUM P230, P240, 8500, 888	œ
9 Kryo 1	-			П	Innershield NR-203Ni1		6
10 Kryo 1N	NL	LNT Ni1	LNM Ni1	Outershield 81Ni1-H/HSR	Innershield NR-203Ni-C	LNS 160, LNS 165 c флюсом P230, P240, 8500, 888	10
11 Kryo 1P	<u>ا</u>				Innershield NR-400		F
12 Kryo 2	.2	LNT Ni2.5	LNM Ni2.5	Outershield 81K2-H/HSR			12
13 Kryo 3	m	LNT Ni2.5	LNM Ni2.5	_	-	LNS 162 с флюсом Р230, Р240, 8500, 888	13
14 Kryo 4	. 4		_			LNS 175 c флюсом P240, 8500, 888	14
15 SL 12G	9	LNT 12	LNM 12	Outershield 12-H	1	LNS 140A с флюсом 860, P230	15
16 SL 19G	90	LNT 19	LNM 19	Outershield 19-H	1	LNS 150 с флюсом Р230, Р240, 8500, 888	16
17 SL 20G	90	LNT 20	LNM 20	Outershield 20-H	1	LNS 151 c флюсом P230, P240, 8500, 888	17
18 SL 22G	56	1		-			18
19 SL 502	25	LNT 502	-	1	1	LNS 502 с флюсом Р230, Р240, 8500	19
20 SL 9Cr(P91)	Cr(P91)	LNT 9Cr(P91)					20

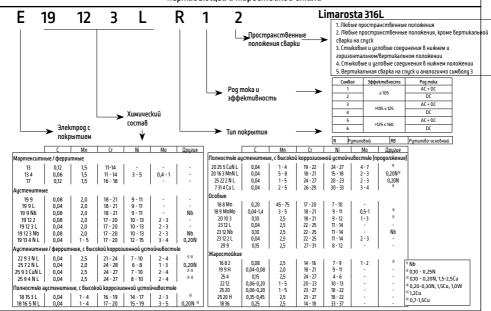
	-	2	m	4	2	9	7	œ	6	10	Ε	12	13	4	र्घ	16	17	18	19	20	71	22	23	24	25	26	27	27	29	30	٣	32	33
Проволока SAW / флюс			LNS 304L c флюсом P2007			70000 morology 247 c 301 L	LIND 347 C WINDCOM F2007			LNS 316L c флюсом P2007				_ LNS 318 с флюсом P2007	LNS 4439Mn c флюсом P2007	_ LNS 4455 с флюсом P2007	LNS 4465 с флюсом P2007	LNS 4500 с флюсом P2007		LNS 4462 C @ MOCOM P2007, P2000S		INS 3081 c thatbase Book 2000	LIND SOUR L CHAIRCOM FEOU, FEOUNS		3000CB 700CB 200CB 700CB 100CB	- ENS 309E CHAIRCOM FZ004, FZ0003	1	ſ	LNS 307 с флюсом P2007, P2000S		_ LNS 304-Н с флюсом P2007	LNS 309-Н с флюсом Р2007	LNS NICro 60/20 c флюсом P20007,P2000
Самозащ. порошковая проволока				•						•				,																			
Газозащитная порошковая про- волока	Cor-A-Rosta (P)304L	Cor-A-Rosta 304L	Cor-A-Rosta P304L	Cor-A-Rosta (P)304L	Cor-A-Rosta 304L	Cor-A-Rosta 347		Cor-A-Rosta (P)316L	Cor-A-Rosta 316L	Cor-A-Rosta P316L	Cor-A-Rosta (P)316L	Cor-A-Rosta 316L	1	1					3	Lor-A-Kosta (PJ4462		Cor-A-Rosta (P)309L	Cor-A-Rosta 309L		Cor-A-Rosta (P)309(Mo)L		י י		-				
Проволока МІБ/МАБ		LNM 304LSi		LNM 304L	LNM 304LSi		LINIM 347		LNM 316LSi		LNM 316L	LNM 316LSi		LNM 3185i	LNM 4439Mn	LNM 4455	1	LNM 4500		LNM 4462		LNM 309LSi				LINIM 309LSI	LNM 12		LNM 37		LNM 304-H	LNM 309-H	LNM 310
Прутки ТІG		LNT 304LSi		LNT 304L	LNT 304LSi		LIN I 34/		LNT 316LSi		LNT 316L	LNT 316LSi		LNT 318Si			1	LNT 4500		LN I 4462		LNT 309LSi				LN I 309LSI					LNT 304-H		LNT 310
Электроды для РДС	1 Arosta 304L	2 Limarosta 304L	3 Vertarosta 304L	4 Jungo 304L	5 Limarosta 304L-130 LNT 304LSi	6 Arosta 347	7 Jungo 347	8 Arosta 316L	9 Limarosta 316L	10 Vertarosta 316L	11 Jungo 316L	12 Limarosta 316L-130	13 Arosta 318		15 Jungo 4439	16 Jungo 4455	17 Jungo 4465	18 Jungo 4500	19 Arosta 4462	20 Jungo 4462	21 Jungo 309L	22 Arosta 3095	23 Limarosta 309S	24 Arosta 309Mo	25 Nichroma	26 Nichroma 160	27 Limarosta 312	28 Arosta 307	29 Arosta 307-160	30 Jungo 307	31 Arosta 304-H	32 Arosta 309-H	33 Intherma 310 / 310B LNT 310

Hackonoko нам известно, все сведения в этих таблицах были верны на момент публикации. На caŭme www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Провола MIG/MA III -
LNM Nicro 70/19
LNM NITI
LNM Nicro 60/20
LNM CuNi 30
LNM CuSn
- INM Cucio
LNM CuAI8
LNM CuAI8Ni6
Superglaze MIG 1070
Superglaze MIG 1070
Superglaze MIG 5754
Superglaze MIG 5356
Superglaze MIG 5183
Superglaze MIG 5087
Superglaze MIG 4043
Superglaze MIG 4047

Электроды для РДС	Npymku TIG	Проволока МІБ/МАБ	Газозащитная порошковая проволока	Самозащитная порошковая про- волока	Проволока SAW / флюс
	LNT NITI	LNM NITI	1		
		LNM NiFe			1
	•	LNM NiFe	•		
Hanлaвka applications					
1 Wearshield BU 30	•			Lincore 33	Lincore 30-S с флюсом 801
Wearshield Mangjet (e)			•		1
Wearshield 15CrMn				Lincore 15CrMn	
Wearshield MM40		LNM 4M	ı	Lincore 40-0	1
Wearshield MM	•	•		Lincore 55	1
Wearshield T&D	-	-	-	Lincore T&D	
Wearshield MI[e]	•		,	- C	-
Wearshield ABR	•	-	-	LINCORE 50, LINCORE 55	LINCOTE 5U, LINCOTE 55 LINCOTE 5U C #JINCOM 8UI
			_,		1
10 Wearshield ME(e)	-	-	-	Lincore 60-0	L-60 с флюсом HS60
11 Wearshield 60 (e)	•		•		
12 Wearshield 50M	-	-		-	1
				Lincore 65-0	
14 Wearshield 420	ı	LNM 420FM	•	Lincore 420	L-60 с флюсом 802

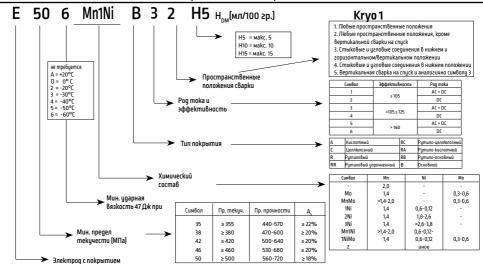
Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На caúme www.lincoinelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.


ISO 3580-A

Классификация электродов для ручной дуговой сварки жаропрочной стали

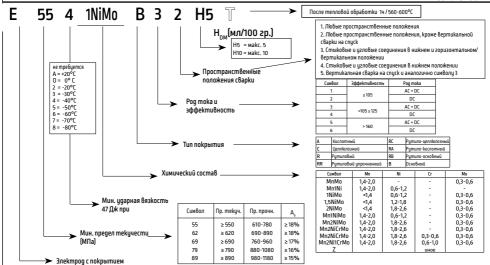
ISO 3581-A

Классификация электродов для ручной дуговой сварки нержавеющей и жаростойкой стали



Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте достирны спецификации безопасности.

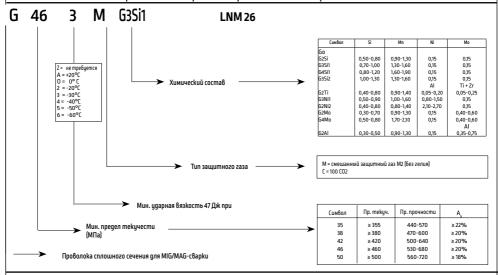
ISO 2560-A


Классификация электродов для ручной дуговой сварки низколегированной и мелкозернистой стали

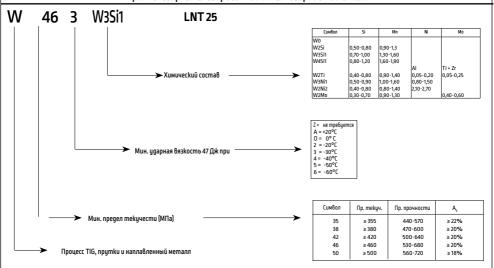
EN-ISO 18275-A

Классификация электродов для ручной дуговой сварки высокопрочной стали

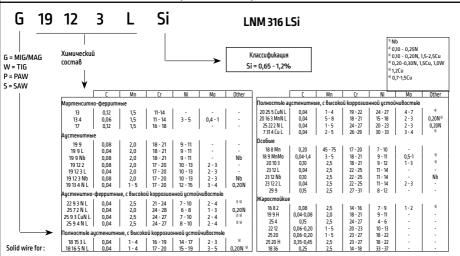
Conarc 70G



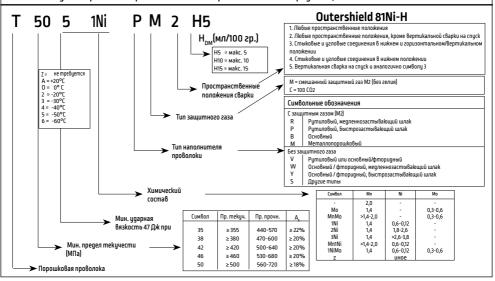
Hackonoko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте достипны спецификации безопасности.


ISO 14341-A

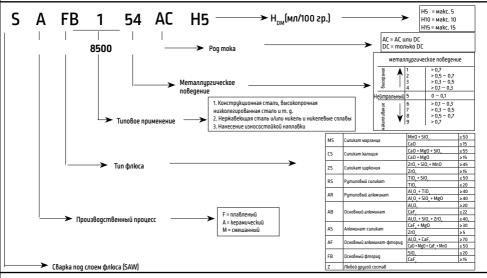
Классификация of проволоки сплошного сечения и наплавленного металла при MIG/MAG-сварке нелегированной и мелкозернистой стали


EN/ISO 636-A

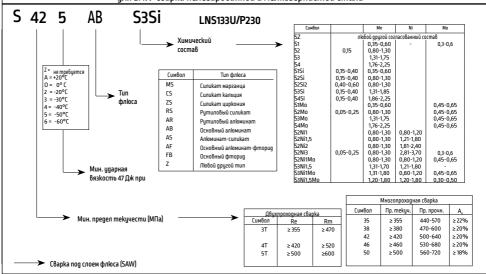
Классификация прутков и наплавленного металла при TIG-сварке нелегированной и мелкозернистой стали


ISO 14343-A

Классификация проволоки и прутков для дуговой сварки нержавеющей и жаростойкой стали


EN/ISO 17632-A

Классификация порошковой проволоки для сварки нелегированной и мелкозернистой стали в среде защитного газа или без него


ISO 14174

Классификация сварочного флюса

ISO 14171-A

Классификация проволоки и комбинаций проволоки/флюса для SAW-сварки нелегированной и мелкозернистой стали

Число A согласно ASME, Разделу IX, QW-442

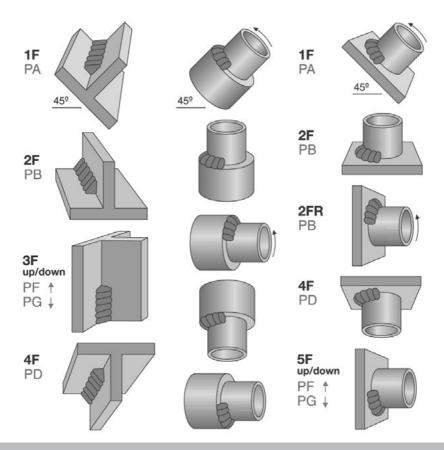
- Применимо только к черным металлам
- Обозначает химический состав наплавленного металла, указанного в протоколе аттестационного испытания метода сварки (PQR) и технологической карте сварки (WPS)

Число F согласно ASME, Разделу IX, QW-432

Классификация сварочных материалов по числу F основывается на их сварочно-технологических характеристиках, от которых зависит способность обеспечить удовлетворительное качество наплавленного металла. Эта классификация призвана в разумных пределах сократить число технологических карт и протоколов испытаний. Однако эта классификация не означает, что пользователь может по собственному усмотрению менять сварочные материалы или основной металл в пределах одной группы без проверки их совместимости с точки зрения металлургических свойств, требований к послесварочной тепловой обработке, эксплуатационных требований и механических характеристик.

FM-группы сварочных материалов согласно EN 9606-1 (ранее EN 287-1)

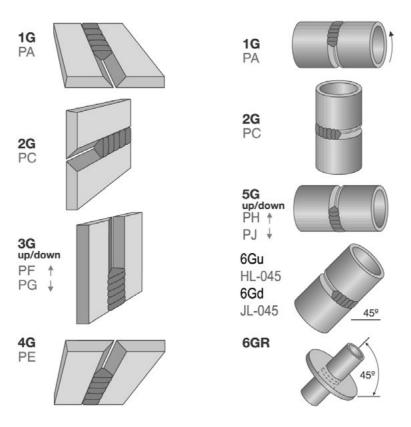
Группа Материалы для сварки:


FM1 нелегированной и стали с мелкозернистой структурой;

FM2 высокопрочной стали;

FM3 жаропрочной стали Cr < 3,75;

FM4 жаропрочной стали 3,75 ≤ Cr ≤ 12%;


FM5 нержавеющей и жаростойкой стали; FM6 никеля и никелевых сплавов.

Квалификационные испытания

Для следующих угловых соединений

	Пространственное положение	Пластина	Труба
l 8	1F	1F	1F
на — . шов	2F	1F, 2F	1F, 2F, 2FR
Пластина угловой шс	3F	1F, 2F, 3F	1F, 2F, 2FR
лас 57	4F	1F, 2F, 4F	1F, 2F, 2FR, 4F
⊏ š	3F + 4F	Любые	Любые
l 8	1F	1F	1F
на — I шов	2F	1F, 2F	1F, 2F, 2FR
:mu Boŭ	2FR		1F, 2FR
Пластина угловой ш	4F	1F, 2F, 4F	1F, 2F, 2FR, 4F
∟ 'n	5F	Любые	Любые

Квалиф. испытания Для след. соединений с разделкой Для след. угловых соединений

	Положение	Пластина	Труба	Пластина	Труба
1	1G	1G	1G	1F	1F
- 동 호	2G	1G, 2G	1G, 2G	1F, 2F	1F, 2F, 2FR
m ge	3G	1G, 3G		1F, 2F, 3F	1F, 2F, 2FR
Пластина — с разделкой	_ 4G	1G, 4G		1F, 2F, 4F	1F, 2F, 2FR, 4F
,5	1G	1G	1G	1F	1F
Ī	2G	1G, 2G	1G, 2G	1F, 2F	1F, 2F, 2FR
Труба — разделкой	5G	1G, 2G, 4G	1G, 2G	1F, 2F, 4F	Любые
Тр Ea	6G +6GR	Любые	Любые	Любые	Любые
J	2G + 5G	Любые	Любые	Любые	Любые

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

СВАРОЧНЫЕ МАТЕРИАЛЫ ДЛЯ СВАРКИ СТАЛИ, ЭКСПЛУАТИРУЮЩЕЙСЯ ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ

£										
		<u> </u>						Сварочные материалы		
Применение	Tun 2a3a	I eMn. K	емп. Кипения	Мин. темп-ра эксплуатации	мп-ра тации	PAC	MIG/MAG	T16	Порошковая	SAW
		٥	×	ؠ	×	:			проболока	
	CO ₂ [go 1,5 amм]	-28	245						05 MC700 [-20 ⁹]	
						Baso G Conarc 49C/51V180	LNM 26 Supra MIG	LNT 25 LNT 26	OS MC710-H OS MC715-H OS T55-H OS 81Nñ-H/HSR	L6I(LNS 729)/860 (-20°C) LNS 135/860 (-20°C) L50M/LNS 133U/P230
сталь с мелкозернистои структурой с				4	733					
повышенной прочностью Пропан	Пропан	-42	133			Conarc 60G/70G/80/85			05 81K2-H / HSR 05 91K2-HSR 05 91Nñ-HSR	LNS 160 / P230/P240/888/8500
						Kryo1 Kryo2	LNM Ni1	LNT Ni1		LNS 160 / P230/P240/888/8500 LNS 162 / P230/P240/888/8500
	CO, [m8epgəɪŭ]	84-	195			Кгуоз	LNM Ni2.5	LNT Ni2.5		
				- 8	193					
12 Ni 14	Ацетилен Этан Этилен	-84 -104	185			Nyloid 2	LNM NiCro 70/19	LNT NICro 70/19		LNS4455/P 2007
					99					
X12 Ni 5	Криптон Метан	-153	120	766	Q C	Nyloid 2	LNM NiCro 70/19 LNM 4455	LNT NICro 70/19 LNT 4455		LNS NICro60/20 / P2007 LNS 4455 / P2007
						Nyloid 2	LNM NiCro 70/19	LNT NiCro 70/19		LNS NICro 60/20 / P2007
X8 Ni 9 Aycmenum Cmano CrNi						Jungo 304L NiCro 70/15	LNM 4455 LNM 304LSi LNM NICro 70/19	LNT 4455 LNT 304L LNT NiCro 70/19	Cor-A-Rosta P304L	LNS 304L / P2007 LNS 304L / P2007
AISI 304 AISI 316 LN	Кислород	-183	90			NICro 60/20	LNM NiCro 60/20	LNT NiCro 60/20		LNS NIC10 60/20 / P2007
AISI 377 LN	Аргон Азот	-196	» F	40,	4	Arosta 4439	LNM 4439Mn	LNT 4439Mn		LNM 4439Mn / P2007
X2 CrNi 19-11 X2 CrNiMo 17-12-2	Водород Гелий	-253	-20			Jungo 4455	LNM 4455	LNT 4455		LNS4455/P2007

		ے ق	7 0	æ			2 7 7 7				2] 3] 1,2,3]				
006	DIN	X10NiCrAlTi3220 1,4876 [Cnna8 800H]	NiCr15 Fe 2,4816 (Cnna8 600)	NiCr 23 Fe 2,4851 (Cn na8 601(H)		ASTM	B163GrN06 B163GrN08 B167Gr600 B407Gr810				NiCro 70/15Mn NiCro 70/19 NiCro 60/20	LNT NICro 70/19 LNT NICro 60/20	LNM NICro 70/19 LNM NICro 60/20		LNS NICro 60/20 P2007
750	DIN	X3CrNiN18-11 1,4949									Arosta 304H	LNT304H	LNM 304H		LNS304-H P2007/P2000
700	EN/DIN	X6CrNiMo17-13 1,4919	X3CrNiMoN17-13 1,4910	X4CrNiMo17-12-2 1,4401		AISI	ТР316Н								
700	EWDIN	X6CrNi18-11 1,4948	X4CrNi18-10 1,4301	GX5CrNi19-10 1,4308	X3CrNiN18-11	AISI	ТР304Н	ASTM A351Grc F8 A296Grc F8			Arosta 304H	LNT304H	LNM 304H		LNS304-H P2007/P2000
009	EWDIN	X20CrMoV12-1 1,4922	X20CrMoWV12-1 1,4935		1,4949						SL4935				
009	DIN	X12CrMo9-1 1,7386				ASTM	A199GrT91 A200GrT91 A213GrT91 A335GrP91 A336GrF91	SA182F91 SA213T91	SA369FP91	SA387Gr91	SL9Cr(P91)	LNT9Cr(P91)			
009	DIN	12CrMo19-5 1,7362				ASTM	A182GrF5 A199GrT5 A200GrT5	A213GrT5 A335GrP5 A336GrF5	A357 A369GrFP5 A473TP501	A473TP502 AISI TP501 AISI TP502 SAE51501 SAE51502	SL502	LNT 502			
009	EN/DIN	10CrMo9-10 1,7380	12CrM09-10 1,7375	10CrSiMo V7 1,8075	17ZcMoV10 1,7766	ASTM	A213GrT22 A335GrP22 A182GrF22	A199 GrT22 A200 GrT22 A336 GrF22	A38/ur 22		SL 206 SL 206(STC)	LNT 20	LNM 20	0S 20-H	LNS 151 P 240/888
250	DIN	14Mo V6-3 1,7715	17MnMoV6-4 1,5403	10CrSiMoV7 1,8075		ASTM	A405Gr P24				SL 226				
220	EN/DIN	13CrM04-5 1,7335	16CrM04-4 1,7337	22CrMo4-4 1,7350	GS-22CrMo54 1,7354 25CrMo4 1,7218	ASTM	A387Gr11/12 A213GrT12/13 A335GrP12/11 A336GrF12/11	A182GrF11/2/12 A356Gr6	A519Gr4130		SL 19G SL 19G(STC)	LNT19	LNM 19	H-6120	LNS150 P240/888
200	EN	P295 GH 1,0481	P355 GH 1,0473	16M03 1,5415	17M03 (1,5415) 14M06 1,5423 P265 GH 1,0425	ASTM	A285GrA/B/C A299 A414grB-F A515	A516 gr. 70 A662 gr. B A 537 gr. 1	A161 gr. 11 A182 gr. F1 A204 gr. A-C	A369 gr. FP1	SL19G	LNT 12	LNM 12	0S12-H	LNS 140A P230
											РДС	DIT.			SAW
	550 550 600 600 600 700 700 750	550 550 600 600 600 600 700 750 EN/DIN DIN DIN EN/DIN EN/DIN DIN DIN	550 550 600 600 600 700 750 900 ENDIN DIN DIN ENDIN ENDIN DIN DIN DIN DIN DIN DIN DIN DIN TIN 1,490 1,491 1,494 1,491 1,494	550 560 600 600 700 700 750 900 EN/DIN DIN EN/DIN DIN EN/DIN EN/DIN EN/DIN EN/DIN FWDIN EN/DIN FWDIN FWDIN FWDIN FWDIN FWDIN DIN TABLE TABLE	550 560 600 600 700 700 750 900 ENDIN DIN ENDIN ENDIN ENDIN ENDIN ENDIN TORTANDA 700 750 900 15.735 1,778 1,7380 1,7382 1,7386 1,7386 1,4848 1,4919 1,4919 1,4949 <td>FN ENDIN DIN ENDIN DIN ENDIN ENDIN T300 750 900 P295 GH 13CM-04-5 14M0 V6-3 10CM-09-10 12CM-09-1 XZOCT-MOVIZ-1 XGCM/IR-11 XGCM/IR-17 <</td> <td>FM EN/DIN DIN EN/DIN DIN EN/DIN FINDIN FINDIN FINDIN FINDIN PDIN PDIN PDIN PDIN PDIN PDIN PDIN DIN PDIN PDI</td> <td>550 600 600 600 600 600 700 700 750 900 BCMOIN DIN EWDIN EWDIN EWDIN DIN DIN</td> <td>FM EN/ON 550 600 600 600 600 700 750 900 FPSS 6H LEN/ON DIN EN/ON EN/ON FEN/ON 750 900 PPSS 6H 1,7735 1,7735 1,7736 1,7360 1,7360 1,7360 1,7360 1,7360 1,7360 1,7360 1,7360 1,7360 1,7376 1,4307 1,4308 1,4307 1,4309 1,4360 1,4300 1,4360<</td> <td>500 550 550 600 600 600 600 700 700 700 700 900 PSS-6H SEMONHA S 1400N EMONN EMONN EMONN EMONN EMONN EMONN 1778 17780</td> <td>EMDIT SSQD 6000 6000 6000 6000 7000 <t< td=""><td>FINAL SSQ SSQ FADOR TADOR TAD</td><td> Fig. 62 Fig. 70 Fig.</td><td> Page Page </td><td>2500 5500 6500 6500 6500 6500 6500 6500 9500 <th< td=""></th<></td></t<></td>	FN ENDIN DIN ENDIN DIN ENDIN ENDIN T300 750 900 P295 GH 13CM-04-5 14M0 V6-3 10CM-09-10 12CM-09-1 XZOCT-MOVIZ-1 XGCM/IR-11 XGCM/IR-17 <	FM EN/DIN DIN EN/DIN DIN EN/DIN FINDIN FINDIN FINDIN FINDIN PDIN PDIN PDIN PDIN PDIN PDIN PDIN DIN PDIN PDI	550 600 600 600 600 600 700 700 750 900 BCMOIN DIN EWDIN EWDIN EWDIN DIN DIN	FM EN/ON 550 600 600 600 600 700 750 900 FPSS 6H LEN/ON DIN EN/ON EN/ON FEN/ON 750 900 PPSS 6H 1,7735 1,7735 1,7736 1,7360 1,7360 1,7360 1,7360 1,7360 1,7360 1,7360 1,7360 1,7360 1,7376 1,4307 1,4308 1,4307 1,4309 1,4360 1,4300 1,4360<	500 550 550 600 600 600 600 700 700 700 700 900 PSS-6H SEMONHA S 1400N EMONN EMONN EMONN EMONN EMONN EMONN 1778 17780	EMDIT SSQD 6000 6000 6000 6000 7000 <t< td=""><td>FINAL SSQ SSQ FADOR TADOR TAD</td><td> Fig. 62 Fig. 70 Fig.</td><td> Page Page </td><td>2500 5500 6500 6500 6500 6500 6500 6500 9500 <th< td=""></th<></td></t<>	FINAL SSQ SSQ FADOR TADOR TAD	Fig. 62 Fig. 70 Fig.	Page Page	2500 5500 6500 6500 6500 6500 6500 6500 9500 <th< td=""></th<>

b) для сосудов выс. давления макс. 450°C а) с отжигом на твердый раствор, закаливание до 600°С 1),2),3) соответствующие основные и сварочные материалы

LINCOLN THE WELDING EXPERTS

ELECTRIC

1000																		
1000 1050 1100		1200		25%Cr, 20%Ni	EWDIN	X15 CrNISi25-20 1,4841	X12 CrNi 25-21	<u>}</u>	GXI5 CrNi 25-20 1,4840	AISi	Š	TP310 TP314			Intherma 310	LNT310	LNM 310	LNS NiCro 60/20 P2007
1000 1050 1050 1000		1100		36%Ni, 25%Cr	DIN	GX40 NICrSi35-25 1,4857	GX40 NICrSiNb 38-25	1,4852	GX40 NICrSiNb 38-18 1,4849	AISi	Š	310	ASTM	A351GrCK20	NiCro 70/19* Nicro 70/15* NiCro 70/15Mn*			
1000 1050	ного металла (°С)	1100		36%Ni, 18%Cr	DIN	X12 NICrSi 36-16 1,4864	GX40 NICrSi 36-18	1,4865	GX40 NICrSIND 35-25 1,4852 X15 NICRND 32-21 1,4850	AlSi		TP 330	ASTM	A297GrHU A351GrHT30	NiCro 70/19* Nicro 70/15* NiCro 70/15Mn*			
1000 1050	іуатации наплавлен	1100	рный состав стали	25%Cr, 20%Ni	DIN	GX40 CrNiSi 25-20 1,4848	GX40 NiCrSi 25-12	1,4837		PIA	Š	314	ASTM	A2976rHK A2976rHH	NiCro 70/19* Nicro 70/15* NiCro 70/15Mn*			
1000 1050	кс. температура экспл	1100	виndu приме	25%Cr, 4%Ni 0,4%C	EN/DIN	X20 CrNISI 25-4 1,4821	GX40 CrNi24-5	1,4822	6X40 CMISI 27-4 14823 XI G CAI 7 1,478 XIO CIAI 18 1,4724 XIO CIAI 18 1,4742 XIO CIAI 24 1,4762	PIS	5	TP 327	ASTM	A297GrHC	Arosta 329			
PITC NICTO MISS LINN INSTA AAG LINN PROOF.	Mal	1050		22%Cr, 12%Ni	EN/DIN	XI5 CrNi5i20-12 1,4828 ⁽⁾	X12 CrNiTi 18-9	1,4878 1	GX40 CNIS) 22-9 GX40 CNIS) 20-14 1,4822 " GX5 CNIS) 18-9 1,4828 " GX90 CS13 1,4770 8 GX40 CS 18	1,4,40°. AISi		309 G ¹ TP302 B ¹ TP321 ¹			Arosta 309H ¹.²l Arosta 329 ²l	LNT NiCro 60/20	LNM NICro 60/20	LNS NiCro 60/20 P2007
PDT TIG MIG/MG/MAG		1000			EN	NiCr22Mo 9Nb 2,4586 [†] (Cnna8 625)	X2 NICrAITi 32 20	1,4588 ³ [C nna8 800L]	XIO NICATTI 2 20 1,4876 ³ (Cnna8 800H)				ASTM	B163GrN08 ²⁸ B407Gr810 ²⁸		LNT NICro 60/20	LNM NICro 60/20	

1), 2) соответствующие основной и наплавленный металл * только для ремонтной сварки

РЕКОМЕНДАЦИИ ПО ВЫБОРУ ЭЛЕКТРОДОВ ДЛЯ РУЧНОЙ ДУГОВОЙ СВАРКИ НЕРЖАВЕЮЩЕЙ СТАЛИ

		Марка элеl	ктродов	Примечания
Номер материала	Kog EN	Предпочтительный выбор	Альтернативный выбор	
Ферритная сталь с содержа	нием хрома			
1,4000 1,4001 1,4002 1,4006 1,4008 1,4016 1,4021 1,4024 1,4027	X6Cr13 *X7Cr14 X6CrAl13 X12Cr13 *GX8CrNi13 *X6Cr17 X20Cr13 *X15Cr13 *GX20Cr14	Arosta 3095 Limarosta 309S	Arosta 329 Nichroma Arosta 309Mo	Arosta 329: при сварке материала большой толщины при необходимости в низком содержании Ni gonyстим только один облицовочный проход
Мартенситная сталь с содер	жанием хрома			
1,4113 1,4120	X6CrMo171 *X20CrMo13	Nichroma Arosta 309Mo	Arosta 329 Arosta 309S Limarosta 309S	Arosta 329: при сварке материала большой толщины при необходимости в низком содержании Ni gonycтим только один облицовочный проход
Аустенитная сталь с содерж	анием хрома и ник	еля		
1,4301 1,4303 1,4306 1,4308 1,4310 1,4311 1,4312 1,4318	X4CrNi18-10 X4CrNi18-12 X2CrNi19-11 GX5CrNi18-10 X10CrNi18-8 X2CrNiN18-10 *GX10CrNi18-8 X2CrNiN18-7	Arosta 304L Vertarosta 304L	Arosta 347	
1,4335	X1CrNi25-21	Jungo 4465		
1,4347	*GX8CrNi26-7	См. линейку Metrode	Jungo 4462	
1,4362	X2CrNiN23-4	Arosta 4462	Jungo 4462	

^{*} DIN/SEW

РЕКОМЕНДАЦИИ ПО ВЫБОРУ ЭЛЕКТРОДОВ ДЛЯ РУЧНОЙ ДУГОВОЙ СВАРКИ НЕРЖАВЕЮЩЕЙ СТАЛИ

Harran		Марка элек	тродов	Примечания
Номер материала	Kog EN	Предпочтительный выбор	Альтернативный выбор	
Аустенитная стал	ть с содержанием хрома и ни	келя		
1,4401 1,4404 1,4406 1,4408 1,4428 1,4429 1,4432 1,4435 1,4436	X4CrNiMo 17-12-2 X2CrNiMo 17-12-2 X2CrNiMo 17-11-2 GX5CrNiMo 19-11 X2CrNiMo 18-12-3 X2CrNiMo 17-13-3 X2CrNiMo 17-12-3 X2CrNiMo 18-14-3 X4CrNiMo 17-13-3	Arosta 316L Limarosta 316L-130 Limarosta 316L Vertarosta 316L		
1,4438 1,4439 1,4446 1,4448	X2CrNiMo 18-15-4 X2CrNiMoN 17-13-5 GX2CrNiMoN 17-13-4 GX6CrNiMo 17-13			
1,4462	X2CrNiMoN 22-5-3	Arosta 4462/ Jungo 4462		
1,4465 1,4466	X1CrNiMoN 25-25-2 X1CrNiMoN 25-22-2	Jungo 4465		
1,4468 1,4469	*GX3CrNiMoN26-6-3 *GX2CrNiMoN26-7-4	См. линейку Metrode		

РЕКОМЕНДАЦИИ ПО ВЫБОРУ ЭЛЕКТРОДОВ ДЛЯ РУЧНОЙ ДУГОВОЙ СВАРКИ НЕРЖАВЕЮЩЕЙ СТАЛИ И НИКЕЛЕВЫХ СПЛАВОВ

		Марка элек	тродов	Примечания
Номер материала	Kog EN	Предпочтительный выбор	Альтернативный выбор	
Аустенитная стал	ıь с содержанием хрома и нике	ля		
1,4500	GX7NiCrMoCuNb 25-20	Jungo 4500	NiCro 31/27	
1,4503	X3NiCrMoTi 27-23	NiCro 31/27	NiCro 60/20	
1,4505 1,4506	X4NiCrMoCuNb 20-18-2 X5NiCrMoCuTi 20-18	Jungo 4500	NiCro 31/27	
1,4510 1,4511 1,4512 1,4513	X3CrTi17 X3CrNb17 X6CrTi12 X6CrMo 17-1	Jungo 309L Arosta 309S Limarosta 309S	Arosta 329 Nichroma Arosta 309Mo	Arosta 329: при сварке материала большой толщины при необходимости в низком содержании Ni допустим только один облицовочный проход
1,4515	*GX3CrNiMoCuN 26-6-3	См. линейку Metrode		
1,4517	*GX3CrNiMoCuN 26-6-3-3			
1,4529 1,4531 1,4536 1,4539	X1NiCrMoCuN 25-20-7 GX2NiCrMoCuN 20-18 GX2NiCrMoCuN 25-20 X1NiCrMoCu 25-20-5	NiCro 60/20 Jungo 4500	NiCroMo 59/23 NiCro 31/27 NiCro 60/20	
1,4541 1,4550	X6CrNiTi 18-10 X6CrNiNb 18-10	Arosta 347	Arosta 304L Limarosta 304L	Тип 304L, утверждение ТÜV для температур эксплуатации до 350°C (межкристаллическая коррозия)
1,4552	GX5CrNiNb 18-9		Vertarosta 304L	
1,4558 1,4559	*X2NiCrAlTi 32-20 *GX7NiCrMoCuNb 42-2	NiCro 60/20	ремонтная c8apka NiCro 70/19	
1,4563	X1NiCrMoCu 31-27-4	NiCro 31/27	NiCro 60/20 Arosta 316L Limarosta 316L130	
1,4571	X6CrNiMoTi 17-12-2	Arosta 318	Limarosta 316L	Tun 316L, утверждение TÜV для температур эксплуатации до
1,4573	*X10CrNiMoTi 18-12		Vertarosta 316L	400°С (межкристаллическая коррозия)
1,4577 1,4580	X3CrNiMoTi 25-25 X6CrNiMoNb 17-12-2	Jungo 4465		
1,4581 1,4583	*GX5CrNiMoNb 18-10 *X10CrNiMoNb 18-12	Arosta 318 Vertarosta 316L	Arosta 316L Limarosta 316L Vertarosta 316L	Arosta 4439, если содержание феррита в наплавленном металле не должно превышать 0,5%
1,4585 1,4586	GX7CrNiMoCuNb18-18 X5NiCrMoCuNb22-18	Jungo 4500	NiCro 31/27	

LINCOLN ELECTRIC
THE WELDING EXPERTS®

РЕКОМЕНДАЦИИ ПО ВЫБОРУ ЭЛЕКТРОДОВ ДЛЯ РУЧНОЙ ДУГОВОЙ СВАРКИ НЕРЖАВЕЮЩЕЙ СТАЛИ И НИКЕЛЕВЫХ СПЛАВОВ

		Марка эле	ктродов	Примечания
Номер материала	Kog EN	Предпочтительный выбор	Альтернативный выбор	
Жаростойкая сталь				
1,4712 1,4713 1,4724 1,4742 1,4746 1,4762	X10CrSi 6 X10CrAl 7 X10CrAl 13 X10CrAl 18 X8CrTi 25 X10CrAl 24	Jungo 309L Arosta 309S Limarosta 309S	Arosta 329	Arosta 329: при сварке материала большой толщины при необходимости в низком содержании Ni допустим только один облицовочный проход
1,4821 1,4822 1,4823	X20CrNiSi 25-4 GX40CrNi 24-5 GX40CrNiSi 27-4	Arosta 329	Arosta 309S Limarosta 309S	
1,4825 1,4826 1,4828 1,4832 1,4833	GX25CrNiSi 18-9 GX40CrNiSi 22-9 X15CrNiSi 20-12 GX25CrNiSi 20-14 X7CrNi 23-14	Arosta 309H	NiCro 70/15Mn NiCro 70/15 NiCro 70/19	NiCro: зависит от температуры эксплуатации
1,4837	GX40CrNiSi 25-12	NiCro 70/15/ NiCro 70/19	Arosta 309H	Arosta 309H: зависит от температуры эксплуатации
1,4840 1,4841 1,4845 1,4847	GX15CrNi 25-20 X15CrNiSi 25-20 X12CrNi 25-21 X8CrNiAITi 20-20	Intherma 310		
1,4846 1,4848 1,4849	X40CrNi 25-21 GX40CrNiSi 25-20 GX40NiCrSiNb 38-18	NiCro 70/15*	NiCro 70/15Mn*	
1,4850	X15NiCrNb 32-21		NiCro 70/15	
1,4852 1,4855 1,4857	GX40NiCrNb 35-25 GX30CrNiSiNb 24-24 GX40NiCrSi 35-25	NiCro 70/15*	NiCro 70/15Mn*	
1,4859 1,4861	GX10NiCrNb 32-20 X10NiCr 32-20		NiCro 70/15*	
1,4864 1,4865	X12NiCrSi 36-16 GX40NiCrSi 36-18	NiCro 70/15	NiCro 70/19 NiCro 70/15Mn	
1,4876	X10NiCrAlTi 32-20	NiCro 60/20	NiCro 70/15 NiCro 70/19	
1,4878	X12CrNiTi 18-9	Arosta 309H	Arosta 347	

^{*}для ремонтной сварки

РЕКОМЕНДАЦИИ ПО ВЫБОРУ ЭЛЕКТРОДОВ ДЛЯ РУЧНОЙ ДУГОВОЙ СВАРКИ НИКЕЛЕВЫХ СПЛАВОВ

		Марка элек	тродов	Примечания
Номер материа- ла	Kog EN	Предпочтительный выбор	Альтернативный выбор	
Жаропрочная сталь	с содержанием хрома и никел	Я		
1,6901 1,6902 1,6905 1,6907	GX8CrNi 18-10 GX6CrNi 18-10 GX5CrNiNb 18-10 X3CrNiN 18-10	NiCro 70/19	-	
Сплавы с содержание	ем никеля, меди и железа			
2,4360 2,4361 2,4365 2,4375	NiCu30Fe LC-NiCu30Fe G-NiCu30Nb NiCu30Al	NiCu 70/30	-	
Сплавы с содержание	ем никеля, хрома, молибдена	и железа		
2,4602	NiCr21Mo14W(сплав С22)	NiCroMo 59/23 NiCroMo 60/16	-	
2,4605	NiCr23Mo16Al (сплав С59)	NiCroMo 59/23	-	
2,4610	NiMo16Cr16Ti (cnлав C4)	NiCroMo 59/23 NiCroMo 60/16	-	
2,4618 2,4619 2,4641	NiCr22Mo6Cu NiCr22Mo7Cu NiCr21Mo6Cu	NiCro 60/20		
2,4816 2,4817	NiCr15Fe LC-NiCr15Fe	NiCro 70/15 NiCro 70/15Mn	NiCro 60/20	
2,4819	NiMo16Cr15W (cnna8 C276)	NiCroMo 59/23 NiCroMo 60/16	-	
2,4851	NiCr23Fe	NiCro 70/19	NiCro 60/20	
2,4856	NiCr22Mo9Nb	NiCro 60/20	NiCroMo 59/23	Только NiCroMo 59/23 имеет повышенную коррозионную стойкость
2,4858	NiCr21Mo	NiCro 60/20	-	
2,4867 2,4869 2,4951 2,4952	NICr60 15 NICr80 20 NICr20Ti NICr20TiAl	NiCro 70/15 NiCro 70/15Mn	-	
2,4975 2,4976	NiFeCr12Mo NiCr20Mo	NiCro 60/20	-	

			Cnna8oı NiCrFe	Высокотемп. сталь СгNi	Нержавеющая сталь СгNiMo	Нержавеющая сталь CrNi	Ферритная сталь с содержанием Ст	Жаропр	Жаропрочная сталь с Мо/Сг Мо/Сг Мо V	Mo/Cr Mo/Cr	Mo V	Сталь С-Мп с пределом текучести 360-500 МПа	Cmanb C c npegenow mekyyecmu <360 MNa
Tun	Kog EN	W.nr.	NiCr15Fe (Inconel 600) NiCrAlTi (Incoloy 800)	X15CrNISi 20 12 X15CrNISi 25 20	X5CrNiMo 17-12-2 X2CrNiMo 18-14-3 X10CrNiMoNb 18-12	X5CrNi 18-10 X2CrNi 19-11 X6CrNiNb 18-10	X12Cr13 X6Cr17 X10CrAl24	X20CrMoV121 X24CrMoV121	10CrMo9-10 12CrMo19-5	13CrM 04-5 14M 0V 63	16M03	\$420-500	S235-S355 P235-355
Нелегированная сталь Re < 360 МПа	S235-S355 P235-P355		NiCro 70/15 NiCro 70/15Mn NiCro 70/19	Arosta 309S NiCro 70/15 NiCro 60/20	Nichroma Arosta 3095 Arosta 309Mo NiCro 70/19	Nichroma Arosta 309S Arosta 309Mo Arosta 307	Nichroma Arosta 309Mo Arosta 309S Arosta 307	NiCro 70/15 NiCro 70/15Mn NiCro 60/20	Conarc 49C SL 12G SL 19G SL 20G	SL 19G SL 20G SL502	Conarc 49C Baso 100 Baso 120	Conarc 49C SL 12G Conarc 60G	Conarc 49C Baso 100 Baso 120
Нелегир ованная мелко зерни стая сталь Re < 360-500 МПа	\$420-5500		NiCro 70/15 NiCro 70/15Mn NiCro 70/19 NiCro 60/20	Arosta 309S NiCro 70/19 NiCro 60/20	Nichroma Arosta 3095 Arosta 309Mo	Nichroma Arosta 309S Arosta 309Mo Arosta 307	Arosta 309S Arosta 309Mo Nichroma Arosta 307	NiCro 70/15 NiCro 70/15Mn NiCro 60/20	SL 126 SL 196 SL 206 SL502	SL 12G SL 19G	SL 126 Conarc 606	Conarc 49C SL 12G Conarc 60G Conarc 70G	
Сталь с содержанием Мо	16Mo3	1,5415	NiCro 70/15 NiCro 70/15Mn NiCro 70/19 NiCro 60/20	Arosta 309S NiCro 70/19 NiCro 60/20	Nichroma Arosta 3095 NiCro 70/15	Nichroma Arosta 3095 Arosta 307	Nichroma Arosta 3095 Arosta 307	NiCro 70/15 NiCro 70/15Mn NiCro 60/20	SL 12G SL 19G	SL 12G SL 502	SL 126		
Жаропрочная сталь 13СгМо4-5 СгМо МоV	13CrM04-5 14MoV63 (DIN)	1,7335	NiCro 70/15 NiCro 70/15Mn NiCro 70/19 NiCro 60/20	SL 19G SL 20G	SL 19G SL 22G								
Жаропрочная сталь CrMo	10CrM 09-10 (DIN) 12CrM 019-5 (DIN)	1,7380	NiCro 70/15 NiCro 70/15Mn NiCro 70/19 NiCro 60/20	SL 20G SL502									
Мартенситная сталь с содержанием Сг	X20CrMoV12-1 (DIN) X24CrMoV12-1 (DIN)	1,4922 1,4936	NiCro 70/15 NiCro 70/15Mn NiCro 70/19 NiCro 60/20										
Ферритная сталь с содержанием Сг	X12Cr13 X6Cr17 X10CrAl24 (DIN)	1,4006 1,4016 1,4762	NiCro 70/15 NiCro 70/15Mn NiCro 70/19 NiCro 60/20	Arosta 309S Arosta 309Mo NiCro 70/15 NiCro 60/20	Nichroma Arosta 3095 Arosta 309Mo	Nichroma Arosta 309S Arosta 309Mo	Arosta 329 Arosta 3095						
ХБСгИ118-10 XZC гИ19-11 CrNi XGCrN11018-13	X5CrNi18-10 X2CrNi19-11 X6CrNiNb18-10	1,4301 1,4306 1,4550	NiCro 70/15 NiCro 70/15Mn NiCro 70/19 NiCro 60/20	Arosta 309S Nichroma	Arosta 304L Arosta 316L	Arosta 304L Arosta 347							
Нержавеющая сталь CrNiMo	X5CrNiMo17-12-2 X2 CrNiMo18-14-3 X10CrNiMoNb18-12 (DIN)	1,4401 1,4435 1,4583	NiCro 70/15 NiCro 70/15Mn NiCro 70/19 NiCro 60/20	Arosta 309S Arosta 309Mo	Arosta 316L Arosta 318								
Высоко- температурная сталь CrNi	X15CrNISi20-12 (DIN) X15CrNISI 25-20 (DIN)	1,4828	NiCro 70/15 NiCro 70/15Mn NiCro 70/19 NiCro 60/20	Intherma 310 NICro 70/19									
Сплавы NiCrFe	NiCr15Fe(DIN) (Cnna8 600) NiCrAITi (DIN) (Cnna8 800)	2,4816 1,4876	NiCro 70/15 NiCro 70/15Mn NiCro 60/20										

Предварительный подогрев и послесварочная тепловая обработка

ой Предвари РС сварочна

Предварительный nogozoe8 150-250°C

Основной металл	319,0 333,0 354,0 355,0 380,0	356,0 357,0 359,0 413,0 444,0 443,0	511,0 512,0 513,0 514,0	7005 k 7018 7021 7029 7039 710,0 711,0 712,0	6070	6061 6083 6082 6101 6201 6151 6351 6951	5456	5454	5154 5254 – 5086	5083	5052 5005 5652 — 5050	3004	2219 2519	2014 2036	1100 3003	1060 1070 1080 1350
1060 1070 1080 1350	4145 (c,i)	4043 (i,f)	5356 (c,e,i)	5356 (c,e,i)	4043 (i)	4043 (i)	5356 (c)	4043 (i)	5356 5356 (c,e,i) (c)	5356 (c)	4043 1100 (i) (c)	4043	4145	4145	1100	1188
1100 3003	4145 (c,i)	4043 (i,f)	5356 (c,e,i)	5356 (c,e,i)	4043 (i)	4043 (i)	5356 (c)	4043 (e,i)	5356 5356 (c,e,i) (c)	5356 (c)	4043 4043 (e, i) (e)	4043 (e)	4145	4145	1100 (c)	
2014 2036	4145 (g)	4145			4145	4145			4043 4043 (i)				4145 (g)	4145 (g)		-
2219 2519	4145 (g,c,i)	4145 (g,c,i)	4043 (i)	4043 (i)	4043 (f,i)	4043 (f,i)	4043	4043 (i)	5654 5356 (cb) (e)	4043	4043 4043(i)	4043	2319 (c,f,i)		-	
3004	4043 (i)	4043 (i)	5654 (b)	5356 (e)	4043 (e)	4043 (b)	5356 (e)	5654 (b)	5654 5356 (b) (e)	5356 (e)	4043 4043 (e, i) (e)	4043 (e)				
5005 5050	4043 (i)	4043 (i)	5654 (b)	5356 (e)	4043 (e)	4043 (b)	5356 (e)	5654 (b)	5654 5356 (b) (e)	5356 (e)	4043 4043 (e, i) (e)		_			
5052 5652	4043 (i)	4043 (b,i)	5654 (b)	5356 (e)	5356 (b,c)	5356 (b,c)	5356 (b)	5654 (b)	5356 5356 (e) (e)	5356 (e)	5654 (a,b,c)					
5083		5356 (c,e,i)	5356 (e)	5183 (e)	5356 (e)	5356 (e)	5183 (b)	5356 (e)	5356 5356 (b) (e)	5183 (e)		-				
5086		5356 (c,e,i)	5356 (e)	5356 (e)	5356 (e)	5356 (e)	5356 (e)	5356 (b)	5356 5356 (b) (e)		= варочные матері Існовной металі					
5154 5254 a		4043 (b,i)	5654 (b)	5356 (b)	5356 (b,c)	5356 (b,c)	5356 (b)	5654 (a)	5356 5356 (b) (e)	gylou	киси водорода, д цей эксплуатаці					
5454	4043 (i)	4043 (b,i)	5654 (b)	5356 (b)	5356 (b,c)	5356 (b,c)	5356 (b)	5554 (c,e)	5654 (a,b)	b. N	льзуется 5654. Ложно использов торых случаях г					
5456		5356 (c,e,i)	5356 (e)	5556 (e)	5356 (e)	5356 (e)	5356 (e)			цвет	пу основного мег Јчесть и более в	палла, и	меют са	мую выс	окую жи	gko-
6061 6063 6082 6101 6201 6201 6151 6351 6951	4145 (c,i)	4043 (f,i)	5356 (b,c)	5356 (b,c,i)	4043 (b,i)	4043 (b,i)				noßbi c. Д d. V coom e. M f. 4 g. 2	авленного мета ишенной темпер Для некоторых з Иногда используи Иветствующим Могут использов 145 может подхо 319 может подхо	amype. agaч мож emcя при основно damься 5 ogumь gr ogumь gr	kem nogx icagoчнь му. 183, 5356 пя неkom пя неkom	одить 4 ій матер или 5556 орых зас орых зас	- 1043. 10иал с сою 5. 13и. 13и.	·
6070	4145 (c,i)	4043 (f,i)	5356 (c,e)	5356 (c,e,i)	4043 (e,i)					j. 1	.047 может nogx 100 может nogx Относится толь	gumь gr	ія некот	орых за	дач.	005.
7005 k 7018 7021 7029 7039 710,0 711,0 712,0	4043 (i)	4043 (b,i)	5356 (b)	5356 (i)			1. Е напр Вещ (Зыбор оимер, ества Сплавь	контактом (ми или длите 1 5356, 5183, 55	екоменда ітериал с пресної ельным в 56 и 5654		ичивать goŭ, onp icokoŭ m ся испол	ся услов еделенні емперап ьзовать	иями экс ыми хим пуры (65 в качесп	:плуата ическимі °С). пве приса	ции, л agoч-
511,0 512,0 513,0 514,0		4043 (b,i)	5654 (b,d)		=		3. E	сли пр		amepuar	ице относятся I 1 не указан, то с					
356,0 357,0 359,0 413,0 444,0 443,0	4145 (c,i)	4043 (d,i)	или I несеп испол многи	n созда ьзовани ix факт	кций на тель/по я данно оров вн	а основе льзоват ой инфо е контро	ель. З рмаци оля Ind	ой ин Оффек и зав Ialco A	ipogykmoв iформации muвность iucum om illoys. Эти							
319,0 333,0 354,0 355,0 380,0	4145 (d,c,i)		сварк основ	u, хим ного ма	ический териала	cocma	в и ykцию	тем издел	процедуру ппературу ия, метод Гания.							

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На caúme www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Mapka	Область применения	Объем наплавленного металла в ст³ на электрод			
		Ø 3,2	Ø 4,0	Ø 5,0	
Ferrod 135T Ferrod 160T	Высокоэффективные электроды для угловых и горизонтальных соединений с V- и X-образной разделкой кромок. Хороший внешний вид шва. Высокая скорость сварки благодаря эффективности 135, 160%	4,7	7,1 8,5	11,6 14,2	
Ferrod 165A	Аналогичен Ferrod 160Т. Более высокая скорость сварки. Эффективность 160%. Высокая ударная вязкость при температуре -20°C.	5,1	8,5	12,7	
Universalis	Покрытие рутилового типа. Рекомендуется для сварки на спуск, угловых соединений и заполняющих проходов по конструкционной стали. Хороший внешний вид шва.	2,7 ¹ 3,5 ²	3,9¹ 5,1²		
Cumulo	Сварка угловых соединений и заполняющие проходы по трубам в любых пространственных положениях (кроме вертикальной на спуск).	2,5	3,5		
Pantafix	Электрод с покрытием рутилового типа для широкого круга задач сварки в любых пространственных положениях. Сварка общего назначения, сварка труб, в т. ч вертикальная на спуск.	2,4	3,4		
Omnia	Электроды для работ общего назначения в любых пространственных положениях. Низкое напряжение холостого хода, электроды малого диаметра рекомендуются для домашней сварки.	2,4/2,4	3,4/3,4		
Supra	Электрод с рутиловым покрытием для сварочных работ в любом пространственном положении с высокими характеристиками сварки в направлении сверху вниз. Судоремонтные работы.	2,4	3,3	4,9	
Kardo	Электрод с покрытием основного типа для сварки стали с невысокими прочностными характеристиками.	3,0	4,4		
Baso 48SP	Электроды с покрытием основно-рутилового типа. Высокие сварочно-технологические характеристики, легкое зажигание и повторный поджиг дуги.	3,0	5,3		
Baso 100	Электрод с покрытием основного типа для сварки в сложных условиях.	2,51	3,71	8,0	
Baso 120	Электрод с покрытием основного типа, эффективность 120%, для быстрого заполнения зазоров в сложных условиях в любых пространственных положениях	2,9¹ 3,9²	4,0¹ 5,8²	9,1	
Baso G	Электрод с покрытием основного типа для сварки на постоянном токе, эффективность 120%, для быстрого заполнения зазоров в любых пространственных положениях.	3,0 ¹ 3,9 ²	4,5¹ 5,8²	9,1	
Conarc 48	Электрод с покрытием основного типа, эффективность 130%. Высокая ударная вязкость при низкой температуре.	3,21	4,9¹ 6,1²		
Conarc 49C	Электрод с покрытием основного типа, эффективность 115%. Высокая ударная вязкость при низкой температуре.	2,8	4,2 ¹ 6,1 ²	8,5	
Baso 26V	Электрод с основным типом покрытия для вертикальной сварки на спуск.	2,7	5,3	8,5	
Conarc 51	Электрод с покрытием основного типа. Любые пространственные положения. Высокая ударная вязкость при низкой температуре.	2,2	3,4	9,8	
Conarc L150	Электрод с покрытием основного типа для сварки горизонтальных угловых соединений и заполняющих проходов. Эффективность 150%.	4,9	7,5	11,6	
Conarc V180	Электрод с покрытием основного типа с эффективностью около 175% для высокопроизводительной сварки на спуск.	6,1	9,1	12,7	

Время горения дуги

Ø 3,2	Ø 4,0	Ø 5,0
75	65	68
85	92 90	86 78
57¹ 69²	55¹ 69²	
66	62	
66	72	
59/65	59/72	
64	66	77
84	79	
75	95	
62 ¹	64¹	91
62 ¹ 74 ²	63¹ 85²	99
70¹ 79²	75¹ 96²	114
67 ¹	83¹	95²
65	75¹ 100²	90
51	70	86
62	71	104
84	80	75
73	70	75
	70	75

Объем наплавленного металла на метр

		·
Ширина шва "а" в мм	Теор. содержание в см³	Формула: (a² x L) "a" в мм
3	9	
3,5	12,3	
4	16	
4,5	20,3	
5	25	
5,5	30,3	
6	36	Tek.NF9656
8	64	
10	100	

_	Teop. co	јержание	в см³	Формула:	
Толщина "t" в мм	V50°	V60°	V70°	V50°: d (0,466d + v) L V60°: d (0,577d + v) L V70°: d (0,700d + v) L	
6	35	39	43	, α,	
8	54	61	69	* "	
10	77	88	100		
12	103	119	137	0	
14	133	155	179	-	
16	167	196	227	Tek.NF9657 v = 3mm	
18	205	241	281		
20	246	291	340		

Толщина	Теор. содержание в см³			Формула: 			
"t" В мм	V50°	V60° V70°		X60°: d (0,228d + v) L X70°: d (0,350d + v) L			
14	88	98	111				
16	108	122	138	•			
18	129	147	167	96			
20	153	175	200	D D			
25	220	255	294	ž +			
30	300	349	405	v = 3mm			
35	390	458	534	v = 3mm			
40	493	581	680				

Толщина "t" в мм	Теор. содержание в см³	Формула: ((d-10)² x 0,27 + 12d - 73)
20	194	► 15°
25	288	\$ \ \ \ \ \ \
30	395	5 / / 5
35	516	200
40	650	9

ЗАТРАТЫ НА СВАРКУ

наплавленный металл на электрод кол-во электродов стоимость электрода х кол-во =ст-ть электродов кол-во электродов х время горения дуги общ. время горения дуги общее время горения дуги х 100% общее время работы рабочий цикл трудовые затраты общее время работы х почасовая оплата

Примечание: значение рабочего цикла зависит от практических условий и может варьироваться от 15 до 45%

1) L = 350 MM 2) L = 450 MM

ст-ть электродов + трудовые затраты

общие затраты

Ферритное число

Международный термин "ферритное число" (FN) был введен, чтобы упростить международное общение в области составления спецификаций и сертификации. Оно означает содержание дельта-феррита в наплавленном металле при сварке нержавеющей стали.

Ферритное число часто используется в качестве показателя устойчивости наплавленного металла к горячему растрескиванию. Этот и некоторые другие инженерные свойства напрямую коррелируют с числом FN наплавленного металла. Ниже указаны типичные приемлемые значения в различных условиях:

- полностью аустенитный наплавленный металл:
- коррозионная истойчивость в исловиях сильного окисления или восстановления в средах с содержанием кислот и хлорида:
- полностью ацстенитный немагнитный наплавленный металл с содержанием CrNiMoN: FN < 0,5
- низкоферритный наплавленный металл с содержанием CrNiN и CrNiMoN для эксплуатации в условиях низких температур: FN 3-6 или < 0,5
- · наплавленный металл общего назначения из нержавеющей стали с высокой устойчивостью к коррозии, образованию горячих трещин и микротрещин:
- буферные слои из аустенитного/ферритного наплавленного металла при сварке разнородных соединений и буферные слои на плакировочной стали:
- аустенитный/ферритный наплавленный металл с высокой устойчивостью к механической и питтинговой коррозии, а также со сбалансированной структурой ради высокой прочности и коррозионной устойчивости:

Контроль при сварке металлоконстрикций часто требиет определения ферритного числа (FN).

Измерение содержания феррита

Международно признанный стандартный метод определения содержания феррита основывается на произвольном соотношении между силой действия магнитного поля и содержанием феррита в наплавленном металле. Абсолютное и точное определение содержания феррита невозможно из-за несовершенства металигографического анализа и отсутствия подходящего метода калибровки для точной оценки содержания феррита в нержавеющей стали. Для этого торсионными весами измеряют силу притяжения между постоянным магнитом с известными характеристиками и наплавленным металлом с содержанием дельта-феррита. Эти значения сравнивают с показаниями для того же магнита и пластины из углеродистой стали с немагнитным медным покрытием определенной толщины. С помощью калибровки получают необходимое линейное соотношение. Эти принципы приведены в международных стандартах ISO 8249 и AWS A4.2-91. В Европе использиется станават ISO.

В последних версиях стандарта диапазон ферритного числа был расширен до 100FN (с изначального 0-28FN).

Национальный институт стандартов и технологий США (NIST) публикует стандарты с указанием толщины покрытия. Для определения ферритного числа в лабораторных условиях (в горизонтальном положении) можно использовать высокоточные торсионные весы или коммерческие приборы "Magne Gage" (Рис. 3). Согласно ISO 8249, необходимо использовать постоянный магнит определенных размеров и магнитной силы.

NIST также предлагает второстепенные стандарты проверки и калибровки оборудования в диапазоне 0-100FN.

Расчет содержания феррита

Содержание феррита рассчитывается на основе химического состава наплавленного металла в состоянии после сварки. При этом использиются риаграммы эквивалентов Сr и Ni. основанные на таких металлогоафических исследованиях, как:

- диаграмма Шаффлера¹, опубликованная в 1949 году. Считается, что она лучше всего отражает структуру наплавленного металла различных составов, но неточна в случае аустенитного наплавленного металла с содержанием феррита;
- · диаграмма ДеЛонга (1973)³, широко использовавшаяся вплоть до 1985 года, для некоторых видов наплавленного металла для сварки нержавеющей стали CrNi (Mo, N);
- · диаграмма составов WRC 1992 (1992), опубликованная Котецким и Зивертом (1992)³, основана на диаграмме составов WRC 1988, опубликованной ранее Зивертом, МакКоуэном и Олсоном⁴ после анализа более чем 950 образцов наплавленного металла и вычисления их ферритных чисел (в том числе на основе данных от Линкольн Электрик). Эта диаграмма показала себя более точной благодаря точной оценке влияния Мп, Si, C, N и Nb.

 также ипоминается диаграмма ESPY³ для расчета содержания феррита.

FN < 0.5

Применение диаграмм содержания феррита

Перечисленные диаграммы содержания феррита позволяют оценить ферритное число наплавленного металла. Многочисленные исследования показывают, что наилучшие результаты показывает обновленная диаграмма составов WRC 1992. Для многих составов все еще остается актуальной старля диаграмма Шеффлера. Она может дать ценную информацию о разнородных соединениях и сварке плакированной стали, расчете состава и разбавленности наплавленного металла.

Ниже приведена диаграмма Шеффлера, совмещенная с диаграммой составов WRC 1992 (Рис. 1), и стандартная диаграмма составов WRC 1992 в полном размере (Рис. 2). При использовании этих диаграмм для оценки состава наплавленного металла обязательно нужно учитывать влияние различных параметров сварки (температурные/временные циклы, параметры сварки, состояние поверхности), которые могут привести к значительному отклонению ферритного числа от показаний тестовых образцов наплавленного металла.

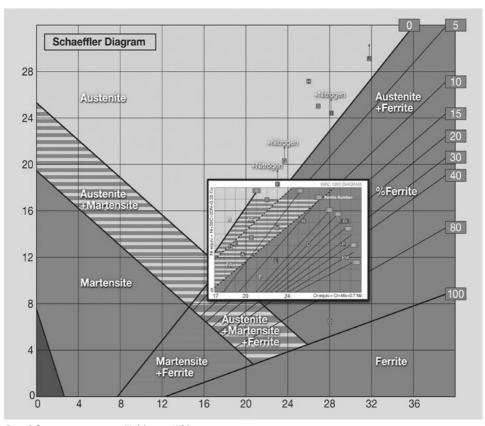
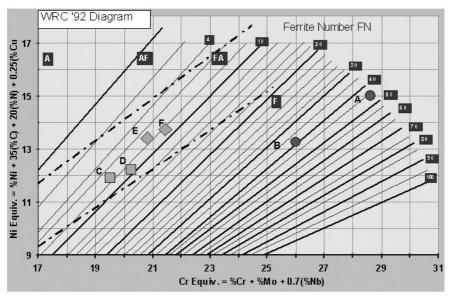
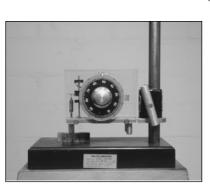
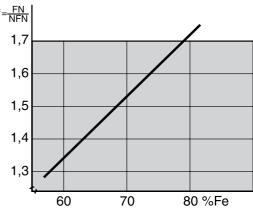


Рис. 1 Совмещенные диаграммы Шеффлера и WRC 1992

LINCOLN ELECTRIC
THE WELDING EXPERTS




Рис. 2 Диаграмма составов WRC 1992


Положение сварочных материалов

На диаграммах отмечено положение представленных в данном каталоге сварочных материалов Lincoln Electric Europe (Таблица 1).

Таблица 1. Эквиваленты Cr- и Ni на основе диаграммы Шеффлера и диаграммы составов WRC'92

0600000000	Название	WR	C'92	Шеффлер		05		WRC'92		Шеффлер	
Обозначение	назоание	Экв. Cr	Эkв. Ni	Эkв. Сr	Эkв. Ni	Обозначение	Название	Экв. Cr	Эkв. Ni	Эkв. Сr	Экв. Ni
Α	Jungo Zeron° 100X	28,6	15,0	29,1	10,5	1	Jungo 4500	25,0	27,3	26,4	26,2
В	Jungo 4462	26,0	13,3	26,9	10,9	J	Jungo 4465	27,2	25,7	28,1	25,2
С	Arosta 304L	19,5	11,9	20,6	11,0	К	NiCro 31/27	30,5	33,2	31,7	32,0
D	Arosta 347	20,3	12,2	21,4	11,3	L	Arosta 309S	23,6	14,2	24,6	13,3
E	Arosta 316L	20,8	13,4	22,0	12,5	М	Arosta 309Mo	25,4	14,5	26,7	13,5
F	Arosta 318	21,5	13,8	22,7	12,8	N	Arosta 307	17,8	13,3	18,7	14,2
G	Arosta 4439	22,6	21,3	23,8	18,2	0	Arosta 329	25,4	8,6	27,2	7,4
Н	Jungo 4455	23,0	19,9	23,5	20,3	Р	Limarosta 312	28,8	13,9	30,3	12,7

Puc. 3 YcmpoŭcmBo Magne Gage

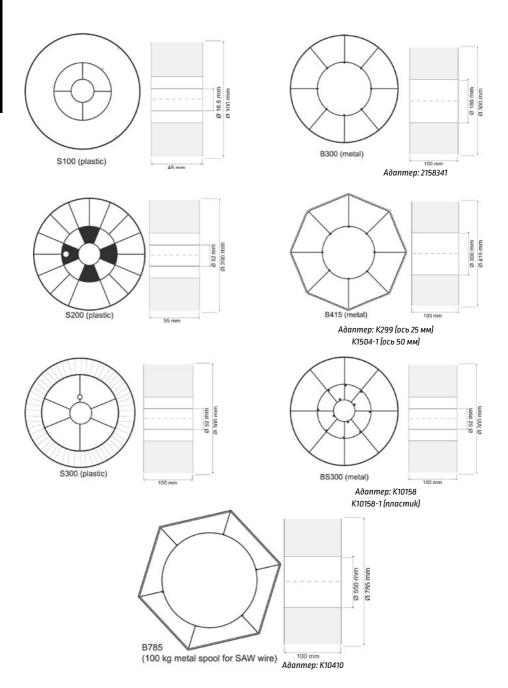
Рис. 4 Соотношение содержания железа и f-фактора

Ферритное число и содержание феррита

Ферритное число не является мерой содержания феррита (%). Хотя абсолютное содержание феррита не поддается точной оценке, его можно оценить, разделив ферритное число на f-фактор (% феррита = FN / f), который зависит от содержания феррита в наплавленном металле согласно Puc. 4.

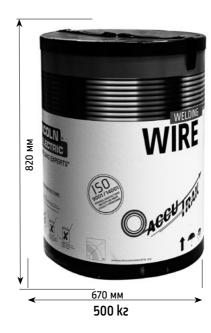
Ограничения

При использовании ферритного числа или содержания феррита обязательно нужно учитывать любые отклонения условий сварки от стандартных. Более того, сравнение результатов испытаний в различных лабораториях показало, что их разброс может достигать +/- 10%.


Лаборатории Lincoln Electric

Начиная с 1966 года Lincoln Electric и Lincoln Smitweld R&D вели международную разработку методов оценки содержания феррита. Наши лаборатории оборудованы анализаторами Magne Gage и другим высокоточным оборудованием. Мы предлагаем своим заказчикам первичные и вторичные стандарты по определению толщины покрытия и услуги по калибровке оборудования.

Использованная литература


- 1) Schaeffler A.E., Metal Progress 56 (1949), cmp. 680
- 2) DeLong W.T., Welding Journal 53 (1974), cmp. 273-286
- 3) Kotecki D.J., Siewert T.A., Welding Journal (1992), cmp. 171-178
- 4) Siewert T.A., McCowan C.N., Olson D.L., Welding Journal (1988), cmp. 289-298
- 5) Espy R.H., Welding Journal 61 (1982), cmp. 149-156

Бочка AccuTrak® Eco

Преимущества

- Отсутствие проблем со спутыванием проволоки при объеме производства в десятки тысяч бочек
- Встроенные в конструкцию петли для подъема краном или вилочным погрузчиком
- Не требует пластиковых колпаков, что избавляет от необходимости в дорогостоящих аксессуарах
- Надежная конструкция из жесткого картона
- Легкая подача проволоки благодаря фиксирующему кольцу
- Бочка не содержит металлических или пластиковых деталей и полностью пригодна для переработки

Gem-Pak™

Преимущества

- Отсутствие проблем со спутыванием проволоки и легкая подача
- Легкая установка— не требует дополнительного оборудования для подачи проволоки
- Паллет с ящиком из гофрокартона для упрощения транспортировки на погрузчике ящик поставляется на минипаллете. На 100% пригоден для переработки.

Вес проволоки (кг): 125/136

Диаметр проволоки (мм): 0,9 - 1,2 - 1,6

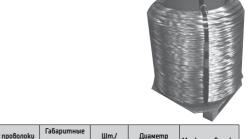
Марки проволоки: 4043 (AISi5), 5356 (AIMg5), 5356TM (AIMg5Cr),

Hackonsko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Бочки AccuTrak° Вместительность 600 и 1000 kг

Название	Габаритные размеры (ВхШхД мм)	Bec проволоки (kz)	Диаметр проволоки (мм)	Tun проволоки	
ACCUTRAK 600 KF	1051 x 720 x 720, включая паллет	600	1,6 - 2,4	Для сварки цглеродистой и	
ACCUTRAK 1000 KΓ	1000 x 1000 x 1000, включая паллет	1000	1,6 - 4,0	низколегированно стали	

Бочки Speed-Feed Вместительность 350, 400 и 600 kг


Название	Bec npoвoлoku (kz)	Габаритные размеры (мм)	Бочек/ паллет	Диаметр проволоки (мм)	Марка проволоки	
	350	Бочка (ø x B) : 546x906 Паллет (В x Ш x Г) : 1140x1140x1070	4		Для сварки углеро- дистой и низколеги- рованной стали	
БОЧКИ SPEED FEED	400	Бочка (ø x B) : 571x906 Паллет (В x Ш x Г) :600x1200x1050	2	1,6 — 4,8		
	600	1051х720х720, включая паллет	1			

Розетта, 1000 kг

Деревянная катушка

Bec npoволоки (kz)	Габаритные размеры ø x B (мм)	Шт./ паллет	Диаметр проволоки (мм)	Марка проволоки
300	750 x 290	3	2,0 - 4,8	Для сварки углеродистой, низколегирован- ной и нержавею- щей стали

Вес проволоки (кг)	Габаритные размеры ø x B (мм)	Шт./ паллет	Диаметр проволоки (мм)	Марка проволоки
1000	900 x 1100	1	2,4 - 4,8	Для сварки углеродистой, низколегирован- ной и нержавею- щей стали

Sahara ReadyPack®: склад и термопенал в карманном формате

Упаковка Sahara ReadyPack^{*} экономит время и деньги. Она позволяет не соблюдать строгие условия хранения электродов или использовать термопеналы и печи для прокаливания электродов. Эта упаковка уже несколько лет успешно применяется в промышленности. В судостроении, химической промышленности и на производстве офшорных сооружений уже были использованы миллионы упаковок Sahara ReadyPack^{*}.

Преимущества концепции EMR-Sahara® во многом связаны с водонепроницаемой вакуумной упаковкой. Электроды в упаковке EMR-Sahara® отличаются низким содержанием влаги и очень низким впитыванием влаги. Международно признанный тест IIW показывает, что эти электроды после хранения при температуре 27°С и отн. влажности 70% в течение 24 часов обеспечивают содержание диффузионного водорода в наплавленном металле не более 5 мл/100 гр. Более того, эти электроды можно использовать без прокаливания в течение 12 часов после вскрытия упаковки, и они обеспечат низкое содержание диффузионного водорода в наплавленном металле (HDM < 5 мл/100 гр.). Для многих электродов, поставляющихся в EMR-Sahara®, это значение составляет даже 3 мл/100 гр.

Sahara ReadyPack[®] по сути заменяет собой склад с регулируемыми условиями хранения и печь для прокаливания электродов. Теперь для хранения электродов вместо склада достаточно небольшой кладовки непосредственно на месте работ. Использование печи для прокаливания электродов не рекомендуется. Электроды EMR-Sahara[®] сохраняют свои свойства до вскрытия Sahara ReadyPack[®] и в течение 12 часов после этого. Электроды в этой упаковке легко переносить. Одной-двух упаковок обычно хватает на полный рабочий день. Во многих случаях эта упаковка позволяет получить реальную выгоду, потому что предприятию больше не приходится обслуживать термопеналы и проводить прокаливание электродов в нужных условиях, не говоря уже о потерях продуктивного времени на переноску электродов из печи на место работ. Надежность Sahara ReadyPack[®] послужила началом новой тенденции в отрасли сварки.

Основные преимущества электродов в упаковке Sahara ReadyPack®:

- · содержание диффузионного водорода в наплавленном металле HDM менее 5 мл/100 гр., для нового поколения это значение составляет 3 мл/100 гр.;
- покрытие электродов EMR-Sahara не склонно к впитыванию влаги, в течение 12 часов после вскрытия Sahara ReadyPack® электроды по-прежнему сохраняют значение HDM 5 и 3 мл/100 гр. соответственно;
- не требуется хранение на складе с контролируемыми условиями;
- не требуется, даже не рекомендуется промежуточное хранение в термопенале или тепловом шкафу;
- отсутствие риска перепутать электроды, как это может произойти при извлечении из упаковки для прокаливания;
- эффективная рабочая процедура с наглядной экономией средств.

Предложение электродов в упаковке Sahara ReadyPack®

На данный момент в упаковке Sahara ReadyPack* поставляются следующие электроды с низким содержанием диффузионного водорода в наплавленном металле (электроды EMR-Sahara*):

Tun	Н _{DM} макс. 5 мл/100 гр.	Н _{DM} макс. 3 мл/100 гр.
Baso G		*
Conarc 49C		*
Conarc 51		*
Conarc L150	*	
Conarc V180		*
Kardo		*
Conarc 55CT		*
Conarc 60G		*
Conarc 70G		*
Conarc 80		*
Conarc 85		*
SL12G	*	
SL19G	*	
SL20G	*	
SL22G	*	
SL502	*	
SL9r(P91)	*	

Tun	Н _{DM} макс. 5 мл/100 гр.	Н _{DM} макс. 3 мл/100 гр.
Kryo1		*
Kryo 1P		*
Kryo 1-180		*
Kryo 2		*
Kryo 3		*
Kryo 4		*
Arosta 304L		
Arosta 316L		
Arosta 4462		
Jungo 4462		
Limarosta 304L		
Limarosta 309S		
Limarosta 312		
Limarosta 316L		
Limarosta 316L-130		
Nyloid 2		

Hackonoko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

1. Затронутые материалы

Электроды для ручной дуговой сварки с покрытием производства Lincoln Electric в оригинальной упаковке. Упаковка может представлять собой:

- А. картонные коробки во внешней картонной упаковке;
- В. картонные коробки со слоем фольги во внешней картонной упаковке;
- С. пластиковые (ПЭ) контейнеры с герметичной закрывающейся крышкой;
- **D.** герметичные металлические тубусы (LINC CAN™) во внешней картонной упаковке;
- E. герметичная вакуумная упаковка из фольги (MINI-PACK) во внешней картонной упаковке; F. герметичная вакуумная упаковка из фольги (Sahara ReadyPack®) во внешней картонной упаковке.

	Tun ynako8ku					
Типы электродов	Α	В	С	D	E	F
Углеродистая сталь	Х	Х	Х	Х		Х
Низколегированная высокопрочная сталь		Х		Х		Х
Низкотемпературная сталь с мелкозернистой структурой		Х		Х	Х	Х
Жаропрочная сталь		Х				Х
Нержавеющая сталь		Х	Х	Х	Х	Х
Дуплексная и супердуплексная нержавеющая сталь		Х				Х
Электроды для сварки никелевых сплавов			Х			Х
Angkmongiang yangakku u koccmayokngyug soomemouu			Y			

2. Хранение

- 2a. Электроды в картонных коробках необходимо хранить в помещениях с контролируемой влажностью и температурой воздуха. Рекомендиемые условия хранения обычно следующие:
- температира 17-27°С при относительной влажности до 60%:
- температура 27-37°C при относительной влажности до 50%;
- коробки с электродами допускается хранить штабелями до 7 уровней.
- 2b. Для электродов в пластиковых контейнерах требуются такие же условия хранения, как и в картонных.
- 2c. На электроды в упаковке Linc-Can, Mini-Pack и Sahara ReadyPack® требования относительно температуры и влажности не распространяются при условии, что упаковка не повреждена и сохраняет вакуум.

Рекомендуемые условия хранения обычно следующие:

- электроды в Sahara ReadyPack® и Mini-Pack в картонной внешней unakoвke могит храниться штабелями до 7 ярисов:
- для Linc Can во внешней упаковке число ярусов не должно превышать 5;
- избегайте повреждения упаковок Linc-Can и Sahara ReadyPack и нагревания выше 60°С;
- избегайте повреждения упаковок Mini-Pack и нагревания выше 40°С.

3. Подготовка

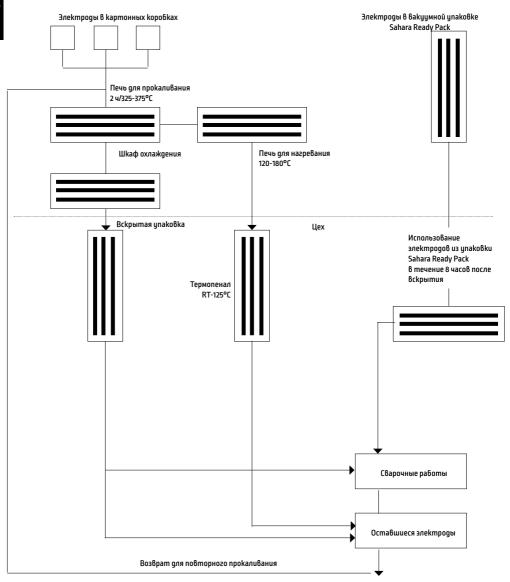
- 3а. В нижеперечисленных случаях электроды нужно подвергнуть прокаливанию и последующему подогреву согласно Таблице 1:
- электроды с покрытием рутилового типа по каким-либо причинам отсырели;
- электроды с покрытием основного типа с низким содержанием диффузионного водорода в наплавленном металле хранились в картонных упаковках;
- электроды с покрытием основного типа с низким содержанием диффузионного водорода в наплавленном металле из вскрытой или поврежденной цпаковки Sahara ReadyPack, Mini-Pack или Linc Can;
- электроды для сварки нержавеющей стали и сплавов на основе никеля хранились в течение долгого срока или в неизвестных условиях (с отклонениями от рекомендованных);
- электроды Wearshield в пластиковых [ПЭ] контейнерах хранились более года в условиях, описанных в пункте 2а, или с отклонениями от рекомендаций.
- 3b. Электродами из упаковки Sahara ReadyPack и Linc-Сап можно пользоваться без прокаливания при условии, что она не повреждена и сохраняет вакуум. Они пригодны к применению в течение в часов после вскрытия упаковки при температуре до 35°С и отн. Влажности до 90%, если электроды оставались в открытой упаковке и были защищены от неблагоприятных условий конденсата, дождя и т. д. При температуре ≤27°С и относительной влажности ≤70% этот период можно увеличить до 12 часов. На время сварки вскрытые тубусы Linc-Сап следует закрывать пластиковой крышкой. Если вакуум не сохранился, необходимо провести прокалку и подогрев электродов в соответствии с Таблицей 1 для линейки EMR-Sahara®.

Электродами из упаковки Mini-Pack можно пользоваться без прокалки при условии, что она не повреждена и сохраняет вакуум. Электроды пригодны к применению в течение 4 часов после вскрытия упаковки при температуре до 35°С и отн. влажности до 90%, если электроды оставались в открытой упаковке и были защищены от неблагоприятных условий — конденсата, дождя и т. д.

Hackonьko нам известно, все сведения в этих таблицах были верны на момент публикации. На caŭme www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

РЕКОМЕНДАЦИИ ПО ПРОКАЛИВАНИЮ И ХРАНЕНИЮ

Если электроды сильно отсырели, оказались намочены или длительное время подвергались атмосферному воздействию, то вернуть в исходное состояние их будет невозможно и их следует утилизировать.


Группа электродов	Длительность прокаливания (ч)*	Темп. (°С)	Хранение
Углеродистая сталь: - с покрытием рутилового типа E6013 - с покрытием рутилового типа E6012, E7024	0,5-1 ч. 1-2 ч.	70-80 100-120	В тепловом шкафу при температуре на 10-20°C выше окружающей
- с низким содержанием диффузионного водорода в наплавленном металле (HDM <8 мл/100 гр.) - с очень низким содержанием диффузионного водорода в наплавленном металле*	2-6 ч. 2-6 ч.	250-375 325-375	а. 8 печи неограниченное время при 120-180°C b. 8 термопенале до 10 ч. при температуре на 125°C – выше окружающей (см. Рисунок 1)
Для сварки низколегированной стали: - с очень низким содержанием диффузионного водорода в наплавленном металле**	2-6 ч.	325-375	с. в пластиковом (ПЭ) контейнере — до 2 недель в цеховых условиях
Электроды для наплавки, обслуживания и ремонта			
Нержавеющая сталь: - электроды не в упаковке EMR-SAHARA - электроды в упаковке EMR-SAHARA	1-6 ч. 1-6 ч.	200-300 125-300	В печи неограниченное время при 75-125°С В термопенале до 10 ч. при температуре на 125°С выше
Для сварки никелевых сплавов	1-6 ч.	200-300	- комнатной.

^{*} За указанный 6-часовой период прокалка может быть проведена дважды. Для этого их нужно извлечь из упаковки и разложить слоями примерно по 3 см в печи для прокалки с возможностью циркуляции воздуха.

^{**} Если эти электроды из упаковки EMR-SAHARA прошли повторную прокалку, макс. значение HDM составляет 5 мл/100 гр.

Pucyнok 1:

Pekomeнgyemaя процедура подготовки электродов EMR-SAHARA® после извлечения из обычной картонной коробки или вакуумной упаковки Sahara ReadyPack®:

ПОРОШКОВАЯ ПРОВОЛОКА

1. Затронутые материалы

Порошковая проволока следующих марок, поставляющаяся на различных кассетах и в видах упаковки:

Название семейства	Упаковка
OUTERSHIELD®	- кассета в пластиковом мешке в картонной упаковке; - кассета в вакуумной упаковке из фольги/ПЭ в картонной коробке; - кассета с пластиковой защитой на паллете. - бочки Accutrack®
INNERSHIELD® /LINCORE®	кассета в картонной коробке, пластиковом ведре или герметичных тубусах
COR-A-ROSTA®	кассета в вакуумной упаковке из фольги/ПЭ в картонной коробке.

2. Хранение

Hegonycmuмо хранение в условиях высокой влажности материалов с относительно тонкой пластиковой пленкой. Порошковая проволока в оригинальной пленке и картонной коробке или бочке требует хранения с определенными условиями:

- температира 17-27°С, относительная влажность: ≤60%;
- температира 27-37°С. относительная влажность: ≤50%.

Проволока INNERSHIELD в пластиковых ведрах или герметичных тубусах, а также OUTERSHIELD и COR-A-ROSTA в вакуимной фольге/ПЭ пленке не требуют особых мер против накапливания влаги. Избегайте повреждения упаковки.

3. Подготовка

3a. Outershield, Innershield cepuu xxx-H u Cor-A-Rosta

Кассеты, извлеченные из защитной упаковки, сохраняют свои свойства в цеховых условиях до 72 часов. Бочки с оригинальным или рекомендованным колпаком позволяют цвеличить этот срок до 2 недель.

3b. Innershield не серии ххх-Н:

Кассеты, извлеченные из защитной упаковки, сохраняют свои свойства в цеховых условиях до 2 недель.

Во всех случаях продукты следует защищать от попадания влаги, грязи и нефтепродуктов. В случае прерывания производственного процесса более, чем на в часов, кассеты с проволокой следует хранить в пластиковом пакете с соблюдением вышецказанных условий.

4. Непригодные продикты

Если порошковая проволока сильно отсырела, оказалась намочена или длительное время подвергалась атмосферному воздействию, то вернуть в исходное состояние ее будет невозможно и ее следует утилизировать.

ПРОВОЛОКА MIG и ПРУТКИ TIG

1. Затронутые материалы

Сварочная проволока и прутки сплошного сечения, поставляемые в различных видах упаковки: тубусах, кассетах и бочках.

2. Хранение

Избегайте высокой влажности.

Рекомендуемые условия хранения для проволоки сплошного сечения в оригинальной упаковке:

- температура 17-27°С, относительная влажность ≤60%;
- температура 27-37°С, относительная влажность ≤50%.

3. Подготовка

Извлеченные из защитной упаковки прутки и проволока сохраняют свои свойства в нормальных цеховых условиях в течение 2 недель.

Во всех случаях продукты следует защищать от попадания влаги, грязи и нефтепродуктов. В случае прерывания производственного процесса более, чем на в часов, кассеты с проволокой следует хранить в пластиковом пакете с соблюдением вышеуказанных условий.

Избегайте повреждения упаковки.

4. Непригодные продукты

Если материалы окислились, сильно отсырели, оказалась намочены или длительное время подвергалась атмосферному воздействию, то вернуть в исходное состояние ее будет невозможно и ее следует утилизировать.

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте достипны спецификации безопасности.

1. Затронутые материалы

Торговые названия: 761, 780, 781, 782, 802, 839, 842-H, 860, 880, 882, 888, 960, 980, 995N, 998N, 8500, P223, P230, P240, P2000, P2007, P2000S, SPX-80X, WTX, 708GB.

Виды цпаковки: пластиковые мешки, мешки Big Bag, герметичные металлические бочки и Sahara ReadyBag™

2. Хранение

Для сварочного флюса в пластиковых мешках требуется хранение на складе со следующими рекомендованными условиями:

- температура 17-27°С, относительная влажность: ≤60%
- температура 27-37°С, относительная влажность: ≤50%

Продукты в металлических бочках не требуют особых условий хранения, однако в их случае следует избегать коррозии и повреждения бочки.

3. Подготовка

Продукты сохраняют свои исходные свойства при соблюдении следующих условий:

	Условия хранения			
Упаковка	0-6 месяцев, температура ≤37°C или отн. влажность <50% >6 месяцев или температ или отн. влажность 50%			
Пластиковые мешки	используйте kak есть**	прокаливание 1-2 ч. / 300-375°С		
Sahara Ready Bag	используйте как есть	используйте kak есть		
Стальные бочки	используйте kak есть	использийте kak есть		

^{*} Если условия хранения включали влажность выше 90%, возможно, флюс отсырел настолько, что его прокаливание окажется безрезультатным.

Прокаливание выполняется после извлечения продукта из оригинальной упаковки и требует равномерной температуры в печи. Рекомендуется использовать печь с циркуляцией воздуха при толщине слоя флюса не более 3 см или обеспечить перемешивание флюса.

Прокаливание можно выполнять до 4 раз.

Флюс, прошедший прокаливание или процесс сварки, следует держать в сухом месте, желательно при температуре на 50-120℃ выше окрижающей. Длительность при этом не ограничена.

4. Непригодные продукты

Если сварочный флюс сильно отсырел, оказался намочен или длительное время подвергался атмосферному воздействию, то вернуть в исходное состояние его будет невозможно и его следует утилизировать.

5. Переработка

Собранный с поверхности соединения неизрасходованный флюс следует очистить от шлака, металла и/или других примесей. Избегайте повреждения флюса в результате сильных ударов в транспортировочной системе. Избегайте разделения различных фракций зерна в циклонных фильтрах или "мертвых зонах". Наполните бункер системы циркуляции новым флюсом до значения 25% от всего объема бункера.

окажется безрезультатным.
** Для сварки ответственного назначения (при твердости наплавленного металла или металла в зоне теплового возов'ю выструкти наплавленного металла в зоне теплового возов'ю выструкти на при зоне теплового возов'ю выструкти на при зоне теплового на при зоне теплового выструкти на при зоне за п

ЭЛЕКТРОДЫ ДЛЯ РУЧНОЙ ДУГОВОЙ СВАРКИ

Углеродистая сталь и сталь с
мелкозернистой структурой
Fleetweld® 5P+64
Supra®66
Omnia®68
Pantafix®70
Omnia® 4672
Numal74
Cumulo®
Universalis®
Rental80
Ferrod® 165A82
Ferrod® 135T84
Ferrod® 160T86
Gonia 18088
Baso® 48SP90
Basic 701892
Baso® 51P94
Lincoln 7016 DR96
Baso® 10098
Baso® 120100
Baso® G102
Baso® 26V104
Vandal106
Conarc® 48108
Conarc® 49110
Conarc® 49C112
Conarc® One114
Conarc® 50116
Conarc® 51118
Conarc® 52120
Lincoln 7018-1122
Conarc® L150124
Conarc® V180126
Kardo128
Низколегированная сталь
Shield Arc® HYP+130
Shield Arc® 70+132
Conarc® 55CT134
Conarc® 60G136
Conarc® 70G138
Conarc® 74140
Conarc® 80142
Conarc® 85144
Kryo® 1146
Kryo® 1N148
Kryo® 1P150
Kryo® 1-145152
Kryo® 1-180154
Kryo® 2156

SL®12G	
SL®19G	
SL®20G	166
SL®22G	
SL®502	
SL®9Cr(P91)	172
Нержавеющая и жаростойкая	стал
Arosta® 304L	174
Limarosta® 304L	176
Vertarosta® 304L	
Jungo® 304L	
Arosta® 347	
Jungo® 347	
Arosta® 316L	186
Limarosta® 316L	188
Vertarosta® 316L	190
Jungo® 316L Limarosta® 316L-130	192
Limarosta® 316L-130	194
Arosta® 318	
Jungo® 4465	198
Jungo® 4500	
Arosta® 4462	20
Jungo® 4462	
Jungo® 309L	
Arosta® 309S	20
Limarosta® 309S	210
Arosta® 309Mo	
Nichroma	
Nichroma 160	
Limarosta® 312	
Arosta® 307	220
Arosta® 307-160	222
Jungo® 307	
Arosta® 304H	
Arosta® 309H	228
Intherma® 310	230
Intherma® 310B	
Linox P 308L	
Linox 308L	
Linox P 316L	
Linox 316L	
Linox P 309L	
Linox 309L	24
Никелевые сплавы	
NiCro 31/27	24
NiCro 60/20	240
NiCro 60/20 NiCro 70/15	24i
NiCro 70/15	
NiCro 70/19	
NYLOID 2	
NYLOID 4	25

Алюминиевые сплавы	
AlMn	26
AISi5	26
AlSi12	26
Наплавка	
Wearshield® BU-30	266
Wearshield® Mangjet (e)	268
Wearshield® 15CrMn	270
Wearshield® MM 40	272
Wearshield® MM	274
Wearshield® T&D	276
Wearshield® MI (e)	278
Wearshield® ABR	280
Wearshield® ME (e)	282
Wearshield® 60 (e)	
Wearshield® 70	280
Wearshield® 420	28
Чигин	
RepTec Cast 1	29
RepTec Cast 3	
RenTer Cast 31	

Kryo[®] 1-145

Up to 145% recovery

stick electrode for offshore platforms

Fleetweld® 5P+

КЛАССИФИКАЦИЯ

 AWS A5.1
 E6010
 A-Nr
 1

 ISO 2560-A
 E 42 3 C 2 5
 F-Nr
 3

 9606 FM
 1

БШЕЕ ОПИСАНИЕ

Электроды с покрытием целлюлозного типа для сварки трубопроводов и других сварочных работ общего назначения

Обеспечивает высокую вязкость корневого шва

Большая глубина проплавления гарантирует качественную сварку корня шва

Легкое зажигание, повторный поджиг дуги и отделение шлака

Большой объем выделяемого газа гарантирует отсутствие пор

Позволяет работать с загрязненными поверхностями

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS

.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si
0,20	0,56	0,17

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -29°C/-30°C
Требования: AWS A5.1 ISO 2560-A Средние значения		мин. 330 мин. 420 471	мин. 430 500-640 586	мин. 22 мин. 20 24	мин. 27 мин. 47 56

ВИДЫ УПАКОВКИ

	Диаметр (мм)	2,5	3,2	4,0	5,0
	Длина (мм)	350	350	350	350
Linc Can™	Штук в единице	304	180	130	83
	Вес нетто/ед. (kz)	5,1	4,7	5,1	5,1

Идентификационное обозначение: 6010/FW5P+

Цвет торца электрода: нет

Fleetweld' 5P+: Bep. C-RU29-01/02/16

Fleetweld® 5P+

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код	Tun
-----------------------------	-----

Трубная сталь

EN 10208-1 L 210, L 240 EN 10208-2 L 240, L 290, L 360 EN 10216-1 / 10217-1 P 235, P 275, P 355 API 5LX X42, X46, X52 Gaz de France X42, X46, X52

ДАННЫЕ ПО РАСХОДУ

Размеры guaм. х длина (мм)	Tok (A)	Pog moka	Bec / 1000 wm. (kz)
2,5x350	40-70	DC+	15,8
3,2x350	65-130	DC+	26,2
4,0x350	90-175	DC+	40,0
5,0x350	140-225	DC+	62,5

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диамеп	np	Пространственные положения сварки				
(мм)		PH/5G на подъем	PJ/5G на cnyck			
2,5 3,2 4,0 5,0		55A 90A 130A 150A	65A 110A 150A 165A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-1 перед сваркой требуется предварительный подогрев трубной стали L360 (X52) После завершения сварки корневого шва нужно снять центратор и в течение 5 минут начать горячий проход

Электроды готовы к применению сразу после извлечения из металлических тубусов

Supra®

КЛАССИФИКАЦИЯ

 AWS A5.1
 E 6012
 A-Nr
 1

 ISO 2560-A
 E 38 0 RC 11
 F-Nr
 2

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Электрод с рутиловым покрытием для сварочных работ в любом пространственном положении с высокими характеристиками сварки в направлении «сверху вниз»

Судоремонтные работы

Хорошо подходят для сварки покрашенной или ржавой стали

Рекомендиются для заполнения широких зазоров

Сварка во всех пространственных положениях может осуществляться с одними и теми же сварочными токами

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC -

Ударная вязкость

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	RMRS	TÜV
2	2	2	2	2	2	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C Mn Si
0,12 0,5 0,6

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Предел Предел Отн.

Состояние	mekyчести (MΠa)	прочности (МПа)	удлинение (%)	no Шарпи (Дж) O°C
	мин. 330	мин. 430	мин. 17	не требуется
	мин. 380	470-600	мин. 20	мин. 47
ПС	470	550	23	56
		(МПа) мин. 330 мин. 380	[МПа] (МПа) мин. 330 мин. 430 мин. 380 470-600	Состояние (МПа) текучести (МПа) прочности (МПа) удлинение (%) мин. 330 мин. 430 мин. 17 мин. 380 470-600 мин. 20

ВИЛЫ УПДКОВКИ

	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	5,0 350	
Карт. коробка +	Штук в единице	145	180	120	80	
ПЭ пленка	Вес нетто/еа. (k2)	2.8	5.0	5.0	5.2	

Идентификационное обозначение: 6012 / SUPRA

Цвет торца электрода: нет

Supra*: Bep. C-RU24-01/02/16

Supra®

un
185, S235, S275
1apku A, B, D
275
275
1

ДАННЫЕ ПО	РАСХОДУ							
Размеры quaм. х длина Ток (A)		Pog	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		moka	- на эл	- на электрод при максимальном moke -		wm. (kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/u)		менталла	Memanna i/N
2,5x350	70-90	AC	47	109	0,8	17,5	90	1,58
3,2x350	95-130	AC	64	175	1,1	27,6	53	1,45
4,0x350	130-170	AC	66	330	1,4	41,1	39	1,61
5,0x350	170- 250	AC	77	534	1,8	63,6	26	1,63

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ						
Диаметр	Диаметр Пространственные положения сварки						
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PG/3G на cnyck	PE/4G	
2,5 3,2 4,0 5,0	85A 115A 155A 190A	115A 115A 170A 220A	80A 120A 155A	80A 120A 160A	80A 120A 180A 240A	80A 120A 155A 190A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Сварка во всех пространственных положениях может осуществляться с одними и теми же сварочными токами

Omnia®

КЛАССИФИКАЦИЯ

 AWS A5.1
 E6013
 A-Nr
 1

 ISO 2560-A
 E 42 0 RC 11
 F-Nr
 2

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием рутилового типа для работ общего назначения в любых пространственных положениях, в том числе в направлении на подъем

Предназначаются для сварки конструкционной стали

Электроды небольшого диаметра идеально подходят для непрофессиональной сварки

Хорошо подходят для трансформаторов с низким напряжением холостого хода

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	GL	LR	RMRS	DNV	
2	2	2	2	2	2	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

L	MN	51
0,07	0,5	0,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) 0°С	
Требования: AWS A5.1 ISO 2560-A		мин. 330 мин. 420	мин. 430 500-640	мин. 17 мин. 20	не требуется мин. 47	
Средние значения		520	550	26	60	

ВИЛЫ УПДКОВКІ

	Диаметр (мм)	2,5	3,2	4,0
	Длина (мм)	350	350	350
Карт. коробка +	Штук в единице	155	155	120
ПЭ пленка	Вес нетто/ед. (kг)	2,8	4,8	5,4

Идентификационное обозначение: 6013/OMNIA

Цвет торца электрода: нет

Omnia*: Bep. C-RU24-01/02/16

Omnia[®]

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290
EN 10208-2	L240, L290
API 5LX	X42, X46
EN 10216-1/EN10217-1	P235, P275
Сталь для бойлеров и камер высокого давления	1
EN 10028-2	P235, P265, P295
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275
EN 10025 часть 4	S275

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Время Тепловложе Род moka		Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	
(мм)			- на элеkm	род при максималь	шт. (kг)	на кг напл. металла		
			(c)*	E (кДж)	H (kz/4)		Mellianna	Melilabbia biv
2,5x350	65-90	AC	52	108	0,8	18,5	85	1,59
3,2x350	95-130	AC	65	229	1,0	31,1	53	1,67
4,0x350	130-160	AC	72	333	1,3	43,6	37	1,61

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ								
Диаметр		П	ространств	венные положения с	:Bapku			
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PG/3G на cnyck	PE/4G		
2,5 3,2 4,0	80A 120A 175A	75A 115A 165A	75A 125A 160A	75A 115A 160A	75A 125A 170A	75A 115A 160A		

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Сварка в направлении на спуск возможна только для конструкционной стали

Pantafix[®]

AWS A5.1 F6013 A-Nr ISO 2560-A E 38 0 RC 11 F-Nr 2 9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием рутилового типа для работ общего назначения в любых пространственных положениях, в том числе в направлении на подъем

Образуют мягкую дугу, подходящую для сварки относительно тонких пластин и заполнения широких зазоров Хорошо подходят для сварки трубопроводов и строительных работ

Легкое зажигание и повторное зажигание дуги

Takже пригодны для сварки с применением трансформаторов низкого напряжения холостого хода (мин. напряжение холостого хода 42 B)

Отситствие дефектов при контроле рентгеновским изличением

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	
0,09	0,5	0,4	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязко``сть no Шарпи (Дж) o°C	
Требования: AWS A5.1 ISO 2560-A Средние значения		мин. 330 мин. 380 500	мин. 430 470-600 540	мин. 17 мин. 20 24	не требуется мин. 47 60	

	Диаметр (мм)	2,0	2,5	3,2	4,0
	Длина (мм)	300	350	350	350
Карт. коробка +	Штук в единице	235	145	155	120
ПЭ пленка	Вес нетто/ед. (кг)	2,4	2,8	4,8	5,4

Идентификационное обозначение: 6013 / PANTAFIX

Цвет торца электрода: нет

Pantafix": Bep. C-RU25-01/02/16

Pantafix®

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290
EN 10208-2	L240, L290
API 5LX	X42, X46
EN 10216-1/EN10217-1	P235, P275
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235, P265, P295
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275
EN 10025 часть 4	S275

ДАННЫЕ ПО РАСХОДУ										
Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг наплавленного			
		- на элеkm	pog npu максималь	ном moke -	wiii. (K2)		металла 1/N			
		(c)*	Е (кДж)	H (kz/4)						
40-75	AC	41	58	0,5	10,4	178	1,98			
50-90	AC	60	130	0,7	17,8	88	1,57			
70-130	AC	66	206	1,0	29,5	53	1,58			
130-175	AC	72	333	1,3	43,6	37	1,61			
	Tok (A) 40-75 50-90 70-130	Tok (A) Pog moka 40-75 AC 50-90 AC 70-130 AC	Ток (A) Род moka горения дуги - на элект (c)* 40-75 АС 41 50-90 АС 60 70-130 АС 66	Ток (A) Род тока горения дуги Тепловложение - на электрод при максималь (c)* E (кДж) 40-75 AC 41 58 50-90 AC 60 130 70-130 AC 66 206	Ток (A) Род ток (c)* Время горения дуги орения дуги орения дуги на электов при максимальном токе - (с)* Е (кДж) Н (кг/ч) 40-75 AC 41 58 0,5 50-90 AC 60 130 0,7 70-130 AC 66 206 1,0	Ток (A) Род ток Время сорения дуги Тепловложение тепловложение Производительность на лавкить тепловложение Вес / 1000 шт. (kг) 40-75 AC 41 58 0,5 10,4 50-90 AC 60 130 0,7 17,8 70-130 AC 66 206 1,0 29,5	Ток (A) Род ток (C)*			

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ								
Диаметр		ļ	Пространст	венные положения с	варки			
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PG/3G на cnyck	PE/4G		
2,5	80A	75A	75A	75A	75A	75A		
3,2	120A	115A	125A	115A	125A	115A		
4,0	175A	165A	160A	160A	170A	160A		

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Сварка в направлении на спуск возможна только для конструкционной стали

Omnia[®] 46

КЛАССИФИКАЦИЯ

 AWS A5.1
 E 6013
 A-Nr
 1

 ISO 2560-A
 E 38 0 R 11
 F-Nr
 2

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием рутилового типа для сварки общего назначения в любых пространственных положениях Пригодны для сварки конструкционной стали (2.5, 3.2, 4.0 мм)

Электроды небольшого диаметра идеально подходят для непрофессиональной сварки

Хорошо подходят для трансформаторов с низким напряжением холостого хода (мин. напряжение холостого хода 42 B)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОН	HHIX AFFHTCTR

ABS	BV	DNV	GL	LR	ΤÜV
7	7	7	2	7	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si
0,06	0,5	0,45

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) 0°С
Требования: AWS A5.1		мин. 330	мин. 430	мин. 17	не требуется
ISO 2560-A		мин. 380	470-600	мин. 20	мин. 47
Средние значения	ПС	460	540	27	65

ВИЛЫ УПДКОВКИ

	Диаметр (мм) Длина (мм)	1,6 250	2,0 300	2,5 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450	
Kapm. kopoбka + ПЭ пленка Тубус Linc	Штук в единице Вес нетто/ед. (kг) Штук в единице Вес нетто/ед. (kг)	130 0,8 - -	370 4,2 89 1,0	250 4,8 54 1,0	175 5,3 33 1,0	150 6,2 - -	110 5,0 22 1,0	95 5,9 - -	55 5,8 - -	

Идентификационное обозначение: 6013-0MNIA 46

Цвет торца электрода: желтый

Omnia® 46: Bep. C-RU27-01/02/16

Omnia[®] 46

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290
EN 10208-2	L240, L290
API 5LX	X42, X46
EN 10216-1/EN10217-1	P235, P275
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235, P265, P295
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275
EN 10025 yacmb 4	S275

ДАННЫЕ ПО І	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		-	- на элеkm	pog npu максималь	ном moke -	wm. (kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	E (kДж)	H (kz/4)		металла	
2,0x300	50-60	AC	43	57	0,5	11,4	154	1,68
2,5x350	70-90	AC	68	134	0,6	19,2	84	1,60
3,2x350	90-125	AC	80	220	0,9	30,3	50	1,51
3,2x450	100-135	AC	102	303	0,9	41,3	38	1,56
4,0x350	140-190	AC	74	323	1,5	45,5	33	1,49
4,0x450	150-200	AC	95	456	1,5	62,1	26	1,58
5,0x450	180-240	AC	115	662	1,8	105,5	17	1,75

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ										
Диаметр		Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на nogъем	PG/3G на cnyck	PE/4G	РН/5G на подъем	PJ/5G на cnyck			
2,0 2,5 3,2 4,0	55A 80A 110A 170A	55A 85A 115A 175A	55A 85A 115A 175A	50A 80A 110A 175A	55A 85A 115A 180A	85A 110A 175A	50A 80A 110A 175A	55A 85A 115A 180A			
5,0	220A	230A		230A							

Numal

КЛАССИФИКАЦИЯ

 AWS A5.1
 E 6013
 A-Nr
 1

 ISO 2560-A
 E 38 0 R 11
 F-Nr
 2

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

- Электрод с покрытием рутилового типа для сварки общего назначения в любых пространственных положениях Пригоден для сварки конструкционной стали
- Электроды небольшого диаметра идеально подходят для непрофессиональной сварки

Хорошо подходят для трансформаторов с низким напряжением холостого хода (мин. напряжение холостого хода 42 B)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	ΤÜV
2	2	2	2	2	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

L	Mn	Si
0,06	0,5	0,45

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) 0°С	
Требования: AWS A5.1 ISO 2560-A Средние значения		мин. 331 мин. 420 430	мин. 414 500-640 480	мин. 17 мин. 20 26	не требуется мин. 47 60	

ВИЛЫ УПАКОВКИ

	Диаметр (мм)	2,0	2,5	3,2	3,2	4,0	5,0
	Длина (мм)	300	350	350	450	350	450
Карт. коробка +	Штук в единице	180	275	195	150	110	55
ПЭ пленка	Вес нетто/ед. (kг)	2,0	5,2	5,67	6,2	5,0	5,8

Идентификационное обозначение: 6013-NUMAL

Цвет торца электрода: желтый

Numal: Bep. C-RU04-01/02/16

Numal

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D
Литая сталь	
EN 10213-2	G P 240R
Трубная сталь	
EN 10208-1	L210, L240, L290
EN 10208-2	L240, L290
API 5LX	X42, X46
EN 10216-1/EN10217-1	P235, P275
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235, P265, P295
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275
EN 10025 часть 4	S275

ДАННЫЕ ПО Р	РАСХОДУ									
Размеры диам. х длина	Tok (A)	Pog	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг наплавленного		
(мм)		moka	- на элект	pog npu максималь	ном moke -	шт. (kz) на kz напл. ке папласоленно металла 1/N				
			(c)*	Е (kДж)	Н (кг/ч)					
2,5x350	70-90	AC	68	134	0,6	19,2	84	1,60		
3,2x350	90-125	AC	80	220	0,9	30,3	50	1,51		
4,0x350	140-190	AC	74	323	1,5	45,5	33	1,49		

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ								
			Прост	ранственны	е положения	сварки		
Диаметр (мм)	PA/1G	PB/2F	PC/2G	PF/3G на nogъем	PG/3G на cnyck	PE/4G	PH/5G на nogъем	PJ/5G на cnyck
2,5 3,2 4,0	80A 110A 170A	85A 115A 175A	85A 115A 175A	80A 110A 175A	85A 115A 180A	85A 110A 175A	80A 110A 175A	85A 115A 180A

Cumulo®

AWS A5.1 E6013 A-Nr ISO 2560-A E 38 0 R 12 F-Nr 2 9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием рутилового типа для сварки в любых пространственных положениях, кроме вертикального направления сверху вниз

Подходит для сварки трубопроводов и строительных работ

Высокая смачиваемость

Отсутствие дефектов при контроле рентгеновским излучением

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	ΤÜV
2	2	2	2	2 2Y	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

С	Mn	Si
0,1	0,5	0,4

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) o°C	
Требования: AWS A5.1		мин. 330	мин. 430	мин. 17	не требуется	
ISO 2560-A		мин. 380	470-600	мин. 20	мин. 47	
Средние значения	ПС	500	540	25	55	

ВИДЫ УПАКОВКИ					
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	150 2,9	175 5,2	115 5,3	

Идентификационное обозначение: 6013 / CUMULO

Цвет торца электрода: нет

Cumulo: Bep. C-RU25-01/02/16

Cumulo®

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290
EN 10208-2	L240, L290
API 5LX	X42, X46
EN 10216-1/EN10217-1	P235, P275
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235, P265, P295
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275
EN 10025 часть 4	S275

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000 wm.	Шт. электродов	Кг электродов на кг
(мм)			- на элект	pog npu максималь	ном moke -	(kz)	на kг напл. металла	наплавленного металла 1/N
-			(c)*	Е (кДж)	H (kz/4)			
2,5x350	65-90	AC	52	120	0,8	18,7	86	1,61
3,2x350	85-130	AC	66	181	1,1	29,7	51	1,53
4,0x350	130-180	AC	62	345	1,6	46,5	36	1,69

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ЫЕ РЕЖИМ	ІЫ СВАРКИ З	ОВНПОПА	щих проход	ļОВ		
		Простр	анственнь	іе положения	сварки		
Диаметр (мм)	PA/1G	PB/2F	PC/2G	PF/3G на nogъем	PE/4G	PH/5G на nogъем	
2,5 3,2 4,0	95A 135A 160A	85A 135A 160A	85A 120A 155A	75A 120A 140A	75A 120A 140A	75A 120A	

Universalis[®]

AWS A5.1 E6013 A-Nr ISO 2560-A E 42 0 RR 12 F-Nr 2 9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием рутилового типа для ручной сварки конструкционной стали на спуск Электроды небольшого quaметра (2,0 и 2,5 мм) идеально подходят для сварки тонких пластин Хороший внешний вид шва

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC -

Самоотделяющийся шлак

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	ΤÜV		
2Y	2Y	2Y	2Y	2Y	+		

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si
0,1	0,6	0,4

Идентификационное обозначение: 6013 / UNIVERSALIS

МЕХАНИЧ	НЕСКИЕ ХАРАКТЕРИСТИ	KN HAIIJIABJIEI	HHUI U ME IAJIJI.	A (%)	
	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) 0°С

Требования: AWS A5.1		мин. 330	мин. 430	мин. 17	не требуется
ISO 2560-A		мин. 420	500-640	мин. 20	мин. 47
Средние значения	ПС	480	560	26	50

виды упаковки							
	Диаметр (мм) Длина (мм)	2,0 300	2,5 350	3,2 350	3,2 450	4,0 450	
Карт. коробка +	Штук в единице	200	130	140	125	80	

5,9

ПЭ пленка Bec нетто/eg. (kz) 2,4 4,8 5,8 2,8

Universalis*: Bep. C-RU25-01/02/16

Цвет торца электрода: нет

Universalis®

СВАРИВАЕМЫЕ МАТЕРИАЛЫ					
Класс прочности стали / Код	Tun				
Конструкционная сталь общего назначения					
EN 10025	S185, S235, S275, S355				
Листы судостроительной стали					
ASTM A 131	Mapku A, B, D, om AH32 go DH36				
Литая сталь					
EN 10213-2	GP240R				
Трубная сталь					
EN 10208-1	L210, L240, L290, L360				
EN 10208-2	L240, L290, L360				
API 5LX	X42, X46, X52, X60				
EN 10216-1/EN10217-1	P235, P275, P355				
Сталь для бойлеров и камер высокого давления					
EN 10028-2	P235, P265, P295, P355				
Сталь с мелкозернистой структурой					
EN 10025 часть 3	S275, S355				
EN 10025 часть 4	S275, S355				

ДАННЫЕ ПО І	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		•	- на электрод при максимальном токе - шт. [кг] на кг напл. наплав.					
			(c)*	Е (kДж)	H (kz/4)		металла	металла 1/N
2,0x300	40-65	AC	41	58	0,5	11,4	178	2,0
2,5x350	70-100	AC	51	134	0,8	21,1	93	1,96
3,2x350	100-140	AC	57	281	1,3	39,3	47	1,85
3,2x450	100-140	AC	69	341	1,5	49,6	36	1,79
4,0x450	150-200	AC	69	483	2,1	66,9	25	1,67

^{*}Остаток электрода 35 мм

ΟΠΤΝΜΑ ΠΡΗΡΙΕ ΒΕЖΝΜΡΙ (ΒΑΒΚΝ 3ΥΙΟΟΗ ΑΙΘΙΠΝΧ ΠΕΟΧΟΟΟΒ ΕΕΝΤΙΜΑ ΕΕΝΤΙΚΑ ΕΕΝΤΙ

Диаметр	Прос	транственнь	не положения (сварки
(мм)	PA/1G	PB/2F	PC/2G	PE/4G
2,0	50A			
2,5	100A	95A	85A	85A
3,2	130A	120A	115A	105A
4,0	185A	185A	160A	130A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Оптимальный выбор для сварки тонких пластин

Высокопрочные стали, например, S355, L360, P355 и X60, согласно EN 1011-1 требуют предварительного подогрева

Rental

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7024
 A-Nr
 1

 ISO 2560-A
 E 38 0 RR 7 3
 F-Nr
 1

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием рутилового типа для сварки угловых и горизонтальных соединений с V- и X-образной разделкой кромок

Эффективность 190%

Высокая скорость сварки

Хороший внешний вид шва с небольшими валиками

Самоотделяющийся шлак

Стабильная и мягкая дуга с низким уровнем разбрызгивания

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si
0,07	0,8	0,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) 0°С
Требования: AWS A5.1		мин. 399	мин. 490	мин. 17	не требуется
ISO 2560-A		мин. 380	470-600	мин. 20	мин. 47
Средние значения	ПС	440	510-560	24	70

ВИДЫ УПАКОВКІ					
	Диаметр (мм) Длина (мм)	3,2 350	4,0 350	5,0 350	
Карт. коробка	Штук в единице Вес нетто/ед. (kг)	40 2,7	24 2,4	16 2,6	

Идентификационное обозначение: 7024 RENTAL

Цвет торца электрода: rental

Rental: Bep. C-RU01-01/02/16

Rental

Класс прочности стали / Код	Tun	
Конструкционная сталь общего назн	ачения	
EN 10025	S185, S235, S275, S355	
Листы судостроительной стали		
ASTM A 131	Mapku A, B, D, om AH32 go DH36	
Сталь для бойлеров и камер высокого дав	пения	
EN 10028-2	P235, P265, P295, P355	
Сталь с мелкозернистой структурой	ĭ	
EN 10025 часть 3	S275, S355	
EN 10025 часть 4	S275, S355	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Высокопрочные стали, например, S355, P355 и DH36, согласно EN 1011-1 требуют предварительного подогрева

Ferrod® 165A

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7024-1
 A-Nr
 1

 ISO 2560-A
 E 42 2 RA 7 3
 F-Nr
 1

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием рутилового типа, отличающийся хрупким шлаком. Хорошо подходит для угловых и горизонтальных V- и X-образных разделок

Эффективность 160%, высокая скорость сварки

Отситствие дефектов при контроле рентгеновским изличением

Легкое отделение шлака даже в узкощелевой разделке и при наличии ржавчины

Одобрение класса 3

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	DNV	GL	LR	ΤÜV
3, 3Y	3	3	3, 3Y	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si
0,07	0,95	0,3

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести	Предел прочности	Отн. цалинение		я вязкость apnu (Дж)	
		(M∏a)	(МПа)	[%]	-10°C	-18°C/-20°C	
Требования: AWS A5.1		мин. 400	мин. 490	мин. 22		мин. 27	
ISO 2560-А Средние значения		мин. 420 475	500-640 520	мин. 20 26	70	мин. 47 67	

ВИДЫ УПАКОВКИ

	Диаметр (мм)	3,2	4,0	5,0
	Длина (мм)	450	450	450
Карт. коробка +	Штук в единице	99	60	41
ПЭ пленка	Вес нетто/ед. (кг)	6,1	5,6	6,0

Идентификационное обозначение: 7024-1 / FERROD 165A Цвет торца электрода: нет

Ferrod 165A*: Bep. C-RU24-01/02/16

Ferrod® 165A

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go DH36
Литая сталь	
EN 10213-2	GP240R
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235, P265, P295, P355
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355
EN 10025 часть 4	S275, S355

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		. 09	- на элеkm	pog npu максималь	ном moke -	шт. (kг)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/u)		метилли	
3,2x450	125-155	AC	75	326	1,9	62,9	25	1,39
4,0x450	140-235	AC	65	527	3,6	96,5	15	1,39
5,0x450	210-330	AC	68	853	5,3	144,9	10	1,39

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространст	пвенные поло	жения сварки
(мм)	PA/1G	PB/2F	PC/2G
3,2 4,0	160A 220A	150A 200A	150A 195A
5,0	310A	290A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Высокопрочные стали, например, S355, L360, P355 и DH36, согласно EN 1011-1 требуют предварительного подогрева

Ferrod[®] 135T

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7024
 A-Nr
 1

 ISO 2560-A
 E 38 0 RR 5 3
 F-Nr
 1

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Электроды с покрытием рутилового типа. Хорошо подходит для угловых и горизонтальных V- и X-образных разделок

Высокая скорость сварки

Хороший внешний вид шва

Самоотделяющийся шлак

Высокая эффективность (140%)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА АС / DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	RMRS	ΤÜV
2Y	2Y	2Y	2Y	2Y	2Y	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

L	Mn	51
0,08	0,5	0,35

МЕХАНИЧЕСКИЕ ХАРАН	КТЕРИСТИКИ	НАПЛАВЛЕНН	ОГО МЕТАЛЛА	[%]	
	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) o°C
Требования: AWS A5.1 ISO 2560-A		мин. 400 мин. 380	мин. 490 470-600	мин. 17 мин. 20	не требуется 47
Средние значения	ПС	460	530	25	54

ВИДЫ УПАКОВКИ				
	Диаметр (мм)	3,2	4,0	5,0
	Длина (мм)	450	450	450
Карт. коробка +	Штук в единице	90	65	45
ПЗ пленка	Вес нетто/ед. (кг)	5,5	5,7	5,9

Идентификационное обозначение: 7024-FERROD 135T

Цвет торца электрода: нет

Ferrod* 135T: Bep. C-RU26-01/02/16

Ferrod[®] 135T

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275,S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go DH36
Литая сталь	
EN 10013-2	GP240R
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235, P265, P295, P355
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355
EN 10025 часть 4	S275, S355

ДАННЫЕ ПО І	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на kг
(мм)	TORIFY	r og moku		род при максималь		wm. (kz)	на kг напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/u)			
3,2x450	130-150	AC	85	344	1,6	61,3	27	1,67
4,0x450 5,0x450	180-200 275-300	AC AC	92 86	515 735	2,2 3,7	87,7 129,9	18 11	1,67 1,43

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространст	пвенные поло	жения сварки
(мм)	PA/1G	PB/2F	PC/2G
3,2	150A	140A	140A
4,0	200A	190A	190A
5,0	290A	280A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Высокопрочные стали, например, S355, L360, P355 и DH36, согласно EN 1011-1 требуют предварительного подогрева

Ferrod® 160T

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7024
 A-Nr
 1

 ISO 2560-A
 E 42 0 RR 7 3
 F-Nr
 1

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием рутилового типа. Подходит для угловых и горизонтальных V- и X-образных разделок Очень высокая скорость сварки

Хороший внешний вид шва, легкое отделение шлака

Высокая эффективность (160% для электродов диаметром 3,2 и 4,0 мм и 180% для электродов диаметром 5,0 мм)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	RMRS	ΤÜV
2Y	2Y	2Y	2Y	2Y	2Y	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si
0,07	0,9	0,6

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) o°C
Требования: AWS A5.1		мин. 400	мин. 490	мин. 17	не требуется
ISO 2560-A		мин. 420	500-640	мин. 20	мин. 47
Средние значения	ПС	450	570	26	70

ВИЛЫ УПАКОВКИ

	Диаметр (мм) Длина (мм)	3,2 450	4,0 450	5,0 450	
Карт. коробка +	Штук в единице	85	60	40	
ПЭ пленка	Вес нетто/ед. (kz)	5,6	6,3	6,1	

Идентификационное обозначение: 7024/FERROD 160T

Цвет торца электрода: нет

Ferrod*160T: 8ep. C-RU27-01/02/16

Ferrod® 160T

СВАРИВАЕМЫЕ МАТЕРИАЛЫ					
Класс прочности стали / Код	Tun				
Конструкционная сталь общего назначения					
EN 10025	S185, S235, S275,S355				
Листы судостроительной стали					
ASTM A 131	Mapku A, B, D, om AH32 go DH36				
Литая сталь					
EN 10013-2	GP240R				
Сталь для бойлеров и камер высокого давления					
EN 10028-2	P235, P265, P295, P355				
Сталь с мелкозернистой структурой					
EN 10025 часть 3	S275, S355				
EN 10025 часть 4	S275, S355				

ДАННЫЕ ПО І	РАСХОДУ							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	Кг электродов на kг
(мм)			- на электрод при максимальном moke -			wm. (kz)	на kг напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/4)		метнали	Memanna ni
3,2x450	130-160	AC AC	0.0	FF 4	2.6	02.7	15	1.42
4,0x350 5,0x450	180-220 280-300	AC	90 78	554 897	2,6 5,4	92,7 166,7	15 9	1,43 1,43

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ						
Прост	ранственные п	оложения сварки				
PA/1G	PB/2F					
150A	140A					
	Прост A/1G	Пространственные п A/1G PB/2F 50A 140A 210A 200A				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Высокопрочные стали, например, S355, L360, P355 и DH36, согласно EN 1011-1 требуют предварительного подогрева

Gonia 180

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7024
 A-Nr
 1

 ISO 2560-A
 E 42 0 RR 7 3
 F-Nr
 1

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием рутилового типа. Подходят для угловых и горизонтальных V- и X-образных разделок Эффективность 190%

Очень высокая скорость сварки

Хороший внешний вид шва

Самоотделяющийся шлак

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	CRS	DNV	GL	LR	RINA	RMRS
2	2Y	2Y	2	2Y	2	2	2

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si
0,07	1,0	0,35

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) 0°С
Требования: AWS A5.1		мин. 399	мин. 490	мин. 17	не требуется
ISO 2560-A		мин. 420	500-640	мин. 20	мин. 47
Средние значения	ПС	450	525	27	75

ВИДЫ УПАКОВКИ

	Диаметр (мм)	4,0	5,0	6,3
	Длина (мм)	450	450	450
Карт. коробка +	Штук в единице	55	35	23
ПЭ пленка	Вес нетто/ед. (kz)	5,8	5,8	5,7

Идентификационное обозначение: 7024/ GONIA 180

Цвет торца электрода: синий

Gonia 180: Bep. C-RU24-01/02/16

Gonia 180

СВАРИВАЕМЫЕ МАТЕРИАЛЫ				
Класс прочности стали / Код	Tun			
Конструкционная сталь общего назначения				
EN 10025	S185, S235, S275, S355			
Листы судостроительной стали				
ASTM A 131	Mapku A, B, D, om AH32 go DH36			
Сталь для бойлеров и камер высокого давления				
EN 10028-2	P235, P265, P295, P355			
Сталь с мелкозернистой структурой				
EN 10025 часть 3	S275, S355			
EN 10025 часть 4	S275, S355			

ДАННЫЕ ПО Г	РАСХОДУ								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	' lennoknowehue		Bec/1000	Шт. электродов	Кг электродов на кг	
(мм)		•	- на элект	pog npu максималь	wm. (kz)	на kz напл. металла	наплавленного металла 1/N		
			(c)*	Е (kДж)	H (kz/4)		менталла	Memajijia i/N	
4,0x450	200-240	AC	78	515	3,4	100,0	14	1,35	
5,0x450	280-300	AC	85	816	4,9	157,7	9	1,35	
6,3x450	350-375	AC	102	1320	6,5	248,0	6	1,35	

^{*}Остаток электрода 35 мм

ОПТИМАЛЫ	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр Пространственные положения сварки										
[мм]	PA/1G	PB/2F	PC/2G							
4,0	210A	200A	200A							
5,0	300A	280A								
6,3	390A	360A								

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Высокопрочные стали, например, S355, L360, P355 и DH36, согласно EN 1011-1 требуют предварительного подогрева

Baso® 48SP

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7018-1 H8
 A-Nr
 1

 ISO 2560-A
 E 46 3 B 3 2 H10*
 F-Nr
 4

 * makke coom8emcm8yem E 46 3 BR 3 2 H10
 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия, отличающийся легким зажиганием и повторным поджигом дуги Может использоваться как на переменном, так и постоянном токе

Стабильная дуга, в том числе и при низкой силе тока

Часто используется на учебных курсах по сварке

Рекомендуемое напряжение минимум 60 вольт

Высокие механические характеристики и ударная вязкость при низких температурах до -30°C

Низкое содержание диффузионного водорода в наплавленном металле (HDM < 8 мл/100 г)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

PA/1G

ø 2,5 AC / DC + / ø 3,2 AC / DC +

Baso* 48SP+: 8ep. C-RU25-12/05/16

ø 4,0 AC / DC + ø 5.0 AC / DC

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	LR	ΤÜV
3VH10	ннн	3VH5	3 3VH10	+

Идентификационное обозначение: 7018-1-BASO 48SP

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	HDM
0,075	1,4	0,45	7 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние				Ударная вязкость по Шарпи (Дж)		
		(МПа)	. (МПа)	[%]	-20°C	-30°C	-46°C
Требования: AWS A5.1 ISO 2560-A		мин. 400 мин. 460	мин. 490 530-680	мин. 22 мин. 20		мин. 47	мин. 27
Средние значения	ПС	590	640	25	90	60	

ВИДЫ УПАКОВКИ							
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	3,2 450	4,0 350	4,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	125 2,5	78 2,6	78 3,3	50 2,5	50 3,4	
SRP	Штук в единице Вес нетто/ед. (kг)	44 0,9	51 1,8	- -	27 1,4	- -	

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincoinelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Цвет торца электрода: зеленый

Baso® 48SP

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH36
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420, S460

ДАННЫЕ ПО Р	РАСХОДУ								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	' IENTONTOWEHUE METHACTHA		Bec/1000	Шт. электродов	Кг электродов на кг	
(мм)			- на элект	pog npu максималь	шт. (kг)	на kz напл. металла	наплавленного металла 1/N		
			(c)*	Е (кДж)	H (kz/4)		метталла	Memazzia zit	
2,5x350	50-85	AC	48	104	0,9	19,4	82	1,6	
3,2x450	85-135	AC	75	273	1,1	41,0	42	1,72	
4,0x450	135-190	AC	95	487	1,6	64,6	24	1,55	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр						
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	
2,5	80A	85A	85A	85A	80A	
3,2	120A	115A	115A	115A	110A	
4,0	170A	180A	180A	180A	160A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 $\pm 25^{\circ}$ C

Basic 7018

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7018 H4
 A-Nr
 1

 ISO 2560-A
 E 42 4 B 4 2 H5
 F-Nr
 4

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод образует наплавленный металл с высокими механическими характеристиками и отсутствием трещин gaжe при содержании углерода в основном металле до 0,4 %

Эффективность 120%

Высокие сварочно-технологические характеристики во всех пространственных положениях Высокие механические характеристики и ударная вязкость при низких температурах до -40°C Хорошо подходит для формирования промежуточных слоев на сталях с высоким содержанием углерода

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

BV	DNV	LR	DB	GL	ΤÜV		
3YH5	3YH5	3YH10	+	3YH5	+		

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	HDM	
0,05	1,3	0,4	4 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Ударная вязкость Предел Предел Отн. по Шарпи (Дж) Состояние текциести прочности удлинение (MΠa) (M∏a) [%] -40°C -46°C Требования: AWS A5.1 мин. 400 мин. 490 мин. 22 мин. 27 ISO 2560-A мин. 420 500-640 мин. 20 мин. 47 Средние значения ПС 540 105 50 475 27

виды упаковки										
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450			
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	205 4,6	125 4,5	125 5,9	85 4,6	85 6,0	55 5,8			

Идентификационное обозначение: 7018 / BASIC 7018

Цвет торца электрода: нет

Basic 7018: Bep. C-RU02-01/02/16

Basic 7018

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH36
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°С

Baso[®] 51P

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7018-1
 A-Nr
 1

 ISO 2560-A
 E 46 3 B 3 2 H5
 F-Nr
 4

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле Подходит для сварки трубопроводов и корневых проходов

Высокие сварочно-технологические свойства, отсутствие разбрызгивания, высокая смачиваемость и высокий контроль сварочной ванны

Стабильная дуга, в том числе и при низкой силе тока

Высокая смачиваемость и высокий контроль сварочной ванны

Легкое отделение шлака и гладкая поверхность шва

Высокие механические характеристики и ударная вязкость при низких температурах до -30°C

Отсутствие дефектов при контроле рентгеновским излучением

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	HDM
0,06	1,3	0,5	0,015	0,010	5 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)							
	Состояние		Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)		
		mekyчести (МПа)	(МПа)	[%]	-20°C	-30°C	-46°C
Требования: AWS A5.1 ISO 2560-A		мин. 400 мин. 460	мин. 490 530-680	мин. 22 мин. 20		мин. 47	мин. 27
Средние значения	ПС	510	600	27	90	70	40

виды упаковки			
	Диаметр (мм) Длина (мм)	5,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (кг)	55 5,5	

Идентификационное обозначение: 7018-1/ BASO 51P

Цвет торца электрода: нет

Baso* 51P: 8ep. C-RU26-01/02/16

Baso[®] 51P

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420, S460

ДАННЫЕ ПО РАСХОДУ									
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	Кг электродов на кг	
уиам. х улина (мм)	TUK (A)	rug iliuka	- на электрод при максималь		ном moke -	um. (kz)	на kz напл. металла	наплавленного металла 1/N	
			(c)*	E (кДж)	H (kz/4)		менналла	менталла і/п	
2,5x350 3,2x450 4,0x450 5,0x450	50-100 75-140 140-190 180-280	DC+ DC+ DC+ DC+	48 75 95	104 273 487	0,9 1,1 1,6	19,4 41,0 64,6	82 42 24	1,6 1,72 1,55	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ							
Диаметр		Просг	пранственны	ые положения с	:варки			
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем		
2,5 3,2 4,0 5,0	90A 130A 180A 230A	90A 130A 175A 240A	80A 130A 170A 230A	85A 115A 160A	80A 110A	85A 115A		

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°С

LINCOLN 7016 DR

КЛАССИФИКАЦИЯ

AWS A5.1 E7016 A-Nr 1
ISO 2560-A E 42 2 B 1 2 H10 F-Nr 4
9606 FM 1

БШЕЕ ОПИСАНИЕ

Электрод с двойным покрытием основного типа

Стабильная дига и гладкая поверхность шва

Рекомендуется для корневых и заполняющих проходов при сварке труб

Быстрое заполнение стыков

Отсутствие дефектов при контроле рентгеновским излучением, легкий повторный поджиг дуги

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC/DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

в процессе оформления

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	HDM
0,08	1,2	0,6	5 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел текучести	Предел прочности	Отн. удлинение		вязкость onu (Дж)	
		(МПа)	(МПа)	(%)	-20°C	-30°C	
Требования: AWS A5.1		мин. 400	мин. 490	мин. 22		27	
ISO 2560-A		мин. 420	500-640	мин. 20	47		
Средние значения	ПС	455	560	28	70	45	

2 2

4 N

2 7

ВИДЫ УПАКОВКИ

	Длина (мм)	350	350	450	450
Карт. коробка +	Штук в единице	205	137	134	81
ПЭ пленка	Вес нетто/ед. (kг)	4,1	4,3	5,5	5,2

Пиамет (мм)

Идентификационное обозначение:

Цвет торца электрода: нет

) E

LINCOLN 7016 DR: 8ep. C-RU01-01/02/16

LINCOLN 7016 DR

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH36
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3/4	S275, S355, S420

ДАННЫЕ ПО РАСХОДУ								
Размеры guaм. х длина (мм)	Tok (A)	Pog moka	кпемя		Производи- тельность наплавки	Вес/1000 электродов	Кг электродов на кг наплавленного металла 1/N	
			- на электрод при максимальном moke -		wm. (kz)	на kz напл. металла		
			(c)*	Е (кДж)	H (kz/4)		менналла	мешалла им
2,5x350 3,2x350 3,2x450 4,0x350	60-90 95-150 95-150 140-190							

^{*}Остаток электрода 35 мм

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

Baso[®] 100

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7016 H4R
 A-Nr
 1

 ISO 2560-A
 E 42 3 B 12 H5
 F-Nr
 4

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM <5 мл / 100 г)

Подходит для сварочных работ общего назначения

Может работать при низком напряжении холостого хода (мин. напряжение холостого хода 55 В) Высокая смачиваемость

Высокие механические характеристики и ударная вязкость при низких температурах до -20°C Часто используется на учебных курсах по сварке

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

PA/1G

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	LR	GL	ΤÜV	
3H,3Y	3,3YHH	3YH5	3,3YH5	3,3YH5	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	HDM	
0,08	1,0	0,5	4 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]							
	Состояние	Предел mekyчести	Предел прочности	Отн. идлинение		я вязкость apnu (Дж)	
		(M∏a)	(МПа)	[%]	-20°C	-29°/-30°C	
Требования: AWS A5.1		мин. 400	мин. 490	мин. 22		мин. 27	
ISO 2560-A		мин. 420	500-640	мин. 20		мин. 47	
Средние значения	ПС	555	600	26	120	80	

виды упаковки						
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	5,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kz)	136 2,5	120 4,3	90 4,8	65 6,3	

Идентификационное обозначение: 7016 / BASO 100

Цвет торца электрода: голубой

Baso* 100: 8ep. C-RU26-01/02/16

Baso® 100

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH36
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры диам. х длина	Размеры quaм. x qлина Тok (A)		Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000 wm.	Шт. электродов	Кг электродов на кг
(мм)		Pog moka	- на элеkm	род при максималь	ном moke -	(kz)	на kz напл. металла	наплавленного металла 1/N
			(c)*	E (кДж)	H (kz/u)		метталла	Memoria i/N
2,5x350	55-80	AC	53	116	8,0	19,1	85	1,63
3,2x350	75-115	AC	62	229	1,2	36,1	50	1,81
4,0x350	120-160	AC	64	337	1,6	50,1	34	1,72
5,0x450	160-240	AC	91	578	2,4	96,7	16	1,58
5,0x450	160-240	DC+	93	591	2,6	96,7	15	1,44

S275, S355, S420, S460

EN 10025 yacmb 4

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр		Прос	транственн	ые положения с	варки					
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на nogъем	PE/4G	PH/5G на nogъем				
2,5	80A	80A	80A	90A	85A	85A				
3,2	130A	125A	140A	120A	115A	120A				
4,0	165A	160A	165A	150A	140A					
5,0	230A	220A	210A	200A						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

^{*}Остаток электрода 35 мм

Baso[®] 120

КЛАССИФИКАЦИЯ

AWS A5.1 E7018 H4R A-Nr 1SO 2560-A E 42 3 B 3 2 H5 F-Nr 9606 FM

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM <4 мл / 100 г)

Эффективность 120%

Высокие сварочно-технологические характеристики во всех пространственных положениях, в т. ч. на переменном токе

Высокие механические характеристики и ударная вязкость при низких температурах до -30°C Отсутствие дефектов при контроле рентгеновским излучением

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	LR	GL	ΤÜV	
3H 3Y	3 3YH	3YH5	3 3YH5	зүн	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

L	IVIII)i	ואוטח
0,08	1,2	0,5	4 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел текучести	Предел прочности	Отн. цалинение		я вязкость арпи (Дж)
		(МПа)	[·] (M∏a)	5 (%)	-20°C	-29°/-30°C
Требования: AWS A5.1 ISO 2560-A		мин. 400 мин. 420	мин. 490 500-640	мин. 22 мин. 20		мин. 27 мин. 47
Средние значения	ПС	540	600	26	150	80

ВИДЫ УПАКОВКИ

	Диаметр (мм)	2,5	3,2	3,2	4,0	4,0	5,0
	Длина (мм)	350	350	450	350	450	450
Карт. коробка +	Штук в единице	135	120	120	85	85	55
ПЭ пленка	Вес нетто/ед. (кг)	2,5	4,5	6,0	4,6	5,9	6,0

Идентификационное обозначение: 7018 / BASO 120

Цвет торца электрода: серебристый

Baso* 120: Bep. C-RU26-01/02/16

Baso[®] 120

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH36
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000 um.	Шт. электродов на кг напл.	Кг электродов на кг
(мм)		-	- на элект	род при максималь	ном moke -	(kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		метилли	MCIIIa/I/Ia I/IV
2,5x350	60-80	AC	55	121	0,8	19,1	85	1,61
3,2x350	90-140	AC	62	229	1,3	37,1	44	1,64
3,2x450	90-140	AC	74	275	1,5	50,1	33	1,67
4,0x350	120-160	AC	63	338	1,8	54,4	32	1,72
4,0x450	120-160	DC+	85	391	1,9	69,5	22	1,52
5,0x450	160-240	AC	99	616	2,6	108,8	14	1,54
5,0x450	160-240	DC+	100	625	2,6	108,8	14	1,52

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОЕ	

		Пространственные положения сварки							
Диаметр (мм)	PA/1G	PB/2F	PC/2G	PF/3G на nogъем	PE/4G				
2,5	80A	80A	85A	85A	80A				
3,2	145A	120A	140A	120A	125A				
4,0	175A	155A	170A	165A	145A				
5,0	235A	220A	210A	195A					

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

Baso® G

КЛАССИФИКАЦИЯ

AWS A5.1 E7018-1 H4R A-Nr 1SO 2560-A E 42 5 B 32 H5 F-Nr 9606 FM

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле Эффективность 115-120%

Возможность сварки в любых пространственных положениях как на постоянном, так и переменном токе Хорошо подходит для сварки труб

Подходит для монтажных сварочных работ

Высокие сварочно-технологические характеристики при сварке труб

Высокие механические характеристики и ударная вязкость при низких температурах до -50°C Также доступен в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	DB	DNV	LR	GL	RINA	RMRS	ΤÜV
3H.3Y	3.3YH	3YH5	3.3YH5	3YH10	4YH5	3-3YH5	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	HDM
0,05	1,3	0,4	2 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел текичести	Предел прочности	Отн.	Ударна	я вязкость	по Шарпи (Дж)
	Состояние	шекучести (МПа)	прочностти (МПа)	удлинение (%)	-20°C	-46°C	-50°C
Требования: AWS A5.1 ISO 2560-A		мин. 400 мин. 420	мин. 490 500-640	мин. 22 мин. 20		мин. 27	мин. 47
Средние значения	ПС	490	575	28	200	130	100
ВИЛРІ АПУКОВКИ							

ВИДЫ УПАКОВКИ								
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	135 2,8	120 4,4	120 5,8	85 4,7	85 5,9	55 6,0	
SRP	Штук в единице Вес нетто/ед. (kг)	69 1,4	50 2,0	50 2,5	28 1,6	28 2,0	23 2,6	

Идентификационное обозначение: 7018-1/ BASO G+

Цвет торца электрода: синий

Baso* G: 8ep. C-RU27-01/02/16

Baso[®] G

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420

ДАННЫЕ ПО Г	РАСХОДУ								
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов на кг напл.	Кг электродов на кг наплавленного	
(мм)			- на элеkm	pog npu максималь	ном moke -	wiii. (K2)	шт. (kг) на кг напл. наплав металла мета		
			(c)*	Е (kДж)	H (kz/u)				
2,0x300	35-55	DC+	50	61	0.5	11,7	149	1,75	
2,5x350	55-90	DC+	59	107	0,8	20,3	78	1,59	
3,2x350	75-120	DC+	70	234	1,2	36,5	42	1,54	
3,2x450	75-120	DC+	79	265	1,4	45,4	33	1,47	
4,0x350	120-180	DC+	75	358	1,7	50,9	28	1,45	
4,0x450	120-180	DC+	96	473	1,7	69,3	22	1,52	
5,0x450	160-240	DC+	114	671	2,2	106,2	14	1,54	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр		Пространственные положения сварки								
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PF/5G на подъем				
2,0						45A				
2,5	80A	80A	85A	90A	80A	80A				
3,2	145A	120A	150A	120A	115A	120A				
4,0	160A	145A	170A	150A	145A	145A				
5,0	220A	210A	215A	170A						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

Baso® 26V

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7048 H8
 A-Nr
 1

 ISO 2560-A
 E 42 3 B 1 5 H10
 F-Nr
 4

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле Предназначен для вертикальной сварки в направлении сверху вниз при судостроительных работах

Полное сплавление корня шва при подготовке под сварку с зазором в вершине разделки

Хорошо подходит для установки прихваток

Легкое отделение шлака, гладкая поверхность шва

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

PA/1G

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	LR	GL	RMRS	
3Y	3Y	3YH10	3,3YH10	3YH10	3,3YH10	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	HDM	
0,09	1,1	0,7	6 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Ударная вязкость по Шарпи (Дж) Предел Предел Отн. Состояние идлинение текучести прочности -20°C -29°C/-30°C (MΠa) (МПа) [%] Требования: AWS A5.1 мин 400 мин 490 мин 22 мин 27 ISO 2560-A мин. 420 500-640 мин. 20 мин. 47 Средние значения ПС 580 630 26 130 Диаметр (мм) 3.2 4.0 5.0 Длина (мм) 450 450 450 Kapm. kopo6ka + Штик в единице 150 100 70 ПЭ пленка Bec Hemmo/ea. [kz] 6.1 6.2 6.7

Идентификационное обозначение: 7048 / BASO 26V

Цвет торца электрода: темно-зеленый

Baso* 26: 8ep. C-RU25-01/02/16

Baso[®] 26V

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH36
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1/	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000 wm.	Шт. электродов	Кг электродов на кг
(мм)		. 09	- на элеkm	род при максималь	ном moke -	(kz)	на kz напл. металла	наплавленного металла 1/N
			(c)*	E (кДж)	H (kz/4)		менталла	Memajijia i/N
3,2x450	110-140	DC+	51	181	1,5	34,0	48	1,62
4,0x450	155-185	DC+	70	315	2,1	59,7	24	1,44
5.0x450	195-225	DC+	86	435	2,7	92.9	15	1.43

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ЫЕ РЕЖИМЬ	ы СВАРКИ ЗАПОЛНЯ	ющих прох	одов		
Диаметр	Прос	транственные пол	ожения свар!	кu		
(мм)	PA/1G	PG/3G на cnyck	PE/4G			
3,2	130A	130A	125A			
4,0	145A	175A	165A			
5,0	220A	220A	200A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

Vandal

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7018-1 H4
 A-Nr
 1

 ISO 2560-A
 E 42 4 B 3 2 H5
 F-Nr
 4

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа с высокими сварочно-технологическими свойствами, который образует наплавленный металл с низким содержанием диффузионного водорода, высокими механическими характеристиками и стойкостью к образованию горячих трещин

Подходит для сварки конструкционной стали и листов судостроительной стали с мин. пределом прочности 500 МПа Мягкая и стабильная дуга

Подходит для сварки в сложных пространственных положениях, особенно вертикальном и потолочном Легкое отделение шлака даже в узких зазорах

Наплавленный металл обладает высокой ударной вязкостью и устойчивостью к образованию горячих трещин при низких температурах до - 40°C

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

Vandal: 8ep. C-RU04-01/02/16

AC / DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	ΤÜV	RINA
3H5, 3Y	3,3Y H	3 YH5	3YH5	+	3,3Y H

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

С	Mn	Si	HDM
0,07	1,2	0,5	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Coemoguus	Предел	П	редел		Отн.	Ударная в	язкость по Шарпи (Дж)
	Состояние	mekyчести (МПа)	прочн	ocmu (ΜΠ	a) ^{yu}	јлинение (%)	-40°C	-46°C
Требования: AWS A5 ISO 2560-		мин. 399 мин. 420		ин. 482 00-640		мин. 22 мин. 20	47	27
Средние значени		436	3.	533	,	29	100	90
ВИДЫ УПАКОВКИ								
	Циаметр (мм) Цлина (мм)	2,5 350		3,2 450	4,0 350	4,0 450	5,0 450	
	Штук в единиі Зес нетто/ед.		73 2,51	73 3,285	55 2,81	55 3,66	32 3,36	
	Штук в едини Зес нетто/ед.			60 2,75	40 2,05	40 2,73	30 3,13	

Цвет торца электрода: нет

Идентификационное обозначение: 7018-1 VANDAL

Vandal

CBAP				

Класс прочности стали / Код	Tun

Конструкционная сталь общего назначения

EN 10025 S185, S235 J0 / J2 / JR, S275 J0 / J2 / JR, S355 J0 / J2 / JR /K2

Листы судостроительной стали

ASTM A 131 Mapku A, B, D, E, om AH32 qo EH36 включительно

Литая сталь

EN 10213-2 GP 240 GH, GP 280 GH

Трубная сталь

EN 10208-1 L210 GA, L235 GA, L245 GA, L290 GA, L360 GA

EN 10208-2 L245 MB / NB, L290 MB / NB, L360 MB / NB / QB, L415 MB / NB / QB

API 5LX X42, X46, X52, X56, X60, X65

EN 10216-1 P195 TR1 / TR2, P235 TR1 / TR2, P265 TR1 / TR2

EN 10216-2 P195 GH, P235 GH, P265 GH

EN 10216-3 P275 NL1 / NL2, P355 N / NH / NL1 / NL2

Сталь для бойлеров и камер высокого давления

EN 10028-2 Сталь с мелкозернистой структурой P235GH, P265GH, P295GH, P355GH

EN 10025 часть 3 S275 N / NL, S355 N / NL, S420 N / NL EN 10025 часть 4 S275 M / ML. S355 M / ML, S420 M / ML

Другие Сталь с эквивалентными требованиями согласно ASTM, JIS и т. д.

ДАННЫЕ ПО РАСХОДУ

Размеры диам. х длина (мм)	Tok (A)	Makc. сила moka (A)	Pog moka	Время горения дуги - на электр	Тепловложение	Производи- тельность наплавки ном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	наплавленного
				(c)*	E (кДж)	H (kz/u)		металла	металла 1/N
2.5x350	70-90	110	DC+	44	137	1,0	22,8	83	1,90
3,2x350	100-130	140	DC+	56	216	1,3	34,4	50	1,72
3,2x450	100-135	140	DC+	68	269	1,4	45	37	1,67
4,0x350	130-180	200	DC+	59	312	1,8	51,1	34	1,76
4,0x450	130-190	200	DC+	77	421	1,9	66,5	24	1,62
5,0x450	220-260	280	DC+	88	709	2,6	105	16	1,67

^{*}Остаток электрода 35 мм

OUTHWARL	ILIE DEWAM	полилини	

Диаметр			Прост	ранственные положі	ения сварки
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G
2,5	80A	85A	85A	85A	80A
3,2	120A	115A	115A	115A	110A
4,0	170A	180A	180A	180A	160A
5,0	240A	250A	250A	250A	230A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°G

КЛАССИФИКАЦИЯ

 AWS A5.1
 E 7018-1 H4R
 A-Nr
 1

 ISO 2560-A
 E 46 4 B 4 2 H5
 F-Nr
 4

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM <5 мл / 100 г)

Эффективность 130%

Высокие сварочно-технологические характеристики во всех пространственных положениях

Рекомендуется для потолочной сварки и в вертикальном направлении снизу вверх

Высокие механические характеристики и ударная вязкость при низких температурах до -40°C Отсутствие дефектов при контроле рентгеновским излучением

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DNV

4YH5

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	HDM
0,05	1,3	0,3	4 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел Предел Отн.		Ударная вязкость по Шарпи (Дж)		
			прочности (МПа)		-40°C	-46°C
Требования: AWS A5.1 ISO 2560-A Средние значения		мин. 400 мин. 460 470	мин. 490 530-680 570	мин. 22 мин. 20 27	мин. 47 103	мин. 27 80

ВИДЫ УПАКОВКИ

	диаметр (мм)	2,0	2,5	3,2	4,0	5,0
	Длина (мм)	300	350	450	450	450
Карт. коробка +	Штук в единице	146	110	110	82	58
ПЭ пленка	Вес нетто/ед. (kг)	1,9	2,5	5,7	6,0	6,3

Идентификационное обозначение: 7018-1 / CONARC 48

Цвет торца электрода: оранжевый

Conarc® 48: 8ep. C-RU26-01/02/16

Conarc® 48

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60, X65
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420, S460
EN 10025 часть 4	S275, S355, S420, S460

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов на кг напл.	Кг электродов на кг
(мм)		-	- на элект	pog npu максималь	wm. (kz)	наплавленного металла 1/N		
			(c)*	E (кДж)	H (kz/4)		металла	MCIIIO///II
2,0x300	50-80	DC+	53		0,6	14,3	123	1,76
2,5x350	80-110	DC+	64		0,8	23,1	67	1,55
3,2x350	95-150	DC+	67		1,3	40,0	40	1,60
3,2x450	95-150	DC+	-		-	-	-	-
4,0x350	125-210	DC+	83		1,7	57,6	26	1,50
4,0x450 5,0x450	125-210 190-270	DC+ DC+	95		1,8	73,4	21	1,54

^{*}Остаток электрода 35 мм

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°С

КЛАССИФИКАЦИЯ

AWS A5.1 E7018 H4 **A-Nr** 1 **ISO 2560-A** E 46 3 B 4 2 H5 **F-Nr** 4 **9606 FM** 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM <5 мл / 100 г)

Универсальный электрод с покрытием основного типа, который рекомендуется для судостроительных и легких строительных работ общего назначения

Высокие сварочно-технологические свойства

Отсутствие разбрызгивания, высокая смачиваемость и контроль сварочной ванны

Сварка во всех пространственных положениях может проводиться с одними и теми же сварочными токами Обеспечивает высокию производительность с эффективностью 120%

Takже gocmuneн в вакуумной ynakoвке Protech™

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

PA/1G

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	LR	GL	RMRS	RINA	TÜV
3H5, 3Y	3,3YH5	3YH5	3,3YH5	3YH5	3,3YH5	3,3YH5	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Р	S	HDM	
0,09	1,1	0,6	0,015	0,010	4 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Предел Предел Отн. Ударная вязкость по Шарпи (Дж) удлинение Состояние текучести прочности -20°C -30°C -40°C ĺM⊓aì (MПа) [%] Требования: AWS A5.1 мин. 400 мин. 483 мин. 22 мин. 27 27 ISO 2560-A мин 460 530-680 мин. 20 мин. 47 ПΓ 140 80 Средние значения 480 560 28 120 Диаметр (мм) 2,5 3,2 3,2 4,0 4,0 5,0 Длина (мм) 450 450 350 350 350 450 93 Kapm. kopo6ka + ПЭ Штик в еаинице 118 120 115 93 62 пленка Bec Hemmo/ea. [kz] 4.5 5.2 5.0 6.3 6.7 2.7 Protech™ Штик в единице 88 59 42 Bec Hemmo/eq. (kz) 2,0 2,2 2,2

Идентификационное обозначение: 7018 H4/ CONARC 49 Цвет торца электрода: нет

Conarc® 49: 8ep. C-RU30-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415
API 5LX	X42, X46, X52, X60, X65
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420, S460
EN 10025 yacmb 4	S275, S355, S420, S460

РАСХОДУ							
Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	Кг электродов на кг наплавленного
	-	- на элект	- на электрод при максимальном moke -				металла 1/N
		(c)*	E (кДж)	H (kz/4)			
70-80	DC+	58	120	0,85	23,1	73	1,7
110-130	DC+	68	194	1,3	36,8	41	1,5
140-180	DC+	98	429	1,8	69,5	20	1,4
160-240	DC+	117	619	2,3	107,3	13	1,4
	Tok (A) 70-80 110-130 140-180	Tok (A) Pog moka 70-80 DC+ 110-130 DC+ 140-180 DC+	Ток (A) Род тока Время горения дуги - на элект (c)* 70-80 DC+ 58 110-130 DC+ 68 140-180 DC+ 98	Ток (A) Род ток (b) Время горения дуги Тепловложение - на электрод при максимали (c)* E (kДж) 70-80 DC+ 58 120 110-130 DC+ 68 194 140-180 DC+ 98 429	Ток (A) Род ток (A) Время горения дуги Тепловложение инальявии Производительность инальявии - на электру при максимальном токе- (c)* E (кДж) H (кг/ч) 70-80 DC+ 58 120 0,85 110-130 DC+ 68 194 1,3 140-180 DC+ 98 429 1,8	Ток (A) Род ток (A) Время горения дуги (рения дуги) Тепловложение и тепловодиней (тельность наплавки наплав	Ток (A) Род ток (A) Время сорения дуги Тепловложение пельность на электро при максимальном токе (с)* Производи тельность на электро при максимальном токе на к г налл. металла им. металла по токе на к г налл. металла по токе на к г на к г налл. металла по токе на к г н

^{*}Остаток электрода 35 мм

Е РЕЖИМЫ СВАРКИ ЗАПО.	

Циаметр	Пространственные положения сварки							
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем		
2,5	95A	95A	90A	90A	85A	85A		
3,2	140A	130A	130A	120A	120A	110A		
4,0	180A	180A	180A	160A	150A	160A		
5,0	230A	230A	230A	180A				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

Conarc® 49C

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7018-1 H4R
 A-Nr
 1

 ISO 2560-A
 E 46 4 B 3 2 H5
 F-Nr
 4

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле Высокие показатели ударной вязкости при -40°С, высокие результаты испытания на смещение раскрытия вершины трешины (CTOD) при -10°С

Электрод предназначен для сварочных работ на офшорных сооружениях в случаях, когда недопустимо использование электродов для сварки никелевых сплавов

Эффективность 100-120%

Высокие сварочно-технологические свойства при сварке труб Отсутствие дефектов при контроле рентгеновским излучением Также доступен в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

PA/1G

AC/DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	LR	GL	RMRS	ΤÜV
3H,3Y	зүнн	3YH5	3,3YH5	3YH10	3,3YH5	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	5	HDM
0,06	1,4	0,3	0,015	0,010	2 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Cosmosiuio	Предел Предел		Отн. цалинение	Ударная вязкость по Шарпи (Дж)			
	Состояние	текучести (МПа)			-20°C	-50°C	-46°/-50°C	
Требования: AWS A5.1		мин. 400	мин. 490	мин. 22			мин. 27	
ISO 2560-A		мин. 460	530-680	мин. 20		мин. 47		
Средние значения	ПС	480	580	28	200	170	100	

Подходит для эксплуатации после сварки и с послесварочной тепловой обработкой Раскрытие вершины трещины при -10°C: >0,25 мм

DIADI / HARODKI										
	Диаметр (мм) Длина (мм)	2,5 350	3,0 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450		
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (кг)	135 2,7	80 2,4	120 4,4	120 5,8	85 4,7	85 5,9	55 6,0		
SRP	Штук в единице Вес нетто/ед. (кг)	70 1,4	-	50 2,0	50 2,5	28 1,6	28 2,0	23 2,6		

Идентификационное обозначение: 7018-1/CONARC 49C Цвет торца электрода: серый

Conarc® 49C: Bep. C-RU27-12/05/16

Conarc® 49C

СВАРИВАЕМЫЕ МАТЕРИАЛЫ							
Класс прочности стали / Код	Tun						
Конструкционная сталь общего назначения							
EN 10025	S185, S235, S275, S355						
Листы судостроительной стали							
ASTM A 131	Mapku A, B, D, om AH32 go EH40						
Литая сталь							
EN 10213-2	GP240R						
Трубная сталь							
EN 10208-1	L210, L240, L290, L360						
EN 10208-2	L240, L290, L360, L415, L445						
API 5LX	X42, X46, X52, X60, X65						
EN 10216-1	P235T1, P235T2, P275T1						
EN 10217-1	P275T2, P355N						
Сталь для бойлеров и камер высокого давления							
EN 10028-2	P235GH, P265GH, P295GH, P355GH						
Сталь с мелкозернистой структурой							
EN 10025 часть 3	S275, S355, S420, S460						
EN 10025 часть 4	S275, S355, S420, S460						

Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг	
(мм)			- на электрод при максимальном токе -			wm. (kz)	на кг напл. металла	наплавленного металла 1/N	
			(c)*	Е (кДж)	H (kz/u)		MCIIIAJIJIA	Memabia i/N	
2.5x350	55-80	DC+	55	99	0,78	19,6	84	1,65	
3.0x350	70-110	DC+	53	193	1.2	30.4	58	1,77	
3.2x350	80-130	DC+	65	217	1,2	37,9	45	1,69	
4,0x350	120-160	DC+	75	348	1,6	54,2	30	1,61	
	420 440	D.C.	400		2/=	=		a 4=	

444

632

1,7

2,6

70,4

105,6

21

1,47

1,60

120-160

180-240

4,0x450

5,0x450

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

DC+

DC+

100

90

Пространственные положения сварки									
PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
80A	80A	80A	85A	80A	80A				
110A	110A	115A	110A	105A	110A				
140A	120A	145A	120A	120A	120A				
150A	140A	150A	140A	135A	140A				
220A	210A	210A	170A						
	80A 110A 140A 150A	PA/1G PB/2F 80A 80A 110A 110A 140A 120A 150A 140A	PA/1G PB/2F PC/2G 80A 80A 80A 110A 110A 115A 140A 120A 145A 150A 140A 150A	РА/1G PB/2F PC/2G PF/3G на подъем 80A 80A 85A 110A 110A 115A 110A 140A 120A 145A 120A 150A 140A 150A 140A	PA/1G PB/2F PC/2G PF/3G на подъем PE/4G 80A 80A 85A 80A 110A 110A 115A 110A 105A 140A 120A 145A 120A 120A 150A 140A 150A 140A 135A	РА/1G PB/2F PC/2G PF/3G на подъем PE/4G PH/5G на подъем 80A 80A 85A 80A 80A 110A 110A 115A 110A 105A 110A 140A 120A 145A 120A 120A 120A 150A 140A 135A 140A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°С. Для сварки корневого шва труб рекомендуются электроды 3,0 х 350 мм.

^{*}Остаток электрода 35 мм

Conarc® ONE

AWS A5.1 F7018-1 H4R A-Nr ISO 2560-A E 42 5 B 3 2 H 5 F-Nr 4 9606 FM 1

ОБШЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффизионного водорода в наплавленном металле Стабильные показатели царной вязкости при -40°С, высокие результаты испытания на смещение раскрытия вершины трещины (CTOD) при -10°C

Электрод для сварочных работ на офшорных сооружениях в случаях, когда недопустимо использование электродов для сварки никелевых сплавов

Эффективность 115-120%

Высокие сварочно-технологические свойства при сварке триб

Отситствие аефектов при контроле рентгеновским изличением

Также доступен в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC/DC +/-

ABS	BV	DNV	LR	GL	RMRS	RINA	TÜ\
3H,3Y	зүнн	3YH5	3,3YH5	3YH10	3,3YH5	4YH5	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	HDM
0,05	1,3	0,4	0,015	0,010	3 мл/100 г

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%

	Состояние	Предел	Предел	Отн.	Ударн	ая вязкосп	пь по Шарг	ιи (Дж)
	СОСПІОЯНИЕ	текучести (МПа)	прочности (МПа)	удлинение (%)	-20°C	-40°C	-46°C	-50°C
Требования: AWS A5.1		мин. 400	мин. 490	мин. 22			мин. 27	
ISO 2560-A		мин. 420	500-640	мин. 20		мин. 47		
Средние значения	ПС	480	575	28	200	120	100	80

Раскрытие вершины трещины при -10°C >0,25 мм

ВИДЫ УПАКОВКИ						
	Диаметр (мм) Длина (мм)	2,5 350	3,2 450	4,0 450	5,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	110 7,5	120 7,7	85 8,3	55 8,2	
SRP	Штук в единице Вес нетто/ед. (kz)	60 1,4	50 2,5	28 2,0	23 2,5	

Идентификационное обозначение: 7018-1 / CONARC ONE Цвет торца электрода: синий

Conarc® ONE: 8ep. C-RU04-01/02/16

Conarc® ONE

СВАРИВАЕМЫЕ МАТЕРИАЛЫ									
Класс прочности стали / Код	Tun								
Конструкционная сталь общего назначения									
EN 10025	S185, S235, S275, S355								
Листы судостроительной стали									
ASTM A 131	Mapku A, B, D, om AH32 go EH40								
Литая сталь									
EN 10213-2	GP240R								
Трубная сталь									
EN 10208-1	L210, L240, L290, L360								
EN 10208-2	L240, L290, L360, L415, L445								
API 5LX	X42, X46, X52, X60, X65								
EN 10216-1	P235T1, P235T2, P275T1								
EN 10217-1	P275T2, P355N								
Сталь для бойлеров и камер высокого давления									
EN 10028-2	P235GH, P265GH, P295GH, P355GH								
Сталь с мелкозернистой структурой									
EN 10025 часть 3	S275, S355, S420, S460								
EN 10025 часть 4	S275, S355, S420, S460								

ДАННЫЕ ПО І	РАСХОДУ								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Производи- Тепловложение тельность наплавки		Bec/1000 wm.	Шт. электродов	Кг электродов на кг	
(мм)			- на электрод при максимальном moke -			(kz)	на kz напл. металла	наплавленного металла 1/N	
			(c)*	E (кДж)	H (kz/4)		метнали	Memania in	
2,5x350	60-100	DC+	60	138	0,83	23,1	72	1,67	
3,2x450	90-145	DC+	93	337	1,27	50,8	30	1,54	
4,0x450	110-160	DC+	103	464	1,65	71,2	21	1,52	
5,0x450	160-250	DC+	177	717	2,24	108,8	14	1,49	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ЫЕ РЕЖИМЬ	І СВАРКИ ЗАП	олняющих	проходов			
Диаметр			Пространст	венные положения св	apku		
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем	
2,5	90A	90A	85A	90A	85A	80A	
3,2	140A	140A	150A	120A	115A	120A	
4,0	175A	175A	170A	150A	145A	145A	
5,0	230A	230A	215A	170A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7018-1 H4
 A-Nr
 1

 ISO 2560-A
 E 46 5 B 4 2 H5
 F-Nr
 4

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа с очень низким содержанием диффузионного водорода в наплавленном металле Рекомендуется для сварки общего назначения Высокая ударная вязкость при температуре до -50°C

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

PA/1G

Takже gocmyneн в вакуумной ynakoвке Protech™

ОПОБРЕНИЯ	LCEDTIA	15 I A I A I I I I A	OTHER	AFFLITCED

ABS	BV	DNV/ GL	LR	ΤÜV	
4Y40H5	4Y40HHH	4Y40H5	4Y40H5	в процессе оформления	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	HDM	
0,05	1,0	0,3	4 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]										
	C	Предел	-	тн.	Ударная вязкость no Шарпи (Дж)					
	Состояние	mekyче (МПа		прочності (МПа)		инение (%)	-30°C	-40°C	-46°C	-50°C
Требования: AWS A5.1		мин. 4	00	мин. 482	MU	ін. 22			мин. 27	
ISO 2560-A		мин. 4	60	530-680	MU	н. 20		мин. 47		
Средние значения	ПС	500		600		27	150	120	100	90
	CH:14/600°C	480		580		29	120		50	
ВИДЫ УПАКОВКИ										
	Диаметр (мм) Длина (мм)		2,5 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450		
Карт. коробка + ПЭ пленка	Штук в едини Вес нетто/ед		195 4,3	135 4,7	135 6,1	92 4,7	92 5,9	66 6,7		
Protech™	Штук в едини Вес нетто/ед		90 2,0	58 2,0	58 2,6	45 2,3	45 3,0	33 3,3		
Идентификационное обозначение: 7018-1 Н4 / CONARC 50 Цвет торца электрода: нет Солагс*50: бео, С-RU09-23/05/16										

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Tun
S185, S235, S275, S355
Mapku A, B, D, om AH32 go EH40
GP240R
L210, L240, L290, L360
L240, L290, L360, L415
X42, X46, X52, X60
P235T1, P235T2, P275T1
P275T2, P355N
P235GH, P265GH, P295GH, P355GH
S275, S355, S420
S275, S355, S420

ДАННЫЕ ПО Р	АСХОДУ							
Размеры диам. х длина		Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
(мм)			- на элект	грод при максималь	ном moke -	wiii. (K2)	на ка нагиг. металла	металла 1/N
			(c)*	E (kДж)	H (k2/4)		мешалла	Melliajijia i/N
2.5x350	70-90	_	-	-	-	-	-	-
3,2x350	100-130	-	-	-	-	-	-	-
3,2x450	100-135	-	-	-	-	-	-	-
4,0x350	130-180	-	-	-	-	-	-	-
4,0x450	130-190	-	-	-	-	-	-	-
5,0x450	220-260	-	-	-	-	-	-	-

^{*}Остаток электрода 35 мм

Циаметр		Простра	нственные r	оложения сварки		
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем
2,5	80A	85A	85A	85A	80A	85A
3,2	120A	115A	115A	115A	110A	115A
4,0	170A	180A	180A	180A	160A	
5,0	240A	250A	250A	250A	230A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

КЛАССИФИКАЦИЯ

AWS A5.1 E7016-1 H4R A-Nr ISO 2560-A E 42 4 B 1 2 H5 F-Nr 9606 FM

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле Высокие механические характеристики и ударная вязкость при низких температурах до -40 °C Высокие результаты испытания на смещение раскрытия вершины трещины (СТОD) при -10°C, соответствует требованиям к применению на офшорных сооружениях Хорошо подходит для сварки корневого шва (диам. 2,5 и 3,2 мм) Также доступен в вакуумной упаковке Sahara ReadyPack (SRP): HDM < 3 мл/100 г)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC/DC +/-

Conarc^o 51: 8ep. C-RU27-01/02/16

ОПОБРЕН	IMO CEDTIA	CHALLA LILL	40 LILLI IV	AFFLITCED
	1007 1 6 6 1 0	UJVIKATIV		

ABS	BV	DNV	LR	GL	ΤÜV
3H,3Y	3,3YHH	3YH5	3,3YH5	3YH10	+

ΧΝΜΝΛΕΓΚΝΉ CUCTAB Η ΔΙΙΔΑΒΊΕΗ Η ΟΙΟ WETA UU 7 (%)

С	Mn	Si	Р	S	HDM
0,06	1,4	0,5	0,015	0,010	2 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Cosmosuus	Предел	Предел	Отн.	Ударная в	Вязкость по Ц	lapnu (Дж)
	Состояние	текучести прочност (МПа) (МПа)		удлинение (%)	-20°C	-40°C	-46°C
Требования: AWS A5.1 ISO 2560-A		мин. 400 мин. 420	мин. 490 500-640	мин. 22 мин. 20		мин. 47	мин. 27
Средние значения	ПС	520	575	28	115	80	60

Раскрытие вершины трещины при -10°C >0,25 мм

Идентификационное обозначение: 7016-1 / CONARC 51

виды упаковки									
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450		
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	136 2,7	150 4,7	-	100 4,6	-	-		
SRP	Штук в единице Вес нетто/ед. (kг)	70 1,4	56 1,8	56 2,3	-	30 1,8	23 2,6		

Hackonoko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Цвет торца электрода: золотистый

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420

ДАННЫЕ ПО І	РАСХОДУ								
Размеры диам. х длина	Tok (A)	Tok (A) Pog moka				Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного	
(мм)			- на элект	pog npu максималь	ном moke -	wiii. (Kc)	металла	металла 1/N	
			(c)*	Е (kДж)	H (kz/u)				
2,5x350	40-80	DC+	53	123	8,0	19,6	86	1,68	
3,2x350	70-120	DC+	62	178	1,0	30,8	57	1,74	
3,2x450	70-120								
4,0x350	100-160	DC+	71	306	1,4	48,0	37	1,78	
4,0x450	100-160								
5,0x450	180-240	DC+	104	702	2,6	103,0	13	1,36	

^{*}Остаток электрода 35 мм

Диаметр		Просп	пранственные полож	ения сварі	ĸu
(мм)	PA/1G	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем
2,5	75A	70A	75A	70A	75A
3,2	100A	110A	100A	100A	100A
4,0	150A	140A	130A	125A	125A
5.0	220A	220A	180A		

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7016
 A-Nr
 1

 ISO 2560-A
 E 42 2 B 12 H5
 F-Nr
 4

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Предназначаются для сварки корневого шва труб класса прочности не выше X80 в вертикальном положении на подъем Хорошо подходят для заполняющих и облицовочных проходов труб класса прочности не выше X65

Высокие показатели ударной вязкости при низких температурах вплоть до -30°C

Дуга остается хорошо управляемой даже при очень слабом токе, что значительно упрощает сварку даже на работах ответственного назначения

Высокая устойчивость к образованию трещин и стабильность во всех положениях сварки Электроды толщиной 2,5 и 3,2 мм позволяют проводить проварку корня шва с открытым зазором на постоянном токе прямой или обратной полярности

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC/DC +/-

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Р	S	HDM	
0,06	1,2	0,4	0,015	0,010	4 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел текучести	Предел прочности	Отн. удлинение		ı вязкость pnu (Дж)
		(МПа)	(МПа)	(%)	-20°C	-29°/-30°C
Требования: AWS A5.1 ISO 2560-A Средние значения	ПС	мин. 400 мин. 420 510	мин. 490 500-640 560	мин. 22 мин. 20 28	27 100	мин. 47 80

виды упаковки								
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350				
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kz)	148 2,7	157 4,8	87 4,4				

Идентификационное обозначение: 7016-1 / CONARC 52

Цвет торца электрода: черный

Conarc° 52: 8ep. C-RU06-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	Кг электродов на кг
(мм)			- на элеkm	pog npu максималь	ном moke -	шт. (kг)	на kz напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/4)		метталла	MC111070710 1714
2,5x350	50-80	DC+	59	100,6	0,71	18,5	86	1,59
3,2x350	60-120	DC+	68	179,9	1,02	30,3	52	1,57
4,0x350	120-170	DC+	77	258,7	1,50	48,7	31	1,51

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ							
Диаметр		П	ространст	венные положения с	Bapku		
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем	
2,5 3,2	85A 120A	85A 115A	85A 115A	75A 115A	85A 115A	75A 115A	
4,0	170A	170A	170A	140A	140A	140A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

Lincoln® 7018-1

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7018-1
 A-Nr
 1

 ISO 2560-A
 E 42 4 B 3 2 H5
 F-Nr
 4

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле Рекомендуется для сварки общего назначения

Высокие механические характеристики и ударная вязкость при низких температурах до -46°C

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC / DC + / -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	LR	GL	RINA	ΤÜV
4Y40H5	4Y40HHH	4Y40H5	4Y40H5	+	4Y40H5	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Ĺ	Mn	Si	Р	5
0,05	1,0	0,3	0,015	0,010

ХАРАКТЕРИСТИКИ НА	

	Cosmoguus	Предел	Предел	Отн.	Ударная вязкосп	ть no Шарпи (Дж)
	Состояние	mekyчести (МПа)	прочности (МПа)	удлинение (%)	-40°C	-46°C
Требования: AWS A5.1		мин. 400	мин. 490	мин. 22		мин. 27
. ISO 2560-A	ı	мин. 420	500-640	мин. 20	мин. 47	
Средние значения	ПС	436	533	29	100	90

виды упаковки									
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450		
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	175 3,9	115 4,0	115 5,2	80 4,1	80 5,3	55 5,6		
Protech™	Штук в единице Вес нетто/ед. (kг)	90 2,0	58 2,0	-	40 2,0	-	-		

Идентификационное обозначение: 7018-1 / LINCOLN 7018-1 Цвет торца электрода: нет

Lincoln* 7018-1: 8ep. C-RU26-01/02/16

Lincoln[®] 7018-1

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры guaм. х длина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Тепловложение род при максималь	Производи- тельность наплавки оном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
			(c)*	E (kДж)	H (kz/4)		металла	металла 1/N
2,5x350	70-90	DC+	59	132	0,9	22,3	71	1,59
3,2x350	100-130	DC+	65	221	1,2	34,8	48	1,66
3,2x450	100-135	DC+	75	272	1,4	45,2	36	1,61
4,0x350	130-180	DC+	64	313	1,9	51,3	29	1,51
4,0x450	130-190	DC+	77	410	2,2	66,3	21	1,41
5,0x450	220-260	DC+	84	657	3,0	101,8	14	1,43

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр	тр Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G				
2,5	80A	85A	85A	85A	80A				
3,2	120A	115A	115A	115A	110A				
4,0	170A	180A	180A	180A	160A				
5,0	240A	250A	250A	250A	230A				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7028 H4R
 A-Nr
 1

 ISO 2560-A
 E 42 2 B 5 3 H5
 F-Nr
 1

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM <5 мл / 100 г)

Эффективность 150%

Легкое omgеление шлака

Хорошо подходит для цгловых и горизонтальных V- и X-образных разделок

Высокие сварочно-технологические характеристики как на переменном, так и постоянном токе

Рекомендуются трансформаторы с напряжением холостого хода больше 70 В

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC/DC + / -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	LR	GL	ΤÜV
3H,3Y	3,3YH	3YH5	3,3YH15	3YH10	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Ĺ	Mn	51	Р	5	ним
0,07	0,95	0,4	0,015	0,010	4 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -18°C/-20°C
Требования: AWS A5.1 ISO 2560-A Средние значения ПС		мин. 400 мин. 420 540	мин. 490 500-640 580	мин. 22 мин. 20 27	мин. 27 мин. 47 75
	Диаметр (мм) Длина (мм)		4,0 5,0 450 450		
	Штук в единице Вес нетто/ед. (кг)	90 5,9	55 35 5,3 5,2		

Идентификационное обозначение: 7028 / CONARC L150 Цвет торца э

Штук в единице

Bec Hemmo/ea. [kz]

Цвет торца электрода: желтый

Conarc®L150; Bep. C-RU26-01/02/16

21

SRP

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры guaм. х gлина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Tenловложение	Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
(-ii-g			(c)*	Е (kДж)	H (kz/4)		металла	металла 1/N
3,2x450 4,0x450 5,0x450 6,0x450	140-160 175-220 275-325 325-350	AC/DC+ AC/DC+ AC/DC+ AC/DC+	84 80 75 85	375 555 838 1260	1,7 2,6 4,4 5,4	64,8 97,8 155,7 209,4	26 17 11 8	1,67 1,69 1,72 1,64

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр	Просі	транственн	ые положения	варки						
(мм)	PA/1G	PB/2F	PC/2G							
3,2	150A	150A	140A							
4,0	210A	200A	190A							
5,0	310A	280A								
6,0	360A	300A								

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C Рекомендуются трансформаторы с напряжением холостого хода больше 70В

Conarc® V180

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7028 H4R
 A-Nr
 1

 ISO 2560-A
 E 42 4 B 7 3 H5
 F-Nr
 1

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM<3 мл/100 гр.)

Эффективность 175%, легкое отделение шлака

Подходит для угловых и горизонтальных V- и X-образных разделок

Высокие показатели ударной вязкости при −40°С, хорошие результаты испытания на смещение раскрытия вершины трещины (CTOD) при −10°С

Отсутствие дефектов при контроле рентгеновским излучением

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC/DC + / -

ОДОБРЕНИЯ СЕРТІ	A TO LIVE A LINE OF LE	ILIV AFFLITCED
	ЛФИКАЦИОП	IDIA ALEILLID

ABS	BV	DNV	LR	GL	RINA	RMRS
3YH5	3,3YHH	3YH5	3,3YH5	3YH10	3YH5	3-3YH5

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Р	S	HDM
0,08	1,2	0,3	0,015	0,010	2 мл/100 г

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	.	Предел	Предел	Отн.	Ударная вязкос	ть по Шарпи (Дж)
	Состояние	mekyчести (МПа)	прочности (МПа)	удлинение (%)	-18°C/-20°C	-40°C
Требования: AWS A5.1 ISO 2560-A Средние значения	ПС	мин. 400 мин. 420 440	мин. 490 500-640 510	мин. 22 мин. 20 30	мин. 27 130	мин. 47 80

Раскрытие вершины трещины при -10°C >0,25 мм

-					-	98	77.0
вип	151	УΠ	Δ	к	81:	343	47

	Диаметр (мм) Длина (мм)	3,2 450	4,0 450	5,0 450	6,3 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (кг)		60 6,0	40 6,1	23 5,4	
SRP	Штук в единице Вес нетто/ед. (кг)	27 2,0	23 2,4	19 2,8	-	

Идентификационное обозначение: 7028 / CONARC V180 Цвет торца электрода: белый

Conarc® V180: Bep. C-RU24-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S185, S235, S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L210, L240, L290, L360
EN 10208-2	L240, L290, L360, L415, L445
API 5LX	X42, X46, X52, X60
EN 10216-1	P235T1, P235T2, P275T1
EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер высокого давления	
EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420

АСХОДУ							
Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000 wm.	Шт. электродов	Кг электродов на кг наплавленного
		- на элект	pog npu максималь	ном moke -	(KZ)		металла 1/N
		(c)*	Е (kДж)	H (kz/4)		метналли	MCManna na
130-160	AC	73	337	2,3	68,9	21	1,47
170-240	AC	70	538	3,6	101,0	14	1,45
275-330	AC	75	780	4,9	149,7	10	1,45
280-425	AC	83	1171	7,0	230,4	6	1,43
	Tok (A) 130-160 170-240 275-330	Tok (A) Pog moka 130-160 AC 170-240 AC 275-330 AC	Ток (A) Род ток метор покатор	Ток (A) Род ток (c)* Время сорения дух. Тепловложение 130-160 АС 73 337 170-240 АС 70 538 275-330 АС 75 780	Ток (A)Род ток (A)Время сорения дух и телловложение иналлавки наллавки налавки налавки (с)*Телловложение иналлавки налавки налавки налавки налавки налавки налавки на (с)*Производимения иналавки иналавки налавки налавки налавки налавки налавки налавки налавки налавки на (с)*130-160АС733372,3170-240АС705383,6275-330АС757804,9	Ток (A)Род ток (C)*Время горения дуги горения горения дуги горения дуги горения дуги горения дуги горения го	Ток (A) Род ток (A) Время сорения духи Тепловложение инальность на электро при максимальном токе - (с)* Производи тельность на электро при максимальном токе - (с)* Вес / 1000 шт. электродов на ке налл. металлавии (кг) 130-160 АС 73 337 2,3 68,9 21 170-240 АС 70 538 3,6 101,0 14 275-330 АС 75 780 4,9 149,7 10

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр	Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G							
3,2 4,0	160A 230A	140A 190A	140A 190A							
5,0 6,3	300A 390A	230A 280A	230A							

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C Рекомендуются трансформаторы с напряжением холостого хода больше 70В

Kardo®

КЛАССИФИКАЦИЯ

 AWS A5.1
 E6018 ¹
 A-Nr
 1

 ISO 2560-A
 E 35 2 B 3 2 H5
 F-Nr
 4

 ¹no knaccuфukaquu 1966
 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM<3 мл/100 гр.)

Предназначен для ремонта и монтажа транспортных нефтяных и газовых трубопроводов

Электрод для сварки сталей с невысокими прочностными характеристиками и невысокими требованиями по цдарной вязкости

Электрод для выполнения буферного слоя при наплавке на нержавеющую сталь Доступны только в вакуумной ynakoвke Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DAMAG

AC/DC +/-

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	HDM
0,03	0,4	0,25	0,015	0,010	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]									
	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -18°С/-20°С				
Требования: AWS A5.1 ISO 2560-A		мин. 331 мин. 355 390	мин. 414 440-570 450	мин. 22 мин. 22 28	мин. 27 >200				

виды упаковки									
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350					
SRP	Штук в единице Вес нетто/ед. (kг)	23 0,5	17 0,7	28 1,5					

Идентификационное обозначение: KARDO

Цвет торца электрода: черный

Kardo*: 8ep. C-RU25-01/02/16

Kardo®

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Буферный слой при наплавке покрытия с содержанием CrNi и CrNiMo на нержавеющую сталь Высокопрочные стали с мелкозернистой структурой, например, S460 для резервуаров для хранения NH3, при сварке ферритных слоев низкой твердости

Сталь для трубопроводов с низким пределом текучести при угловой сварке в Т-образном соединении API 5L: от X52 до X65 (EN 10208: от L360 до L460).

ДАННЫЕ ПО РАСХОДУ

Размеры guaм. х длина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Tenловложение pog npu максималь	Производи- тельность наплавки ьном токе -	Bec / 1000 um. (kz)	Шт. электродов на кг напл. металла	Кг электродов на кг наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		менталла	Memanna i/N
2,5x350 3,2x350 4,0x350	60-80 90-120 120-160	DC+ DC+ DC+	81 84 79	173 252 448	0,5 1,0 1,6	19,7 36,5 53,0	81 43 29	1,60 1,58 1,56

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр Пространственные положения сварки							
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем	
2,5	80A	80A	80A	85A	80A	80A	
3,2	140A	120A	145A	120A	120A	120A	
4,0	150A	140A	150A	140A	135A	140A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Электроды готовы к применению непосредственно из упаковки Sahara ReadyPack При сварке корня шва нержавеющей стали требуется ограничение проплавления

^{*}Остаток электрода 35 мм

Shield Arc® HYP+

КЛАССИФИКАЦИЯ

 AWS A5.5
 E 7010-P1
 A-Nr
 1

 ISO 2560-A
 E 42 2 Mo C 2 5
 F-Nr
 3

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием целлюлозного типа для сварки труб на спуск

Рекомендуются для сварки труб из стали класса прочности от X52 до X65

Хорошо контролируемая сварочная ванна

Отсутствие склонности к отслаиванию покрытия при сильном давлении на электрод в осевом направлении

Низкая вероятность образования шлаковых включений и поверхностных пор

Низкое разбрызгивание и стабильная дуга

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TÜV ABS

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

L	MN	SI	MO	V
0,13-0,17	0,49-0,63	0,08-0,18	0,27-0,31	<0,01

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел текучести	Предел прочности	Отн. удлинение		вязкость nu (Дж)
		(МПа)	(МПа)	(%)	-20°C	-29°C
Требования: AWS A5.5 ISO 2560-A Средние значения	ПС	мин. 415 мин. 420 435-525	мин. 490 500-640 525-635	мин. 22 мин. 20 24	мин. 47	мин. 27 50

ВИДЫ УПАКОВКИ

	диаметр (мм)	3,2	4,0	4,8
	Длина (мм)	355	355	355
Металлический тубус	Штук в единице	873	561	388
	Вес нетто/еа. (kг)	22.7	22.7	22.7

Идентификационное обозначение: 7010-Р1

Цвет торца электрода: нет

Shield Arc"HYP+: Bep. C-RU07-01/02/16

Shield Arc® HYP+

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

EN 10208-2 L360, L415, L445

EN 10216-1 / 10217-1 P355

API 5LX X52, X56, X60, X65

Gaz de France X52, X63

ДАННЫЕ ПО РАСХОДУ

Размеры guaм. х длина (мм)	Tok (A)	Pog moka	Bec / 1000 wm. (kz)	
3,2x355 4,0x355 4,8x355	75-130 90-185 140-225	DC+ DC+ DC+	26 40,4 58,5	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

UTITIVIAJIBE	OTT VIMA TORDIE FEAVING COAFKY SALIOTRATOWN THEOLOGO					
Диаметр Пространственные положения сварки						
(мм)	РJ/5G на спусk					
3,2 4,0	75-130A 90-185A					
4,8	140-225A					

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-1 для труб из стали класса прочности от L380 до L450 (от X56 до X65) требуется предварительный подогрев

После завершения сварки корневого шва нужно снять центратор и в течение 5 минут начать горячий проход Электроды готовы к применению сразу после извлечения из металлических тубусов

При необходимости в меньшей твердости корневого шва рекомендуется использовать Fleetweld 5P+

^{*}Остаток электрода 35 мм

Shield Arc® 70+

КЛАССИФИКАЦИЯ

AWS A5.5 E8010-G A-Nr 10 ISO 2560-A E 46 4 1Ni C 2 5 F-Nr 3 9606 FM 2

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием целлюлозного типа для вертикальной сварки труб на спуск

Подходят для сварки труб из стали класса прочности от Х56 до Х70

Пригодны для корневых, заполняющих и облицовочных проходов

Низкая вероятность образования шлаковых включений и поверхностных пор

Высокие показатели ударной вязкости

Могут использоваться для работ с раскисленной кремнием сталью

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TÜV ABS

+ +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

L	MIN	31	NI	Lr	MO	V	
0,13-0,17	0,6-1,2	0,05-0,3	0,75-0,97	0,01-0,2	0,05-0,15	0,02-0,04	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел	Предел	Отн.		арная вязкос 10 Шарпи (Дж	
	Состояние	текучести (МПа)	прочности (МПа)	удлинение (%)	-29°C	-40°C	-46°C
Требования: AWS A5.5		мин. 460	мин. 550	мин. 19			
ISO 2560-A		мин. 460	530-680	мин. 20		мин. 47	
Средние значения	ПС	460-620	585-680	24	75		60

ВИЛЫ УПДКОВКИ

	Диаметр (мм)	3,2	4,0	4,8
	Длина (мм)	355	355	355
Металлический	Штук в единице	873	561	388
тубус	Вес нетто/ед. (kг)	22,7	22,7	22,7

Идентификационное обозначение: 8010-G

Цвет торца электрода: нет

Shield Arc70+: 8ep. C-RU27-01/02/16

Shield Arc®70+

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

EN 10208-2 L360, L415, L445, L480

EN 10216-1 / 10217-1 P355

API 5LX X56, X60, X65, X70

Gaz de France X52, X63

ДАННЫЕ ПО РАСХОДУ

Размеры диам. х длина (мм)	Tok (A)	Pog moka	Bec / 1000 wm. (kz)
3,2x355	75-130	DC+	26
4,0x355	90-185	DC+	40,4
4,8x355	140-225	DC+	58,5

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки
(мм)	РЈ/5G на спуск
3,2	75-130A
4,0	90-185A
4,8	140-225A

КЛАССИФИКАЦИЯ

AWS A5.5 E8018-W2-H4R ¹⁾ A-**Nr** 10 ¹с omkлонениями, см. примечания - ²⁾самый близкий класс **ISO 2560-A** E 46 5 Mn1Ni B 3 2 H5 ²⁾ **F-Nr** 4

9606 FM 2

ОБЩЕЕ ОПИСАНИЕ

Электрод для сварки устойчивой к атмосферному воздействию стали, например, Cor-Ten, Patinax и т.д., в любых пространственных положениях

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле Высокие механические характеристики и ударная вязкость при низких температурах до -50°C Также доступен в вакуумной упаковке Sahara ReadyPack*(SRP): HDM<3 мл/100 гр.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

LR

4Y42H5

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	Cu	НДМ
0,05	1,5	0,4	0,010	0,015	0,9	0,4	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)										
			Предел		едел	Отн.	Ударна	я вязкосп	16 по Шар	пи (Дж)
	,	Состояние	текучести (МПа)		ности ІПа)	удлинение (%)	-18°C	-20°C	-40°C	-50°C
Требования: AWS A5.5 ISO 2560-A Средние значения		ПС	мин. 460 мин. 460 540	530	н. 550 1-680 510	мин. 19 мин. 20 25	мин. 27	115	100	мин. 47 60
ВИДЫ УПАКОВКИ										
		иетр (мм) на (мм)	2,5 350	3,2 350	4,0 350					
Карт. коробка + ПЭ пленка		ık в единице iemmo/eg. (k		120 4,5	-					
SRP	Шту Вес н	ık в единице iemmo/eg. (k	69 1,4	50 1,9	27 1,5					

Идентификационное обозначение: CONARC 55CT

Цвет торца электрода: черный

Conarc® 55CT: Bep. C-RU28-01/02/16

Conarc[®] 55CT

Класс прочности стали / Код	Tun
Устойчивая к атмосферному воздействию сталь	
EN 10025-5	S235 J0W

S235 J2W S355 J0W S355 J2W S355 K2G1W

Устойчивые k атмосферному воздействию Класс прочности стали, например, Cor-Ten®, Patinax®-F, Patinax®-37 и аналогичные им сплавы из Ni и Cu

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)	TOK (A)	r og moku	- на элеkm	pog npu максималь	ном moke -	wm. (kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/4)		менналла	Memania i/N
2,5x350	55-85	DC+	53	81	0,77	19,7	88	1,74
3,2x350	80-145	DC+	70	223	1,2	36,9	43	1,60
4,0x350	120-185	DC+	77	355	1,6	54,1	29	1,59
5,0x450	180-270	DC+	104	784	2,4	105,2	15	1,53

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

ļ uaметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,5	110A	110A	115A	110A	105A	110A				
3,2	140A	120A	145A	120A	120A	120A				
4,0	150A	140A	150A	140A	135A	140A				
5,0	220A	210A	210A	170A						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

Отклонения: химический состав:

Mn = 1,4 - 1,9% AWS:Mn = 0,50 - 1,30% Si = 0,15 - 0,60% AWS:Si = 0,35 - 0,80% Cr = 0,1% AWS:Cr = 0,45 - 0,70% AWS: Ni = 0,7 - 1,0% AWS: Ni = 0,40 - 0,80% Cu = 0,3 - 0,5% EN:Cu makc.0,3%

Conarc® 60G

КЛАССИФИКАЦИЯ

 AWS A5.5
 E9018M-H4
 A-Nr
 10

 ISO 18275-A
 E 55 4 Z B 32 H5
 F-Nr
 4

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM<2 мл/100 гр.) для сварки в любых пространственных положениях

Предназначается для сварки высокопрочных марок стали (прочность на разрыв 540-640 МПа)

Высокая ударная вязкость при температуре до -51°C

Предпочтительна сварка на постоянном токе

Эффективность 115 - 120%

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	TÜV
3Y	4Y50	4Y50H5	4YH10	+	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	Мо	HDM
0,06	1,0	0,4	0,015	0,010	1,6	0,3	2 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Предел Состояние текучести		Предел Отн. прочности удлинение		Ударная вязкость по Шарпи (Дж)		
		(МПа)	(МПа)	(%)	-20°C	-40°C	-51°C
Требования: AWS A5.5		540-620*	мин. 620	мин. 24			мин. 27
ISO 18275-A		мин. 550	610-780	мин. 18		мин. 47	
Средние значения	ПС СН:1ч/620°С	600 550	670 640	25 24	90	98	40

^{*} Makc. quaм. 2,5 мм 655 МПа

ВИДЫ УПАКОВКИ	

	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	5,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)		-	85 4,6	55 5,8	
SRP	Штук в единице Вес нетто/ед. (kг)	65 1,4	50 2,0	28 1,5	23 2,6	

Идентификационное обозначение: 9018-M / CONARC 60G Цвет торца электрода: красный

Conarc® 60G: Bep. C-RU25-01/02/16

Conarc[®] 60G

СВАРИВАЕМЫЕ МАТЕРИАЛЫ		
Класс прочности стали / Код	Tun	
Конструкционная сталь общего назначе	ния	
EN 10025	S355	
Трубная сталь		
EN 10208-2	L360, L415, L445, L480	
API 5LX	X52, X56, X60, X65, X70	
EN 10216-1/EN10217-1	P235T1, P235T2, P275T1, P275T2, P355N	
Сталь с мелкозернистой структурой		
EN 10025 часть 4	S420M (L), S460M (L), S420N (L), S460N (L)	
EN 10025 часть 6	S460, S500	
Устойчивая к атмосферному воздействи	ю сталь	
EN 10155	S235 J0W	
	S235 J2W	
	S355 J0W	
	S355 J2W	
	S355 K2G1W	

ДАННЫЕ ПО І	РАСХОДУ								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг	
(мм)			- на элеkm	pog npu максималь	ном moke -	шт. (kг)	на kz напл. металла	наплавленного металла 1/N	
			(c)*	Е (kДж)	H (kz/4)		метталла	MCIIIabbia ibis	
2,5x350	60-100	DC+	63	114	0,7	23,5	77	1,80	
3,2x350	80-130	DC+	69	231	1,3	38,3	40	1,52	
4,0x350	120-180	DC+	72	324	1,7	55,8	30	1,66	
5,0x450	160-240	DC+	119	760	2,2	105,2	14	1,43	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем			
2,5	80A	75A	80A	85A	75A	75A			
3,2	130A	120A	135A	120A	115A	120A			
4,0	155A	145A	160A	145A	140A	140A			
5,0	225A	220A	210A						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°С

Conarc® 70G

КЛАССИФИКАЦИЯ

 AWS A5.5
 E9018-G-H4R
 A-Nr
 10

 ISO 18275-A
 E 55 4 1NiMo B 3 2 H5
 F-Nr
 4

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM <3 мл/100г) для сварки в любых пространственных положениях

Предназначается для сварки высокопрочных марок стали (прочность на разрыв 640-735 МПа) и корневых проходов стали НУ 100

Высокие механические характеристики и ударная вязкость при низких температурах до -40°C

Рекомендуется сварка на постоянном токе

Эффективность 115-120%

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DNV TÜV

4Y50H5

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Р	S	Ni	Мо	HDM
0,06	1,2	0,4	0,014	0,009	1,0	0,4	2 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Предел Состояние текучест		Предел прочности	Отн. цалинение		я вязкость apnu (Дж)	
		(МПа)	(МПа)	[%]	-20°C	-40°C	-46°C
Требования: AWS A5.5		мин. 530	мин. 620	мин. 17	не требуется		
ISO 18275-A		мин. 550	610-780	мин. 18		мин. 47	
Средние значения	ПС CH:15 ч/580°C	600 550	655 640	24 24	90	90	60 50
ВИДЫ УПАКОВКИ							

3 2

4 N

4 N

DVILLDI YTTAKUDKV

	Длина (мм)	350	350	350	450	450
Карт. коробка +	Штук в единице	110	120	85	-	55
ПЭ пленка	Вес нетто/ед. (kг)	2,5	4,6	4,6		5,8
SRP	Штук в единице	64	50	28	28	23
	Вес нетто/ед. (kг)	1,5	2,0	1,5	2,0	2,4

Идентификационное обозначение: 9018-G / CONARC 70G — Цвет торца электрода: светло-зеленый

Ппамети (мм)

Conarc*70G: Bep. C-RU24-01/02/16

Conarc® 70G

CBAPI			

Класс прочности стали / Kog Tun

Сталь для бойлеров и камер высокого давления (реакторная сталь, в т. ч. после закалки и отпуска)

DIN 20MnMoNi5-5, 22NiMoCr3-7

15NiCuMoNb5-6-4

GS-18NiMoCr3-7 ASTM A508CL2, A508CL3

A533CL.1Gr.B / C

A533CL.2Gr.B / C

Жаропрочная сталь

15NiCuMoNb-5 (WB36) 1,6368

17MnMoV6-4(WB35) 1,5403

Трубная сталь

EN 10208-2 L480, L550

API 5LX X65, X70 (корневые проходы по X80)

Сталь с мелкозернистой структурой

EN 10025 часть 6 S460, S500, S550

Корневые и заполняющие проходы по стали S620 и S690

Производи-Время Шт. Кг электроаов Тепловложение тельность Размеры горения дуги Bec/1000 электроаов на кг наплавки Tok (A) диам. х длина Pog moka um. (kz) на кг напл. наплавленного - на электрод при максимальном moke -(MM) металла металла 1/N Е (кДж) H (kz/u) 2.5x350 60-100 DC+ 67 121 0,7 19,5 75 1,47 3.2x350 80-130 DC+ 70 234 1.3 37.5 41 1.56 DC+ 55.4 1.59 4.0x350 120-180 343 1.7 29 74 DC+ 5,0x450 160-240 106 573 2,5 106,4 14 1,43

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	РН/5G на подъем			
2,5	80A	75A	80A	85A	75A	75A			
3,2	130A	120A	135A	120A	115A	120A			
4,0	155A	145A	160A	145A	140A	140A			
5,0	225A	220A	210A						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

^{*}Остаток электрода 35 мм

Conarc® 74

КЛАССИФИКАЦИЯ

 AWS A5.5
 E8018-G-H4R
 A-Nr
 10

 ISO 2560-A
 E 50 6 Mn1Ni B 3 2 H5
 F-Nr
 4

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия для сварки трубопроводов и офшорных сооружений Makc. содержание Ni 1%

Высокие механические характеристики и ударная вязкость при низких температурах до -60°C Очень низкое содержание диффузионного водорода в наплавленном металле шва Эффективность 110-120%

Возможность сварки как на постоянном, так и на переменном токе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

HAKC

в процессе оформления

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	НДМ	
0,05	1,5	0,5	0,010	0,005	0,95	2 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%] Предел Предел Отн. Ударная вязкость по Шарпи (Дж) иалинение Состояние текцчести прочности -40°C -60°C (M⊓a) (M∏a) [%] Требования: AWS A5.5 мин. 460 мин. 550 мин. 19 не требцется ISO 2560-A мин. 500 560-720 мин. 18 мин. 47 Средние значения ПС 550 640 24 140 ۸n

Раскрытие вершины трещины при -10°C >0,25 мм

ВИДЫ УПАКОВКИ	1			
	Диаметр (мм) Длина (мм)	3,2 350	4,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (кг)	120 4,7	85 5,9	

Идентификационное обозначение: 8018-G / CONARC 74 Цвет торца электрода: белый

Conarc* 74: 8ep. C-RU05-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S275, S355
Листы cygocmpoumeльной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L290 GA, L360 GA
EN 10208-2	L290, L360, L415, L445
API 5LX	X42, X46, X52, X60, X65
EN 10216-1/EN 10217-1	P275T1, P275T2, P355N
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420, S460
EN 10025 часть 4	S275, S355, S420, S460
EN 10025 часть 6	S460

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000 wm.	Шт. электродов	Кг электродов на кг
(мм)			- на элеkm	род при максималь	ном moke -	(kz)	на kz напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		менили	Memoria in
2,5x350	55-80	DC+	59	85	0,72	19,3	86	1,65
3,2x350	80-145	DC+	66	220	1,2	37,7	48	1,79
4,0x350	120-185	DC+	77	355	1,6	54,1	29	1,59
4,0x450	120-185	DC+	90	450	1,8	68,4	23	1,56
5,0x450	180-240	DC+	104	784	2,4	105,2	15	1,53

^{*}Остаток электрода 35 мм

иаметр	етр Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем			
2,5	80A	80A	80A	80A	80A	80A			
3,2	140A	120A	145A	120A	120A	120A			
4,0	150A	140A	150A	140A	135A	140A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°С

Conarc® 80

КЛАССИФИКАЦИЯ

 AWS A5.5
 E11018M-H4
 A-Nr
 10

 ISO 18275-A
 E 69 5 Z B 3 2 H5
 F-Nr
 4

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле для сварки в любых пространственных положениях

Возможность применения как на постоянном, так и переменном токе

Эффективность 110-115%

Высокая ударная вязкость при температуре до -51°C

Отвечает требованиям военных спецификаций

Пригоден для сварки высокопрочных марок стали для применения на подводных лодках (прочность на разрыв до 800 МПа) Также доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	LR	CCS
+	4V69H5	4V69L

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	Мо	НДМ
0,06	1,5	0,4	0,015	0,01	2,2	0,4	2 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekuчести			Ударная вязкость по Шарпи (Дж)		
		(МПа)	(МПа)	удлинение (%)	-40°C	-50°C	-51°C
Требования: AWS A5.5		680-760*	мин. 760	мин. 20			мин. 27
ISO 18275-A		мин. 690	760-960	мин. 17		мин. 47	
Средние значения	ПС	750	785	22	100	80	80

^{*} Makc guaм. 2,5 мм, 795 МПа CH:14ч/620°C

ВИДЫ УПАКОВКИ						
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	5,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	-	120 4,5	90 5,0	60 6,3	
SRP	Штук в единице Вес нетто/ед. (кг)	70 1,4	50 1,9	28 1,5	23 2,5	
Macumudukauucuuco ofica	HALLOUIS TINIS M / CONARC SO LIRO	m monus saok	mnoga: 20go	mucmuŭ		Committee of the contract of t

Conarc® 80

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код Тип

Трубная сталь

API 5LX X70, X75

Сталь с мелкозернистой структурой

EN 10025 часть 6 S620, S690

Корневые и заполняющие проходы по стали \$890

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	ия дуги наплавки Вес / 1000 элек наплавки Вес / 1000 элек а электрод при максимальном токе - шт. (kг) на к			Шт. электродов	
(мм)			- на элеkm			на kz напл. металла		
			(c)*	E (кДж)	H (kz/4)		менталла	Melilabbia i/N
2,5x350	60-80	DC+	55	99	0,8	19,5	82	1,61
3,2x350	80-130	DC+	78	261	1,1	36,5	43	1,55
4,0x350	120-180	DC+	75	356	1,6	53,2	30	1,59
5,0x450	160-240	DC+	116	627	2,3	105,1	14	1,45

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Циаметр	Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем			
2,5	75A	75A	75A	80A	75A	80A			
3,2	130A	120A	135A	120A	115A	120A			
4,0	145A	145A	155A	140A	140A	140A			
5,0	225A	230A	210A						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°С

Conarc® 85

КЛАССИФИКАЦИЯ

 AWS A5.5
 E12018-G-H4R
 A-Nr
 10

 ISO 18275-A
 E 69 5 Mn2NiCrMo B 3 2 H5
 F-Nr
 4

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле (HDM <3 мл/100г)

Подходит для сварки марок стали с пределом прочности на разрыв максимум 835 МПа Подходит для таких высокопрочных марок стали, как Т1, HY 100, Naxtra 70, HRS 650, Dillimax 690 Высокие механические характеристики и ударная вязкость при низких температурах до -50°C Доступны только в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DA//C

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	DNV	CCS	
+	4Y69H5	4Y69H5	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	Мо	Cr	HDM
0,06	1,4	0,3	0,010	0,010	2,0	0,4	0,4	2 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние			Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
		(МПа)	(МПа)	[%]	-40°C	-50°C
Требования: AWS A5.5 ISO 18275-A		мин. 740 мин. 690	мин. 830 760-960	мин. 14 мин. 17	не требуется	мин. 47
Средние значения	ПС СН:1ч/620°С	840 780	890 840	21 20	80 75	60 60

ВИДЫ УПАКОВКИ

	Диаметр (мм)	2,5	3,2	4,0	4,0	5,0
	Длина (мм)	350	350	350	450	450
SRP	Штук в единице	68	50	28	28	23
	Вес нетто/ед. (kг)	1,4	1,9	1,5	1,9	2,5

Идентификационное обозначение: 12018-G / CONARC 85 Цвет торца электрода: голубой

Conarc* 85 Bep. C-RU29-12/051/16

Conarc® 85

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь API 5LX

X70, X75, X80

Сталь с мелкозернистой структурой

EN 10025 часть 6

S690

Корневые и заполняющие проходы по стали \$890

ДАННЫЕ ПО І	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	20 Tok (A) Pog moka		Тепловложение	Bec/1000	Шт. электродов на кг напл. металла	Кг электродов на кг	
(мм)	TORUN	r og monu	- на электрод при максимальном moke -				wm. (kz)	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		менналла	менналла і/іч
3,2x350	80-130	DC+	69	219	1,0	37,5	50	1,89
4,0x350	120-180	DC+	68	321	1,5	53,2	35	1,87
5,0x450	160-240	DC+	106	632	2,0	106,7	17	1,81

^{*}Остаток электрода 35 мм

иаметр		Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем					
2,5	75A	75A	75A	80A	75A	80A					
3,2	135A	130A	140A	120A	120A	120A					
4,0	155A	145A	155A	140A	140A	140A					
5,0	225A	220A	215A								

КЛАССИФИКАЦИЯ

 AWS A5.5
 E7018-G-H4R ¹
 A-Nr
 10

 ISO 2560-A
 E 50 6 Mm1Ni B 3 2 H5
 F-Nr
 4

 ¹makske coombemcm8upem AWS A5.5:E8018-G-H4R
 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварочных работ в любых пространственных положениях на офшорных сооружениях, максимальное содержание Ni 1%

Высокие механические характеристики и ударная вязкость при низких температурах до -60°C Высокие результаты испытания на смещение раскрытия вершины трещины (СТОД) при -10°C Очень низкое содержание водорода

Эффективность 110 - 120%

эффективность по - 120%

Возможность сварки как на постоянном, так и переменном токе

Takже доступен в вакуумной упаковке Sahara ReadyPack (SRP): HDM < 3 мл/100г

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

PA/1G

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	LR	GL	RINA	RMRS	ΤÜV	
3Y	UP	5Y46H5	5Y40H5	6Y46H10	4YH5	3-3YH5	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Mn	Si	Р	5	Ni	ним
0,05	1,5	0,4	0,010	0,010	0,9	2 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел Состояние текучести		Отн. идлинение	Ударная вязкость no Шарпи (Дж)	
		(МПа)	(МПа)	(%)	-20°C	-60°C
Требования: AWS A5.5 ISO 2560-A		мин. 390 мин. 500	мин. 480 560-720	мин. 25 мин. 18	не требуется	мин. 47
Средние значения	ПС CH:580°C/15 ч	550 460	640 550	24 24	150	90 90

Раскрытие вершины трещины при -10°C >0,25 мм

ВИДЫ УПАКОВКИ									
	Диаметр (мм) Длина (мм)	2,5 350	3,0 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (кг)	135 2,7	-	130 4,7	120 5,8	85 4,4	85 5,9	-	
SRP	Штук в единице Вес нетто/ед. (кг)	70 1,4	54 1,5	50 1,9	50 2,4	28 1,5	28 2,0	23 2,5	
Идентификационное обозначение : 7018-Б / KRYO 1 Цвет торца электрода: сиреневый								Kryo* 1: Bep. C-RU26-12/05/16	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ							
Класс прочности стали / Код	Tun						
Конструкционная сталь общего назначения							
EN 10025	S275, S355						
Листы судостроительной стали							
ASTM A 131	Mapku A, B, D, om AH32 go EH40						
Литая сталь							
EN 10213-2	GP240R						
Трубная сталь							
EN 10208-1	L290 GA, L360 GA						
EN 10208-2	L290, L360, L415, L445						
API 5LX	X42, X46, X52, X60, X65, X70						
EN 10216-1	P275T1						
EN 10217-1	P275T2, P355N						
Сталь с мелкозернистой структурой							
EN 10025 часть 3	S275, S355, S420, S460						
EN 10025 часть 4	S275, S355, S420, S460						
EN 10025 часть 6	S460						

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
(мм)				род при максималь			металла	металла 1/N
			(c)*	Е (кДж)	H (kz/4)			
2,5x350	55-80	DC+	59	85	0,72	19,3	86	1,65
3,0x350	70-110	DC+	74	256	0,93	30,2	52	1,58
3,2x350	80-140	DC+	66	220	1,2	37,7	48	1,79
3,2x450	80-140	DC+	78	259	1,3	48,7	35	1,72
4,0x350	120-170	DC+	77	355	1,6	54,1	29	1,59
4,0x450	120-170	DC+	90	450	1,8	68,4	23	1,56
5,0x450	180-240	DC+	104	784	2,4	105,2	15	1,53

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	НЫЕ РЕЖИМЫ	СВАРКИ ЗАПО.	ЛНЯЮЩИХ ПРОХОДОЕ	1

Диаметр	Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,5	80A	80A	80A	80A	80A	80A				
3,0	110A	110A	115A	110A	105A	110A				
3,2	140A	120A	145A	120A	120A	120A				
4,0 5,0	150A 220A	140A 210A	150A 210A	140A 170A	135A	140A				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

Kryo® 1N

КЛАССИФИКАЦИЯ

 AWS A5.5
 E8016-G-H4R
 A-Nr
 10

 ISO 2560-A
 E 50 6 Mn1Ni B 12 H5
 F-Nr
 4

 9606 FM
 2

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварочных работ в любых пространственных положениях на офшорных сооружениях, максимальное содержание Ni 1%

Тонкое покрытие, легкое управление сварочной ванной

Высокие механические характеристики и ударная вязкость при низких температурах до -60°C

Высокие результаты испытания на смещение раскрытия вершины трещины (CTOD) при -10°C

Очень низкое содержание диффузионного водорода в наплавленном металле Возможность сварки как на постоянном, так и переменном токе

Доступны только в вакуумной упаковке Sahara ReadyPack (SRP): HDM < 3 мл/100г

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	НДМ	
0,07	1,7	0,5	0,020	0,005	0,9	2 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Ударная вязкость Отн. Предел Предел ́по Шарпи (Дж) Состояние текциести прочности иалинение (M∏a) (M∏a) [%] -40°C -60°C Требования: AWS A5.5 мин. 460 мин. 550 мин. 19 ISO 2560-A мин. 500 560-720 мин. 18 требцется мин. 47 ПС Средние значения 570 650 24 60 95

Раскрытие вершины трещины при -10°С >0,25 мм

ВИДЫ УПАКО	рвки					
	Диаметр (мм) Длина (мм)	2,5 350	3,2 450	4,0 450	5,0 450	
SRP	Штук в единице Вес нетто/ед. (kz)	45 0,9	56 2,3	30 1,9	23 2,3	

Идентификационное обозначение: 8016-G / KRYO 1N

Цвет торца электрода: красный

Kryo* 1N: Bep. C-RU25-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L290 GA, L360 GA
EN 10208-2	L290, L360, L415, L445
API 5LX	X42, X46, X52, X60, X65, X70
EN 10216-1	P275T1
EN 10217-1	P275T2, P355N
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420, S460
EN 10025 часть 4	S275, S355, S420, S460
EN 10025 часть 6	S460

ДАННЫЕ ПО Р	ДАННЫЕ ПО РАСХОДУ												
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	тепловложение тельность		Bec/1000		Кг электродов на кг					
(мм)			- на элеkm	pog npu максималь	ном moke -	wm. (kz)	на kz напл. металла	наплавленного металла 1/N					
			(c)*	E (кДж)	H (kz/4)		менналла	Melilalila i/N					
2,5x350	60-95	DC+	50	106	0,82	19,2	90	1,71					
3,2x450	80-145	DC+	68	256	1,2	40,1	43	1,73					
4,0x450 5,0x450	120-190 175-230	DC+	82	436	1,7	63,6	26	1,65					

^{*}Остаток электрода 35 мм

Диаметр Пространственные положения сварки									
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем			
2,5	75A	70A	75A	70A	75A	80A			
3,2	100A	110A	100A	100A	100A	110A			
4,0	150A	140A	130A	125A	125A	120A			

КЛАССИФИКАЦИЯ

AWS A5.5 E 8018-G-H4R A-Nr 10 ISO 2560-A E 50 6 Mn1Ni B 3 2 H5 F-Nr 4 9606 FM 2

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварочных работ в любых пространственных положениях на офшорных сооружениях, максимальное содержание Ni 1%

Высокие механические характеристики и ударная вязкость при низких температурах до -60°C Высокие результаты испытания на смещение раскрытия вершины трещины (СТОД) при -10°C

Очень низкое содержание диффузионного водорода в наплавленном металле

Эффективность 110 - 120%

Возможность сварки kak на постоянном, так и переменном токе Вакцимная unakoвka Sahara ReadyPack®: HDM < 3 мл/100г

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	HDM	
0,05	1,5	0,5	0,010	0,005	0,95	2 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел Предел текичести прочности		Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	Состояние	(МПа)	(МПа)	(%)	-40°C	-60°C
Требования: AWS A5.5 ISO 2560-A		мин. 460 мин. 500	мин. 550 560-720	мин. 19 мин. 18	не требцется	мин. 47
Средние значения	ПС	550	640	24	, ,	80
. 3	CH:580°С/15 ч	460	550	24	140	90
					150	

Раскрытие вершины трещины при -10°C >0,25 мм

ВИДЫ УПА	ковки							
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450	
SRP	Штук в единице Вес нетто/ед. (kг)	70 1,4	50 1,9	50 2,4	28 1,5	28 2,0	23 2,5	

Идентификационное обозначение: 8018-G / KRYO 1P

Цвет торца электрода: сиреневый

Kryo* 1P: 8ep. C-RU26-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S275, S355
Листы судостроительной стали	
ASTM A 131	Mapku A, B, D, om AH32 go EH40
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L290 GA, L360 GA
EN 10208-2	L290, L360, L415, L445
API 5LX	X42, X46, X52, X60, X65, X70
EN 10216-1	P275T1
EN 10217-1	P275T2, P355N
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420, S460
EN 10025 часть 4	S275, S355, S420, S460
EN 10025 часть 6	S460

сходу							
Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
јлина Tok (A) Pog m)		- на элект	pog npu максималь	ном moke -	wm. (kz)		наплавленного металла 1/N
		(c)*	Е (kДж)	H (kz/4)		менталла	Memania i/N
55-85	DC+	59	85	0,72	19,3	86	1,65
80-145	DC+	66	220	1,2	37,7	48	1,79
80-145	DC+	78	259	1,3	48,7	35	1,72
120-185	DC+	77	355	1,6	54,1	29	1,59
120-185	DC+	90	450	1,8	68,4	23	1,56
180-270	DC+	104	784	2,4	105,2	15	1,53
1	Tok (A) 55-85 80-145 80-145 120-185 120-185	Tok (A) Pog moka 55-85 DC+ 80-145 DC+ 80-145 DC+ 120-185 DC+	Ток (A) Род тока горения дуги Ток (A) Род тока - на элект (c)* 55-85 DC+ 59 80-145 DC+ 66 80-145 DC+ 77 120-185 DC+ 90	Ток (A) Род ток (c)* Время горения дуги Тепловложение 55-85 DC+ 59 85 80-145 DC+ 66 220 80-145 DC+ 78 259 120-185 DC+ 77 355 120-185 DC+ 90 450	Ток (A) Род ток (A) Время горения дуги пельность на электров при максимальном токе - (c)* Тек (кДж) Н (кг/ч) 55-85 DC+ 59 85 0,72 80-145 DC+ 66 220 1,2 80-145 DC+ 78 259 1,3 120-185 DC+ 77 355 1,6 120-185 DC+ 90 450 1,8	Ток (A) Род ток Время горения дуги Тепловложение инальность налья все / 1000 имя. (кг) Вес / 1000 имя. (кг) 55-85 DC+ 59 85 0,72 19,3 80-145 DC+ 66 220 1,2 37,7 80-145 DC+ 78 259 1,3 48,7 120-185 DC+ 77 355 1,6 54,1 120-185 DC+ 90 450 1,8 68,4	Ток (A) Род тока Время орения дуги Тепловложение инальность на злектрод при максимальном токе - (с)* Производинальном токе - на электрод при максимальном токе - (с)* Вес / 1000 ина ка напл. металла 55-85 DC+ 59 85 0,72 19,3 86 80-145 DC+ 66 220 1,2 37,7 48 80-145 DC+ 78 259 1,3 48,7 35 120-185 DC+ 77 355 1,6 54,1 29 120-185 DC+ 90 450 1,8 68,4 23

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки							
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем		
2,5	80A	80A	80A	80A	80A	80A		
3,2	140A	120A	145A	120A	120A	120A		
4,0	150A	140A	150A	140A	135A	140A		
5,0	220A	210A	210A	170A				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

КЛАССИФИКАЦИЯ

 AWS A5.5
 E8018-G-H4R
 A-Nr
 10

 ISO 2560-A
 E 50 6 Mn1Ni B 5 3 H5
 F-Nr
 4

 9606 FM
 2

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа с максимальным содержанием Ni 1%, отвечающий стандарту NACE MR0175 Очень низкое содержание диффузионного водорода в наплавленном металле: HDM<2 мл/100 гр. Эффективность до 145%, легкое отделение шлака, возможность сварки на постоянном и переменном токе Подходит для заполняющих проходов горизонтальных V- и X-образных разделок Отсутствие дефектов при контроле рентгеновским излучением Доступен только в вакуимной упаковке Sahara ReadyPack®(SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DNV

5Y46H5

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	HDM	
0,06	1,5	0,5	0,010	0,010	0,9	2 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -60°С
Требования: AWS A5.5 ISO 2560-A Средние значения		460 500 570	550 560-720 630	19 18 23	мин. 47 90

ВИДЫ УПА	КОВКИ				
	Диаметр (мм) Длина (мм)	3,2 450	4,0 450	5,0 450	
SRP	Штук в единице Вес нетто/ед. (кг)	48 2,5	25 2,0	21 2,6	

Идентификационное обозначение: 8018-G / KRYO 1-145 Ц86

Цвет торца электрода: оранжевый

Kryo" 1-145: 8ep. C-RU01-12/05/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 S275, S355

Листы судостроительной стали

ASTM A 131 Mapku A, B, D, E, om AH32 go EH40 включительно

Литая сталь

EN 10213-2 GP 240 GH, GP 280 GH

Трубная сталь

EN 10216-1 P195 TR1 / TR2, P 235 TR1 / TR2, P265 TR1 / TR2

EN 10216-2 P195 GH, P235 GH, P265 GH

EN 10216-3 P275 NL1 / NL2, P355 N / NH / NL1 / NL2, P 460 N / NH / NL1 / NL2

EN 10208-1 L210 GA, L235 GA, L245 GA, L290 GA, L360 GA

EN 10208-2 L245 MB / NB, L290 MB / NB, L360 MB / NB / QB, L415 MB / NB / QB, L450 MB / QB

API 5L X42, X46, X52, X56, X60, X65, X70

Сталь для бойлеров и резервуаров высокого давления

EN 10028-2 P235 GH, P265 GH, P295 GH, P355GH

Сталь с мелкозернистой структурой

Другие

Другие стали с эквивалентными требованиями, классифицированные по ASTM, JIS и т. д.

ДАННЫЕ ПО І	РАСХОДУ								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг	
(мм)			-	- на электрод при максимальном moke - wm.			wm. (kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/u)		менналла	Melilabbia biv	
3,2x450	90-150	DC+	82	271	1,6	54,4	27	1,47	
4,0x450	150-190	DC+	95	433	2,2	82,2	18	1,48	
5,0x450	180-270	DC+	98	688	3,3	127,4	12	1,53	

^{*}Остаток электрода 45 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

UITTVIMATION	IDIE PE/KVIIVII	SIE PERVINIEL CHAPKU SALIOJITAIOЩUS LIPOSOGOD					
Диаметр	Пространственные положения сварки						
[мм]	PA/1G	PB/2F	PC/2G				
3,2 4,0 5,0	130 A 170 A 235 A	130 A 160 A 225 A	130 A 160 A 225 A				

КЛАССИФИКАЦИЯ

 AWS A5.5
 E 8018-G-H4R
 A-Nr
 10

 ISO 2560-A
 E 50 5 1Ni B 7 3 H5
 F-Nr
 4

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа с максимальным содержанием Ni 1%

Очень низкое содержание диффузионного водорода в наплавленном металле

Эффективность около 175%, легкое отделение шлака, возможность сварки как на постоянном, так и переменном токе

Заполнение V- и X-образных разделок

Отсутствие дефектов при контроле рентгеновским излучением

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP): HDM < 3 мл/100г

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC + / -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DNV LR 4Y46H5 4YH5

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%

С	Mn	Si	Р	S	Ni	HDM	
0,07	1,2	0,3	0,02	0,0010	0,9	2 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние			Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
		(ЙПа)	(МПа)	(%)	-40°C	-50°C
Требования: AWS A5.5 ISO 2560-A		мин. 460 мин. 500	мин. 550 560-720	мин. 19 мин. 18	не требуется	мин. 47
Средние значения	ПС CH:600°C/4 ч	550 540	640 620	26 24	90 100	60 85

Раскрытие вершины трещины при -10°C >0,25 мм

ΒΝΠΡΙ ΛΠΨΚυΒΚΙ

Диаметр (мм)	3,2	4,0	5,0
Длина (мм)	450	450	450
SRP Wmyk в единице	27	23	19
Вес нетто/ед. (kг)	2,0	2,4	2,8

Идентификационное обозначение: 8018-G / KRYO 1-180 Цвет торца электрода: розовый

Kryo* 1-180: 8ep. C-RU25-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Nog run

Конструкционная сталь общего назначения EN 10025 S275, S355

Листы судостроительной стали

ASTM A 131 Mapku A, B, D, om AH32 go EH40

Литая сталь

EN 10213-2 GP240R

Трубная сталь

EN 10208-1 L290 GA, L360 GA
EN 10208-2 L290, L360, L415, L445
API 5LX X42, X46, X52, X60, X65, X70

EN 10216-1 P275T1

EN 10217-1 P275T2, P355N

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355, S420, S460 EN 10025 часть 4 S275, S355, S420, S460

EN 10025 yacmb 6 S460, S500

ДАННЫЕ ПО І	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		.,,	- на электрод при максимальном moke -			шт. (kz)	на kz напл. металла	наплавленного металла 1/N
			(c)*	E (кДж)	H (kz/4)		менналла	Memania in
3,2x450	130-160							
4,0x450	170-240	AC	73	537	3,5	102,0	14	1,43
5,0x450	250-300	AC	78	772	5,0	156,7	9	1,45

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки						
(мм)	PA/1G	PB/2F	PC/2G				
4,0	230A	190A	190A				
5,0	300A	230A	230A				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

^{*}Остаток электрода 35 мм

КЛАССИФИКАЦИЯ

 AWS A5.5
 E9018-G-H4R
 A-Nr
 10

 ISO 18275-A
 E 55 6 Z B 3 2 H5
 F-Nr
 4

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварки высокопрочных сталей в любых пространственных положениях на офшорных сооружениях

Эффективность 110 - 120%

Очень низкое содержание диффузионного водорода в наплавленном металле

Высокая ударная вязкость при низких температурах до -60°C

Высокие результаты испытания на смещение раскрытия вершины трещины (CTOD) при -15°C

Takже gocmyneн в вакуумной ynakoвке Sahara ReadyPack®[SRP]: HDM<3 мл/100 гр.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)							
С	Mn	Si	Р	S	Ni	НДМ	
0.05	1.6	0.3	0.015	0.01	1.5	2 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]								
	Состояние	Предел mekyчести	Предел прочности	Отн.	Ударная вязкост	Ударная вязкость по Шар		
	состиояние	(МПа)	прочности (МПа)	удлинение (%)	-40°C	-50°C	-60°C	
Требования: AWS A5.5 ISO 18275-A		мин. 530 мин. 550	мин. 620 610-780	мин. 17 мин. 18	не требуется		мин. 47	
Средние значения	ПС СН:620°С/1 ч	570 530	650 620	22 22	140	110	60	

Раскрытие вершины трещины при -10°С >0,25 мм

ВИДЫ УПАН	КОВКИ				
	Диаметр (мм) Длина (мм)	2,5 350	3,2 450	4,0 450	
SRP	Штук в единице Вес нетто/ед. (kг)	70 1,4	50 2,4	28 2,0	

Идентификационное обозначение: 9018-G / KRYO 2

Цвет торца электрода: зеленый

Kryo* 2: Bep. C-RU27-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S355
Литая сталь	
EN 10213-2	GP240R
Трубная сталь	
EN 10208-1	L290 GA, L360 GA
EN 10208-2	L290, L360, L415, L445, L480
API 5LX	X42, X46, X52, X60, X65, X70
EN 10216-1	P275T1
EN 10217-1	P275T2, P355N
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S275, S355, S420, S460
EN 10025 часть 4	S275, S355, S420, S460
EN 10025 часть 6	S460, S500
Низкотемпературная сталь	
EN 10028-4	11MnNi5-3, 13 MnNi6-3, 15NiMn 6
EN 10222-3	13MnNi6-3, 15NiMn 6

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х qлина Ток (A)	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)	TOK (A)	r og moku	- на элеkm	род при максималь	ном moke -	wm. (kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/4)		менналли	метналла і/іч
2,5x350	55-85	DC+	59	85	0,72	19,4	86	1,65
3,2x450	80-140	DC+	80	268	1,2	46,8	36	1,70
4,0x450	120-170	DC+	89	445	1,8	70,0	22	1,52

^{*}Остаток электрода 35 мм

иаметр		I	Пространст	пвенные положения с	Bapku	
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем
2,5	80A	80A	80A	85A	80A	80A
3,2	140A	120A	145A	120A	120A	120A
4,0	150A	140A	150A	140A	135A	140A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

AWS A5.5 F8018-C1-H4 A-Nr 10 ISO 2560-A E 46 8 3Ni B 32 H5* F-Nr * Ближайший эквивалент 9606 FM

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварочных работ в любых пространственных положениях на офшорных сооружениях, содержание Ni составляет около 2,5%

Эффективность 115-120%

Высокая ударная вязкость при низких температурах до -80°C

Высокие результаты испытания на смещение раскрытия вершины трещины (CTOD) при -10°C

Очень низкое содержание диффузионного водорода в наплавленном металле

Takже доступен в вакуумной упаковке Sahara ReadyPack (SRP): HDM < 3 мл/100г

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC +/-

ОДОБРЕНИЯ СЕРТ	IA CONTRACTOR AND A STATE OF THE STATE OF TH	ILIV AFFILTCED
THURPPERMATER	ишикапише	IBIX ALEH ILIB

ABS	BV	DNV	LR	GL	RINA	ΤÜV	
+	UP	5YH10	5Y40H	6Y42H10	5YH5	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	HDM
0,05	0,7	0,3	0,015	0,01	2,5	2 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние			Отн. цалинение	Ударная вязкость по Шарпи (Дж)		
		(МПа)	· (МПа)	[%]	-60°C	-80°C	
Требования: AWS A5.5 ISO 2560-A	TO ¹⁾	мин. 460 мин. 460	мин. 550 530-680	мин. 19 мин. 20	мин. 27	мин. 47	
Средние значения	ПС CH:610°C/2 ч	520 500	600 590	26 29	120 90	60	

Раскрытие вершины трещины при -10°C >0,25 мм

После термической обработки и omnucka: $T0^{-1} = 6.05 + 14^{\circ}$ С/1 ч

виды упаковки								
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	3,2 450	4,0 350	4,0 450	5,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kz)	135 2,7	120 4,2	-	85 4,4	85 5,9	55 5,7	
SRP	Штук в единице Вес нетто/ед. (kz)	70 1,4	50 1,9	50 2,4	28 1,5	28 2,0	23 2,5	
Идентификационное обозна	ачение: 8018-C1 / KRYO 3 Цвет п	порца электр	oqa: серебр	истый				Kryn*3: Ben C-RU26-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025	S355
Трубная сталь	
EN 10208-2	L360, L415, L445
API 5LX	X52, X56, X60, X65
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S355, S420, S460
EN 10025 часть 4	S355, S420, S460
Низкотемпературная сталь	
EN 10028-4	11MnNi5-3, 13MnNi6-3, 15NiMn6 (12Ni14G1, G2)
EN 10222-3	13MnNi6-3, 15NiMn6

ДАННЫЕ ПО Р	АСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	' гепловложение		Bec/1000	Шт. электродов	Кг электродов на кг
(мм)			- на элект	pog npu максималь	ном moke -	шт. (kг)	на kг напл. металла	наплавленного металла 1/N
			(c)*	E (kДж)	H (kz/4)		менталла	Memania i/N
2,5x350	55-80	DC+	57	103	0,72	19,5	88	1,71
3,2x350	80-140	DC+	65	218	1,3	37,4	44	1,64
3,2x450	80-140	DC+	79	263	1,4	48,5	33	1,59
4,0x350	120-170	DC+	74	344	1,6	52,7	30	1,57
4,0x450	120-170	DC+	100	463	1,7	69,8	21	1,45
5,0x450	180-240	DC+	103	723	2,5	104,8	14	1,48

^{*}Остаток электрода 35 мм

ļ uaметр		I	Пространст	пвенные положения <mark>с</mark>	Bapku	
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем
2,5	80A	80A	80A	85A	80A	80A
3,2	140A	120A	145A	120A	120A	120A
4,0	150A	140A	150A	140A	135A	140A
5,0	220A	210A	210A	170A		

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Omkлонения: химический состав: Ni = 2,25 - 2,75% ISO: Ni = 2,6 - 3,8%

E7016-C2L-H4R **AWS A5.5** A-Nr 10 ISO 2560-A E 38 8 3Ni B 3 2 H5 F-Nr 9606 FM

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварочных работ в любых пространственных положениях на офшорных сооружениях, содержание Ni составляет около 3,5%

Высокая ударная вязкость при низких температурах до -80°C после сварки и -100°C по завершении послесварочной термообработки

Очень низкое содержание диффузионного водорода в наплавленном металле Доступны только в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

Krvo* 4: 8ep. C-RU27-01/02/16

химиче	СКИЙ СОСТА						
С	Mn	Si	Р	S	Ni	HDM	
0,03	0,6	0,4	0,01	0,005	3,6	2 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текучести	Предел прочности	Отн. цалинение		вязкость Inu (Дж)
	Состояние	(МПа)	(MПа)	(%)	-80°C	-101°C
Требования: AWS A5.5	TO ¹⁾	мин. 390	мин. 480	мин. 25		мин. 27
ISO 2560-A	ПС	мин. 380	470-600	мин. 20	47	
Средние значения	ПС	490	570	30	90	
	TO ¹⁾	420	510	30	120	90

¹⁾605±14°C/1 ч

Идентификационное обозначение: 7016-C2 / KRYO 4

ВИДЫ УПА	виды упаковки							
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350					
SRP	Штук в единице Вес нетто/ед. (kz)	70 1,4	58 1,8					

Цвет торца электрода: серебристый Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На caŭme www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь общего назначения	
EN 10025-2	S355
Трубная сталь	
EN 10208-2	L360, L415
API 5LX	X52, X56, X60
Сталь с мелкозернистой структурой	
EN 10025 часть 3	S355, S420
EN 10025 часть 4	S355, S420
Низкотемпературная сталь	
EN 10028-4	11MnNi5-3, 13MnNi6-3, 15NiMn6 (12Ni14G1, G2)
EN 10222-3	13MnNi6-3, 15NiMn6
ASTM A203	Mapku A, B
ASTM A333	Copm 3
ASTM A334	Copm 3
ASTM A350	Copm LF3, CL1 u 2
ASTM A420	Copm WPC3

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
		-						
(мм)			- на элект	pog npu максималь	ном токе -	()		
[мм]			- на элект (c)*	род при максималь Е (кДж)	ном токе - Н (кг/ч)	(1.0)	металла	металла 1/N
(мм) 2,5x350 3,2x350	60-90 80-140	DC+ DC+				14,7		

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
		Пространсп	пвенные положения с	Bapku					
PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
75A 110A	70A 120A	75A 110A	70A 100A	75A 100A	80A 100A				
	PA/1G 75A	PA/1G PB/2F 75A 70A	PA/1G PB/2F PC/2G 75A 70A 75A	Пространственные положения с PA/1G PB/2F PC/2G PF/3G на подъем 75A 70A 75A 70A	Пространственные положения сварки PA/1G PB/2F PC/2G PF/3G на подъем PE/4G 75A 70A 75A 70A 75A	Пространственные положения сварки PA/1G PB/2F PC/2G PF/3G на подъем PE/4G PH/5G на подъем 75A 70A 75A 70A 75A 80A			

SL® 12G

КЛАССИФИКАЦИЯ

AWS A5.5	E7018-A1-H4R	A-Nr	2
ISO 3580-A	E Mo B 3 2 H5	F-Nr	4
		9606 FM	1/3

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле для сварки в любых пространственных положениях (HDM <5 мл/100 г)

Предназначаются для сварки жаропрочных сталей с мелкозернистой структурой

Температура эксплуатации от -40 go 500°C

Рекомендиется постоянный ток

Эффективность 115-120%

Также доступны в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DB	DNV	ΤÜV
+	0,3 Mo	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Мо	HDM	
0,05	0,8	0,6	0,020	0,010	0,55	2 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		1.3.		Отн. цалинение	Ударная вязкость по Шарпи (Дж)		
	Состояние	(МПа)	(МПа)	(%)	+20°C	-20°C	
Требования: AWS A5.5 ISO 3580-A Средние значения	ТО ¹⁾ ТО ²⁾ ТО ³⁾ ПС	мин. 390 мин. 355 560 550	мин. 490 мин. 510 620 610	мин. 25 мин. 22 25 25	не требуется мин. 47 140 160	50 70	

Термическая обработка и omnyck: $T0^{10} = 620\pm14^{\circ}$ C/1 ч, $T0^{20} = 570-620^{\circ}$ C/1 ч, $T0^{30} = 620^{\circ}$ C/1 ч

виды упаковки							
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	5,0 450		
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	110 2,5	120 4,5	85 4,7	55 6,0		
SRP	Штук в единице Вес нетто/ед. (kг)	67 1,4	50 2,0	28 1,5	23 2,6		
Илентификационное обозна	QUEH I I - 7018-Δ1 / SI 12 G I I Rem m	nnua anekmni	uua: cuuuii				CI *12C. flow C Dilac 12/05/66

SL® 12G

ASTM A352

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс п	рочности	стали /	'Koq	Tun
---------	----------	---------	------	-----

Жаропрочная сталь

EN 10028-2 P295GH, P355GH, 16Mo3 и аналогичные сплавы

EN 10222-2 17Mo3, 14Mo6 и аналогичные сплавы

Copm LC1

ASTM A335 Copm P1
ASTM A209 Copm T1
ASTM A250 Copm T1
ASTM A336 Copm F1
ASTM A204 Mapku A, B, C
ASTM A217 Copm WC1

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355, S420 EN 10025 часть 4 S275, S355, S420

ПАРАМЕТРЫ ЖАРОПРОЧНОСТИ

Температура испытаний °С	400	450	500	550
Предел текучести Rp-0,2% (МПа) Предел ползучести Rm/1000 (МПа) Предел ползучести Rm/10,000 (МПа) Сопротивление ползучести Rp1%/10,000 (МПа)	420	380 360 320 230	330 300 180 150	(200) (80) (65)

ΠΔΗΗЫΕ ΠΟ ΡΔΓΧΟΠΥ

Размеры диам. х длина (мм)			Время горения дуги - на элект	рения дуги Гепловложение тельносп наплавкі - на электрод при максимальном токе -			Шт. электродов на кг напл.	Кг электродов на кг наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		металла	Memania i/N
2,5x350	60-90	DC+	65	118	0,7	22,8	84	1,92
3,2x350	80-130	DC+	69	230	1,3	37,9	42	1,59
4,0x350	120-180	DC+	81	373	1,6	54,8	28	1,56
5,0x450	160-240	DC+	106	799	2,4	107,4	14	1,52

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

ļ uaметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,5	80A	85A	80A	85A	80A	80A				
3,2	130A	120A	130A	120A	120A	120A				
4,0	150A	145A	140A	140A	140A	140A				
5,0	225A	225A	210A							

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемый guanaзон температур термообработки: 580-630°C (продолжительность зависит от толщины материала)

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

SL[®] 19G

КЛАССИФИКАЦИЯ

 AWS A5.5
 E8018-B2-H4
 A-Nr
 3

 ISO 3580-A
 E CrMo1 B 3 2 H5
 F-Nr
 4

 9606 FM
 3

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле для сварки в любых пространственных положениях (HDM < 5 мл/100 г)

Предназначаются для сварки жаропрочных и устойчивых к образованию диффузионного водорода сталей СгМо Максимальная рабочая температура 550°С

Рекомендуется сварка на постоянном токе

Эффективность 115-120%

Также доступны в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

BV	DNV	RINA	ΤÜV
C1M	1Cr0,5Mo	C1M	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Cr	Мо	HDM	
0,06	0,75	0,6	0,015	0,010	1,1	0,5	3 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести	Предел прочности	Отн. удлинение	Ударная вязі no Шарпи (
		(МПа)	(МПа)	[%]	+20°C	-20°C
Требования: AWS A5.5 ISO 3580-A Средние значения	TO ¹⁾ TO ²⁾ TO ³⁾	мин. 460 мин. 355 570	мин. 550 мин. 510 640	мин. 19 мин. 20 24	не требуется мин. 47 180	100

Термическая обработка и omnyck: $TO^{10} = 690 \pm 14^{\circ}$ C/1 ч, $TO^{20} = 660 - 700^{\circ}$ C/1 ч, $TO^{30} = 700^{\circ}$ C/1 ч

ВИДЫ УПАКОВКИ						
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	5,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	120 2,6	120 4,6	85 4,7	55 6,1	
SRP	Штук в единице Вес нетто/ед. (kг)	67 1,4	50 2,0	28 1,5	-	
Идентификационное обозн	SL*19G: 8ep. C-RU25-12/05/16					

Hackonoko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

SL® 19G

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog T	un
-------------------------------	----

Жаропрочная сталь

EN 10028-2 13CrMo4-5 и аналогичные сплавы EN 10083-1 25CrMo4 и аналогичные сплавы EN 10222-2 14CrMo4-5 и аналогичные сплавы ASTM A387 Copm 11 и 12 ASTM A182 Copm F1 и F12

ASTM A217 Copm WC6 u WC11
ASTM A234 Copm WP11 u WP12
ASTM A199 Copm T11
ASTM A200 Copm T11 u T12
ASTM A213 Copm T11 u T12
ASTM A335 Copm P11 u P12

Инструментальная сталь

DIN 17210 16MnCr5 и аналогичные сплавы

ПАРАМЕТРЫ ЖАРОПРОЧНОСТИ

Температура испытаний °С	400	450	500	550	600	
Предел mekyчесmu Rp-0,2% (МПа) Предел ползучесmu Rm/1000 (МПа) Предел ползучесmu Rm/10,000 (МПа) Сопротивление ползучесmu Rp1%/10,000 (МПа)	460	440 350 250	430 300 240 170	140 110 80	(80) (50) (35)	

ПАННЫЕ ПО РАСХОПУ

Размеры диам. х длина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Tenловложение pog npu максималь	Производи- тельность наплавки ьном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл. металла	Кг электродов на кг наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/u)		менналла	Memania i/N
2,5x350	60-90	DC+	63	114	0,71	21,0	80	1,67
3,2x350	80-130	DC+	68	227	1,3	37,9	41	1,56
4,0x350	120-180	DC+	79	367	1,6	54,9	29	1,59
5,0x450	160-240	DC+	103	777	2,5	106,9	14	1,52

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	РН/5G на подъем			
2,5	80A	85A	80A	85A	80A	80A			
3,2	130A	120A	130A	120A	120A	120A			
4,0	150A	145A	140A	140A	140A	140A			
5,0	225A	225A	210A						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемая температура предварительного подогрева: 200 - 250°C

Рекомендуемый диапазон температур термообработки: 660 - 700°C (продолжительность зависит от толщины материала)

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

SL[®] 20G

КЛАССИФИКАЦИЯ

AWS A5.5 E9018-B3-H4 A-Nr 4
ISO 3580-A E CrMo2 B 3 2 H5 F-Nr 4
9606 FM 3

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием основного типа для сварки углеродистой стали в любых пространственных положениях (HDM < 5 мл/100 г)

Предназначаются для сварки жаропрочных и устойчивых к образованию диффузионного водорода сплавов CrMo Максимальная рабочая температура 600°C

Рекомендуется сварка на постоянном токе

Эффективность 115-120%

Также доступны в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

RINA TÜV

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Cr	Мо	HDM	
0,06	0,8	0,6	0,015	0,010	2,3	1,0	3 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел Г текичести пр		Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	Состояние	(МПа)	прочности (МПа)	(%)	+20°C	-10°C
Требования: AWS A5.5 ISO 3580-A Средние значения	TO ¹⁾ TO ²⁾ TO ³⁾	мин. 530 мин. 400 530	мин. 620 мин. 500 650	мин. 17 мин. 18 22	не требуется мин. 47 150	90

Термическая обработка и omnyck: TO¹ = 690±14°C/1 ч, TO² = 690-750°C/1 ч, TO³ = 695°C/1 ч

ВИДЫ УПАКОВКИ							
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350			
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	110 2,6	120 4,7	85 4,8			
SRP	Штук в единице Вес нетто/ед. (kг)	67 1,4	50 2,0	28 1,5			
Идентификационное обозн	дентификационное обозначение : 9018-B3 / SL 20 G Цвет торца электрода: белый						

SL[®] 20G

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код	Tun
-----------------------------	-----

Жаропрочная сталь

EN 10028-2 10CrMo9-10 и аналогичные сплавы EN 10222-2 12CrMo9-10 и аналогичные сплавы

ASTM A387 Copm 21 u 22
ASTM A182 Copm F22
ASTM A217 Copm WC9
ASTM A234 Copm WP22
ASTM A199/A200 Copm T21 u T22
ASTM A213 Copm T22
ASTM A335 Copm P22

ПАРАМЕТРЫ ЖАРОПРОЧНОСТИ

Температура испытаний °С	400	450	500	550	600	
Предел текучести Rp-0,2% (МПа) Предел ползучести Rm/1000 (МПа) Предел ползучести Rm/10,000 (МПа) Сопротивление ползучести Rp1%/10,000 (МПа)	480	460	430 240 210 160	160 110 85	(100) (60) (45)	

ПАННЫЕ ПО РАСХОПУ

Размеры guaм. х длина (мм)		Tok (A)	Pog moka	Время горения дуги - на элект	Tenлoвлoжение pog npu максималь	Производи- тельность наплавки ном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл. металла	Кг электродов на кг наплавленного металла 1/N
				(c)*	Е (kДж)	H (kz/4)		менналла	Melilajijia i/iV
	2,5x350 3,2x350 4,0x350	60-90 80-130 120-180	DC+ DC+ DC+	63 70 75	114 233 348	0,72 1,3 1,7	21,0 37,6 56,7	79 40 28	1,67 1,49 1,56

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	• • • • • • • • • • • • • • • • • • • •										
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем					
2,5	80A	85A	80A	85A	80A	80A					
3,2	130A	120A	130A	120A	120A	120A					
4,0	150A 145A 140A		140A	140A 140A							

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемая температура предварительного подогрева: 200 - 300°C

Рекомендуемый guanaзон температур термообработки:690 - 750°C (продолжительность зависит от толщины материала)

После извлечения из коробок электроды следует прокалить в течение 2-4 часов при температуре 350 ±25°C

SL[®] 22G

AWS A5.5 E8018-B1-H4 A-Nr 3 ISO 3580-A E Z B 3 2 H5 F-Nr 9606 FM

Электрод с основным типом покрытия с низким содержанием диффизионного водорода в наплавленном металле для сварки в любых пространственных положениях (НDM<5 мл/100г)

Предназначаются для сварки жаропрочных сплавов CrMoV

Максимальная рабочая температура 550°С

Рекомендуется сварка на постоянном токе

Эффективность 115-120%

Доступны только в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Cr	Мо	HDM
0,06	8,0	0,6	0,020	0,010	0,5	0,5	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текичести	Предел прочности	Отн.	Ударная вязі no Шарпи (
	Состояние	(МПа)	(МПа)	удлинение (%)	+20°C	-10°C
Требования: AWS A5.5 Средние значения	TO ¹⁾ TO ²⁾	мин. 460 570	мин.550 640	мин. 19 24	не требуется 180	110

Термическая обработка и omnuck: $TO^{10} = 690\pm14^{\circ}\text{C/1}$ ч. $TO^{20} = 14/730^{\circ}\text{C}$

ВИДЫ УПАКОВКИ								
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	5,0 450			
SRP	Штук в единице Вес нетто/ед. (kг)	67 1,4	50 2,0	28 1,5	23 2,6			

Идентификационное обозначение: 8018-B1 / SL 22 G

Цвет торца электрода: оранжевый

SL* 22G: 8ep. C-RU24-01/02/16

SL[®] 22G

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код Tun

Жаропрочная сталь

DIN

14MoV6-3 17MnMoV6-4 10CrSiMoV7 24CrMoV5-5

ПАРАМЕТРЫ ЖАРОПРОЧНОСТИ

ДАННЫЕ ПО РАСХОДУ

Температура испытаний °С	400	450	500	550	575	
Предел текучести Rp-0,2% (МПа) Предел ползучести Rm/1000 (МПа) Предел ползучести Rm/10,000 (МПа) Сопротивление ползучести Rp1%/10,000 (МПа)	480	470	450 270 250 210	170 150 130	150 130 110	

Размеры guaм. х длина (мм)	Tok (A) Pog moka		Время горения дуги - на элект	Производи- тельность наплавки ном токе -	тельность наплавки Вес/1000		Кг электродов на кг наплавленного металла 1/N	
			(c)*	E (kДж)	H (kz/4)		металла	Melilalila i/N
2,5x350 3,2x350 4,0x350 5,0x450	60-90 80-130 120-180 160-220	DC+ DC+ DC+ DC+	64 71 76 101	115 238 353 762	0,7 1,2 1,6 2,6	21,0 37,5 55,8 106,6	82 41 30 14	1,69 1,54 1,64 1,49

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр		Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем					
2,5	80A	85A	80A	85A	80A	80A					
3,2	130A	120A	130A	120A	120A	120A					
4,0	150A	145A	140A	140A	140A	140A					
5,0	225A	225A	210A								

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемая температура предварительного подогрева: 200 - 300°C

Рекомендуемый диапазон температур термообработки:700 - 730°C (продолжительность зависит от толщины материала)

SL® 502

КЛАССИФИКАЦИЯ

 AWS A5.5
 E8018-B6-H4R
 A-Nr
 4

 ISO 3580-A
 E CrMo5 B 3 2 H5
 F-Nr
 4

 9606 FM
 4

ОБШЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле для сварки в любых пространственных положениях (HDM< 5 мл/1002)

Предназначаются для сварки жаропрочных и устойчивых к образованию диффузионного водорода сплавов с содержанием Cr 5% и Мо 0,5%

Максимальная рабочая температура 550°С

Разработаны специально для нефтехимической отрасли

Доступны только в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Cr	Мо	HDM
0,07	0,8	0,6	0,020	0,010	5,3	0,6	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) +20°С
Требования: AWS A5.5	TO ¹⁾	мин. 460	мин. 550	мин. 19	не требуется
ISO 3580-A	TO ²⁾	мин. 400	мин. 590	мин. 17	мин. 47
Средние значения	TO ³⁾	580	680	22	110

Термическая обработка и omnyck: TO¹⁾= 740 ±14°С/1 ч, TO²⁾= 730-760°С/1 ч, TO³⁾= 750°С/2 ч

ВИДЫ УПАКОВКИ

	Диаметр (мм)	2,5	3,2	4,0
	Длина (мм)	350	350	350
SRP	Штук в единице	67	52	29
	Вес нетто/ед. (kz)	1,4	1,9	1,6

Идентификационное обозначение: 8018-B6 / SL 502

Цвет торца электрода: коричневый

SL° 502: Bep. C-RU25-01/02/16

SL® 502

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Жаропрочная сталь

DIN

ASTM

A182 F5 A213 T5 A335 P5 A336 F5 A369 FP5 A387 Copm 5

ПАРАМЕТРЫ ЖАРОПРОЧНОСТИ

Температура испытаний °С	400	450	500	550	600	
Предел текучести Rp-0,2% (МПа) Предел ползучести Rm/1000 (МПа) Предел ползучести Rm/10,000 (МПа) Сопротивление ползучести Rp1%/10,000 (МПа)	480	440	380 160 130 100	174 90 50	(80) (60) (30)	

ДАННЫЕ ПО РАСХОДУ

Размеры guaм. х длина (мм)	Tok (A)	(A) Pog moka	Время горения дуги - на элект	Производи- тельность наплавки ном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл. металла	Кг электродов на кг наплавленного металла 1/N	
			(c)*	Е (kДж)	H (kz/4)		метналла	Memania in
2,5x350 3,2x350 4,0x350	60-90 85-130 130-180	DC+ DC+ DC+	55 66 76	95 237 331	0,82 1,1 1,5	20,8 35,4 51,8	80 50 32	1,67 1,79 1,64

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,5	80A	80A	75A	70A	70A	70A				
3,2	130A	130A	125A	120A	120A	120A				
4,0	140A	140A	135A	135A	135A	135A				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемая температура предварительного подогрева: 200 - 300°C

Послесварочная термообработка 730 - 760°С (продолжительность зависит от толщины материала)

SL® 9Cr(P91)

КЛАССИФИКАЦИЯ

 AWS A5.5
 E9016-B9-H4
 A-Nr
 5

 ISO 3580-A
 E CrMo91 B 3 2 H5
 F-Nr
 4

 9606 FM
 4

ОБЩЕЕ ОПИСАНИЕ

Электрод с основным типом покрытия с низким содержанием диффузионного водорода в наплавленном металле для сварки в любых пространственных положениях (HDM<5 мл/1002)

Предназначаются для сварки жаропрочных и устойчивых к образованию диффузионного водорода сплавов с содержанием Cr 9% и Mo 1%

Максимальная рабочая температура 650°С

Созданы для применения на электростанциях и в нефтехимической отрасли

Доступны только в вакуумной упаковке Sahara ReadyPack (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

4

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Cr	Мо	Ni	Nb	٧	N	Mn+Ni	HDM
0,09	0,6	0,2	0,01	0,01	9,0	1,0	0,6	0,04	0,2	0,04	1,2	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) +20°С
Требования: AWS A5.5 ISO 3580-A	TO ¹⁾ TO ²⁾	мин. 530 мин. 415	мин. 620 мин. 585	мин. 11 мин. 17	не требуется мин. 47
Средние значения	TO ³⁾	570	710	21	80

Термическая обработка и omnyck: $TO^{1} = 740 \pm 14^{\circ}\text{C/1} \text{ ч, } TO^{2} = 750 - 770^{\circ}\text{C/1} \text{ ч, } TO^{3} = 2 \text{ ч/730 - 760 °C}$

виды упаковки							
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350			
SRP	Штук в единице Вес нетто/ед. (kг)	66 1,4	50 1,8	28 1,5			

Идентификационное обозначение: 9016-B9 / SL 9 Cr(P91) Цвет торца электрода:темно-зеленый

SL° 9Cr(P91): Bep. C-RU24-01/02/16

SL® 9Cr(P91)

СВАРИВАЕМЫЕ МАТЕРИАЛЫ								
Класс прочности стали / Код	Tun	Kog	Tun					
Жаропрочная сталь								
EN 10222-2 / EN 10302	X10CrMoVNb9-1 (1,4903)							
ASTM	A199 Copm T91 A200 Copm T91	ASME	SA 182-F91					
	A213 Copm T91/P91		SA 213-T91					
	A335 Copm P91		SA 335-P91					
	A336 Copm F91		SA 336-F91					
			SA 369-FP91					
			SA 387-Copm 91					

ДАННЫЕ ПО Р	РАСХОДУ								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Производи- Тепловложение тельность наплавки		Шт. Вес / 1000 электродов шт. (кг) на кг напл.			
(мм)		-	- на элеkm	pog npu максималь	ном moke -	um. (KZ)	на кг напл. металла	наплавленного металла 1/N	
			(c)*	E (кДж)	H (kz/u)				
2,5x350	60-90	DC+	57	88	0,7	19,3	92	1,78	
3,2x350	85-130	DC+	65	172	1,0	34,8	59	2,04	
4,0x350	130-175	DC+	66	263	1,5	50,8	36	1,81	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ Пространственные положения сварки Диаметр [MM] PA/1G PB/2F PC/2G PF/3G на подъем PE/4G PH/5G на подъем 2,5 80A 80A 75A 70A 70A 70A 3.2 130A 130A 125A 120A 120A 120A 4.0 140A 140A 135A 135A 135A 135A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемая температура предварительного подогрева: 200 - 300°C Послесварочная термообработка 730 - 760°C (продолжительность зависит от толщины материала)

Arosta® 304L

КЛАССИФИКАЦИЯ

AWS A5.4 E 19 9 L R 1 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-196...+350°C Стойкость к окислению: ао 800°C

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки нержавеющей стали марки 304L и ее аналогов в любых пространственных положениях

Высокая коррозионная стойкость в окисляющих средах, например, азотной кислоте

Высокая устойчивость к межкристаллической коррозии

Хороший внешний вид шва

Легкое omgеление шлака

Прочное покрытие электрода

Может использоваться как на переменном, так и постоянном токе

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC + / -

Vaanuaa Raakoomi

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

BV	ΤÜV	DB
304L	+	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,02	0,8	0,8	19,5	9,7	4-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Преде		Преде прочно		Отн. цалинение	ударная по Шар	оязкост inu (Дж)	16
	Состояние	(МПа		(МПа		(%)	+20°C	-20°C	-196°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуе мин. 32 440		мин. 5 мин. 5 580		мин. 35 мин. 30 43	не требуется не требуется 70	60	24
ВИДЫ УПАКОВКИ									
Диам: Длина	етр (мм) а (мм)	2,0 300	2,5 350	3,2 350	4,0 350	5,0 350			
	в единице mmo/eg. (kг)	225 2,3	135 2,6	150 4,8	85 4,9	65 4,8			
SRP Wmyk Bec не	в единице mmo/eg. (kz)	= =	69 1,4	56 1,9	-				

Идентификационное обозначение: 308L-16 / AROSTA 304 L Цвет торца электрода: голубой

Arosta*304L: 8ep. C-RU26-12/05/16

Arosta® 304L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое о	содержание углерос	ya (C <0,03%)			
	X2CrNi19-11		1,4306	(TP)304L	S30403
				CF-3	J92500
	X2CrNiN18-10		1,4311	(TP)304LN	S30453
				302,304	S30400
Среднее содер	жание углерода (С >	0,03%]			
	X4CrNi18-10		1,4301	(TP)304	S30409
		GX5CrNi19-10	1,4308	CF 8	J92600
Со стабилиза:	цией Ti, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
				(TP)347H	S34709
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)			- на элект	pog npu максималь	ном moke -	wm. (kz)	на kz напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		менталла	Memania i/N
2,0 x 300	30-50	DC+	43	45	0,55	10,4	154	1,59
2,5 x 350	40-75	DC+	51	88	0,86	19,2	82	1,59
3,2 x 350	60-110	DC+	57	158	1,3	32,2	49	1,59
4,0 x 350	80-150	DC+	65	245	1,7	47,3	32	1,52
5,0 x 350	140-220	DC+	66	390	2,7	76,7	20	1,56
*Остаток эле	ктрода 35 м	М						

ОПТИМАЛЬН	НЫЕ РЕЖИМІ	ы СВАРКИ ЗАІ	полняющи	х проходов						
Диаметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,0		45A	45A	40A	40A	40A				
2,5	70A	70A	70A	60A	60A	60A				
3,2	100A	100A	100A	70A	70A	70A				
4,0	140A	140A	140A	80A						
5,0	180A	180A	180A							

Для корневых проходов рекомендуется постоянный ток прямой полярности (DC-)

Limarosta® 304L

КЛАССИФИКАЦИЯ

AWS A5.4 E 19 9 L R 1 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-196...+350°C Стойкость к окислению :00 800°C

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки нержавеющей стали марки 304L и ее аналогов в любых пространственных положениях

Гладкая поверхность шва

Самоотделяющийся шлак

Высокая смачиваемость основного металла, отсутствие подрезов

Высокая устойчивость к образованию пор

Может использоваться как на переменном, так и постоянном токе

Также достипен в вакиимной unakoвке Sahara ReadyPack® (SRP)

Для корневых проходов рекомендуется Arosta® 304L, диам. 2,5 мм

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC + / -

DNV	GL	LR	RMRS	ΤÜV
308LH10	4550	304L	304L	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,025	0,75	0,95	19,0	9,7	4-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние		једел Јчести		редел чности	Отн. удлинение	У	/дарная вязко Д по Шарпи (Д	
		(N	Л Па)	. (МПа)	[%]		+20°C	-20°C
Требования: А ISI Средние зн	O 3581-A	мu	ебуется н. 320 140		ин. 520 ин. 510 600	мин. 35 мин. 30 45		требуется требуется 75	60
ВИДЫ УПАКОВН	КИ								
	Диаметр (мм) Длина (мм)	2,0 300	2,5 350	3,2 350	4,0 450	5,0 450			
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	125 2,3	125 2,7	135 4,7	85 5,8	55 5,8			
SRP	Штук в единице Вес нетто/ед. (kг)	-	65 1,4	52 1,8	28 2,0	22 2,4			
Linc Can™	Штук в единице Вес нетто/ед. (kг)	-	203 4,4	124 4,3	78 5,3	48 3,5			
Идентификационное об	означение: 308L-17 / LIMAROSTA 304 L	Цвег	т торца элекп	прода: гол	убой			Limarosta°304L: Be	ep. C-RU25-01/02/16

Limarosta® 304L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое о	одержание углерос	ja (C <0,03%)			
	X2CrNi19-11		1,4306	(TP)304L	S30403
				CF-3	J92500
	X2CrNiN18-10		1,4311	(TP)304LN	S30453
				302,304	S30400
Среднее содер	жание углерода (С >	0,03%]			
	X4CrNi18-10		1,4301	(TP)304	S30409
		GX5CrNi19-10	1,4308	CF 8	J92600
Со стабилиза:	цией Ті, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
				(TP)347H	S34709
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	Кг электродов на кг
	- на элект	род при максималі	ном moke -	wm. (kz)		наплавленного металла 1/N
	(c)*	E (кДж)	H (kz/4)		мешалла	метпалла ілі
DC+	40	51	0,59	11,6	151	1,75
DC+	51	103	0,88	21,7	81	1,75
DC+	57	177	1,3	34,3	48	1,64
5 DC+	83	373	1,8	68,0	24	1,64
0 DC+	85	577	2,7	106,2	16	1,67
5	DC+ DC+ DC+ DC+ DC+ DC+ DC+	Pog moka - на элект (c)* D DC+ 40 DC+ 51 DC+ 57 DC+ 83	горения gyzu - на электрод при максимали (c)* E (кДж) DC+ 40 51 DC+ 51 103 DC+ 57 177 DC+ 83 373	Род moka Род moka - на электрод при максимальном moke - [c]* E [kДж] H [kz/ч] D DC+ 40 51 0,59 DC+ 51 103 0,88 DC+ 57 177 1,3 DC+ 83 373 1,8	1 Род ток в рес на уступна вой	горения дуги наллавки наллавки на на наллавки на

^{*}Остаток электрода 35 мм

Диаметр Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем			
2,0		45A	45A	40A	40A	40A			
2,5	70A	70A	70A	60A	60A	60A			
3,2	100A	100A	100A	70A	70A	70A			
4,0	140A	140A	140A						
5,0	180A	180A							

Vertarosta® 304L

КЛАССИФИКАЦИЯ

AWS A5.4 E 19 9 L R 2 1 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-196...+350°C **Стойкость к окислению** :qo 800°C

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки нержавеющей стали марки 304L и ее аналогов в любых пространственных положениях

Предназначен для вертикальной сварки в направлении сверху вниз на постоянном токе

Подходит для корневых проходов в зазорах между свариваемыми кромками

Высокая коррозионная стойкость в окисляющих средах

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TÜV DB

+ +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,02	0,8	0,7	20,0	9,8	4-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести	Предел прочности	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж)		
		(МПа)	[.] (МПа)		+20°C	-20°C	-120°C
Требования: AWS A ISO 358 Средние значен	1-A	не требуется мин. 320 440	мин. 520 мин. 510 600	мин. 35 мин. 30 40	не требуется не требуется 70	50	40
ВИДЫ УПАКОВКИ							
	ļиаметр (мм) ļлина (мм)	2,5 300	3,2 300				
	Итук в единице Вес нетто/ед. (kz)	190 2,9	130 3,1				

Идентификационное обозначение: 308L-15 / VERTAROSTA 304 L

Цвет торца электрода: серый

Vertarosta*304L: Bep. C-RU24-01/02/16

Vertarosta® 304L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое о	одержание углерос	ya (C <0,03%)			
	X2CrNi19-11		1,4306	(TP)304L	S30403
				CF-3	J92500
	X2CrNiN18-10		1,4311	(TP)304LN	S30453
				302,304	S30400
Среднее содер	жание углерода (С >	0,03%]			
	X4CrNi18-10		1,4301	(TP)304	S30409
		GX5CrNi19-10	1,4308	CF 8	J92600
Со стабилиза:	цией Ті, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
				(TP)347H	S34709
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

ДАННЫЕ ПО Р	АСХОДУ							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
(мм)				род при максималь			металла	металла 1/N
			(c)*	E (кДж)	H (kz/4)			
2,5 x 300	60-70	DC+	44	65	0,81	15,0	101	1,52

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ						
Диаметр (мм)	Пространственные положения сварки PG/3G на спуск					
(ММЈ	го/зо на спуск					
2,5	70A					
3,2	100A					

Jungo® 304L

КЛАССИФИКАЦИЯ

AWS A5.4 E 19 9 L B 2 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-196...+350°C Стойкость к окислению :qo 800°C

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварки сталей, эксплуатирующихся при низкой температуре Низкое содержание водорода в наплавленном металле шва, высокая ударная вязкость при низких температурах до -196°C

Высокие сварочно-технологические характеристики и гладкая поверхность шва Высокая устойчивость к окислению при температуре до 800°C

Предназначен для сварки на moke DC+

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,025	1,8	0,4	19,0	10,0	4-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние			Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
		(МПа)	(МПа)	[%]	+20°C	-196°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 320 400	мин. 520 мин. 510 600	мин. 35 мин. 30 40	не требуется не требуется 80	40

БИДЫ УПАКОБКИ

	диаметтр (мм) Длина (мм)	2,5 350	3,2 350	350	
Карт. коробка +	Штук в единице	120	150	100	
ПЭ пленка	Вес нетто/ед. (kг)	2,4	4,8	4,8	

(L...)

Идентификационное обозначение: 308L-15 / JUNGO 304 L Цвет торца электрода: темно-синий

Jungo*304L: Bep. C-RU24-01/02/16

Jungo® 304L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерод	ja (C <0,03%)			
	X2CrNi19-11		1,4306	(TP)304L	S30403
				CF-3	J92500
	X2CrNiN18-10		1,4311	(TP)304LN	S30453
				302,304	S30400
Среднее содер:	жание углерода (С >	0,03%]			
	X4CrNi18-10		1,4301	(TP)304	S30409
		GX5CrNi19-10	1,4308	CF 8	J92600
Со стабилизац	цией Ті, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
				(TP)347H	S34709
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

ДАННЫЕ ПО Р	АСХОДУ							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		5	- на элект	pog npu максималь	ном moke -	wm. (kz)	на kz напл. металла	наплавленного металла 1/N
			(c)*	E (kДж)	H (kz/4)		менталла	Memanna niv
2,5 x 350	55-65	DC+	50	86	0,82	19,1	88	1,89
3,2 x 350	70-90	DC+	51	135	1,3	31,6	53	1,72
4,0 x 350	90-120	DC+	66	206	1,7	47,0	32	1,56

^{*}Остаток электрода 35 мм

Диаметр Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем		
2,5	60A	60A	60A	60A	60A	60A		
3,2	95A	90A	90A	75A	75A	75A		
4,0	125A	110A	125A	100A	100A	100A		

Arosta® 347

AWS A5.4 E347-16 A-Nr 8 Mat-Nr 1,4551 ISO 3581-A E 19 9 Nb R 1 2 F-Nr 9606 FM 5

Детали под избыточным давлением:-120...+400°C Стойкость к окислению: ao 800°C

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием рутилово-основного типа для сварки нержавеющей стали в любых пространственных положениях

Предназначен для сварки марок стали со стабилизаторами Ті, Nb или их эквивалентами (AlSi 321 и 347)

Высокая стойкость к межкристаллической коррозии

Легкое omgеление шлака и гладкая поверхность шва

Прочное покрытие электрода

Может использоваться как на переменном, так и постоянном токе

Takже доступен в вакуумной упаковке Sahara ReadyPack®(SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC + / -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV DB

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Nb	FN (no WRC 1992)
0,03	0,8	0,8	19,5	9,8	0,35	6-12

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Предел Предел текичести прочности			Отн.	Ударная вязкость по Шарпи (Дж)		
	Состояние	текучести (МПа)	(МПа)	удлинение (%)	+20°C	-20°C	-60°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 350 500	мин. 550 мин. 550 630	мин. 25 мин. 25 35	не требуется не требуется 70	50	35
DIAGLI VE ALCODICIA							

ВИДЫ УПАКОВКИ					
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	120 2,6	130 4,7	90 4,9	
SRP	Штук в единице Вес нетто/ед. (kг)	69 1,4	52 1.8	= -	

Идентификационное обозначение: 347-16 / AROSTA 347

Цвет торца электрода: золотистый

Arosta® 347; Bep. C-RU24-01/02/16

Arosta® 347

СВАРИВАЕМЫЕ МАТЕРИАЛЫ						
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS	
Со стабилиза:	цией Ti, Nb					
	X6CrNiTi18-10		1,4541	(TP)321	S32100	
				(TP)321H	S32109	
	X6CrNiNb18-10		1,4550	(TP)347	S34700	
				(TP)347H	S34709	
		GX5CrNiNb19-10	1,4552	CF-8C	J92710	
				302		
Без стабилизац	uu					
	X4CrNi18-10		1,4301	(TP)304	S30400	
	X2CrNi19-11		1,4306	(TP)304L	S30403	
		GX5CrNi19-10	1,4308	CF-8	J92600	
			1,4312			
				(TP)304H	S30409	

ДАННЫЕ ПО Р	АСХОДУ							
Размеры quaм. х qлина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		9	- на элект	pog npu максималь	ном moke -	wm. (kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		мешалла	Memajina i/N
2,5 x 350	40-75	DC+	52	78	0,87	20,7	80	1,66
3,2 x 350	60-110	DC+	54	119	1,4	34,9	48	1,67
4,0 x 350	80-150	DC+	64	210	1,7	49,0	33	1,61

^{*}Остаток электрода 35 мм

	—							
Диаметр Пространственные положения сварки								
PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
70A	70A	60A	60A	60A				
100A	100A	70A	70A	70A				
140A	140A	80A						
	70A 100A	70A 70A 100A 100A	70A 70A 60A 100A 100A 70A	70A 70A 60A 60A 100A 100A 70A 70A				

Для корневых проходов рекомендуется постоянный ток прямой полярности (DC-)

КЛАССИФИКАЦИЯ

AWS 45.4 E 19 9 Nb B 2 2 F-Nr 5 9606 FM 5

ΠΝΔΠΔ3ΩΗ ΤΕΜΠΕΡΔΤΥΙ

Детали под избыточным давлением :-120...+400°С Стойкость к окислению :ao 800°С

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварки нержавеющей стали в любых пространственных положениях

Предназначен для сварки марок стали со стабилизаторами Ті, Nb или их эквивалентами (AlSi 321 и 347)

Высокая стойкость к межкристаллической коррозии

Легкое omgеление шлака и гладкая поверхность шва

Прочное покрытие электрода

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Nb	FN (no WRC 1992)
0,02	1,6	0,5	20,0	10,0	0,40	6-12

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Cocmo-	Предел Предел Отн. no- mekyvecmu прочности удлинение		Ударная вязкость no Шарпи (Дж)			
	яние	(МПа)	(МПа)	(%)	+20°C	-20°C	-120°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 350 500	мин. 520 мин. 550 630	мин. 30 мин. 25 35	не требуется не требуется 80	50	40

ВИДЫ УПАКОВКИ

	диаметтр (мм) Длина (мм)	350	3,2 350	350
Карт. коробка +	Штук в единице	150	100	75
ПЭ пленка	Вес нетто/ед. (кг)	2,6	4,8	4,4

ليبيا مسمييديال

Идентификационное обозначение: 347-15 / JUNGO 347

Цвет торца электрода: коричневый

Jungo* 347: Bep. C-RU27-01/02/16

Jungo® 347

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Со стабилизац	цией Ti, Nb				
	X6CrNiTi18-10		1,4541	(TP)321 (TP)321H	S32100 S32109
	X6CrNiNb18-10		1,4550	(TP)347 (TP)347H	S34700 S34709
		GX5CrNiNb19-10	1,4552	CF-8C 302	J92710
Без стабилизац	uu			302	
	X4CrNi18-10 X2CrNi19-11		1,4301 1,4306	(TP)304 (TP)304L	S30400 S30403
		GX5CrNi19-10	1,4308 1,4312	CF-8	J92600
				(TP)304H	S30409

ДАННЫЕ ПО І	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)			- на элект	pog npu максималь	ном moke -	шт. (kг)	на kг напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/4)		метналла	Memoria in
3,2 x 350	80 - 100	DC+	51	135	1,3	32,4	53	1,72
4,0 x 350	100 - 130	DC+	66	206	1,7	44,4	32	1,56
5,0 x 450	130 - 160	DC+	69	378	2,3	90.9	23	1,92

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ										
Диаметр			Пространс	твенные положения с	:варки					
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
3,2	95A	90A	90A	75A	75A	75A				
4,0	125A	110A	125A	100A	100A	100A				
5,0	150A	150A								

Arosta® 316L

КЛАССИФИКАЦИЯ

AWS 45.4 E 19 12 3 L R 1 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-120...+350°C

Стойкость к окислению: н/q

ОБШЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки нержавеющей стали марки 316L и ее аналогов в любых пространственных положениях

Содержание молибдена минимум 2,7%

Высокая стойкость к общей и межкристаллической коррозии

Хороший внешний вид шва

Легкое omgеление шлака

Прочное покрытие электрода

Может использоваться как на переменном, так и постоянном токе

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC / DC + / -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	RINA	RMRS	ΤÜV	DB	
+	316L	316L	4571	316L	316L	316L	+	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Mo	FN (no WRC 1992)
0,02	0,8	0,8	18,0	11,5	2,85	4-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Cocmo-	Предел mekyчесn			едел	Om		Уį	дарная в по Шарг	язкость 1u (Дж)	1
		яние	(МПа)	iiu		ности ІПа)	удлин (%		+20°	C	-20°C	-120°C
Требования: А ISI Средние зн	O 3581-A	ПС	не требуеі мин. 320 450		MUI	н. 490 н. 510 580	мин. мин. 39	. 25	не треб не треб 80	ўется	60	40
ВИДЫ УПАКОВН	ΚИ											
		метр (мм) на (мм)	1,! 25		2,0 300	2,5 350	3,2 350	4,0 350	5,0 350			
carton box		ук в единице нетто/ед. (ŀ			200 2,3	135 2,7	150 4,9	90 4,8	65 5,0			
SRP		ук в единице нетто/ед. (ŀ			=	69 1,4	56 1,8	= =	-			
Linc Can™		ук в единице нетто/ед. (ŀ			= -	217 4,7	134 4,4	80 4,2	-			
Идентификационное об	означение: 316	I -16 / AROSTA 316 I	LIBem monua ane	kmnoga	: позовый						rocta*2161 - Ron I	C.DI 127.12/05/16

Arosta® 316L

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
				A240/A312/A351	
Очень низкое (одержание углерод	a (C <0,03%)			
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содер	жание углерода (С >1	0,03%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		GX5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилиза:	ιueŭ Ti, Nb				
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		GX5CrNiNh19-10	1,4552	CF-8C	J92710

ДАННЫЕ ПО РА	АСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		-	- на элект	pog npu максималь	ном moke -	шт. (kг)	на kz напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		менталла	Memajija i/N
1,5 x 250	20 - 40	DC+	25	19	0,44	5,8	330	1,92
2,0 x 300	30 - 50	DC+	42	44	0,58	10,7	150	1,61
2,5 x 350	40 - 75	DC+	50	86	0,88	19,9	82	1,61
3,2 x 350	60 - 110	DC+	57	157	1,3	32,9	49	1,61
4,0 x 350	80 - 150	DC+	64	240	1,7	49,2	32	1,59
5,0 x 350	140 - 220	DC+	67	396	2,6	77,1	20	1,59

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ												
Диаметр	етр Пространственные положения сварки											
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем						
1,5	30A	35A	35A									
2,0	40A	45A	45A	40A	40A	40A						
2,5	70A	70A	70A	60A	60A	60A						
3,2	100A	100A	100A	70A	70A	70A						
4,0	140A	140A	140A	80A								
5,0	180A	180A	180A									

Для корневых проходов рекомендуется постоянный ток прямой полярности (DC-)

Limarosta® 316L

КЛАССИФИКАЦИЯ

AWS A5.4 E316L-17 **A-Nr** 8 **Mat-Nr** 1,4430 **ISO 3581-A** E 19 12 3 L R 1 2 **F-Nr** 5

9606 FM 5

ПИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-120...+350°С

Стойкость к окислению: н/а

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки нержавеющей стали марки 316L и ее аналогов в любых пространственных положениях

Содержание молибдена минимум 2,7%

Гладкая поверхность шва

Самоотделяющийся шлак

Высокая смачиваемость основного металла, отсутствие подрезов

Высокая устойчивость к образованию пор

Может использоваться как на переменном, так и постоянном токе

Также доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

Для корневых проходов рекомендуются электроды Arosta® 316L

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

PA/1G

AC / DC + / -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DNV	LR	RMRS	TÜV
316LH10	316L	316L	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)
0,02	0,8	1,0	18,0	11,5	2,8	4-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Cosmo	Предел	Пред	•	Отн.		Ударная вязкосп		ıь no Шарпи (Дж)	
	Состо- яние	mekyчести (МПа)	прочн (МГ		удлинен (%)	iue	+20°	С	-20°C	-105°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 320 450	мин. мин. 58	510	мин. 3 мин. 2 40		не треб <u>і</u> не требі 70		60	40
ВИДЫ УПАКОВКИ										
		ıетр (мм) ıa (мм)	1,5 250	2,0 300	2,5 350	3,2 350	4,0 450	5,0 450		
Карт. коробка + ПЭ плен		к в единице emmo/eg. (kz)	140 0,7	200 2,3	125 2,7	135 4,8	85 5,9	55 5,9		
SRP		к в единице етто/ед. (kz)	-	57 0,6	65 1,5	52 1,8	28 2,0	22 2,4		
Linc Can™		к в единице emmo/eg. (kz)	-	-	195 4,3	124 4,3	79 5,3	-		
Идентификационное обозначение: 316L-17 / LIMAROSTA 316 L Цвет торца электрода: розовый Limarosta ¹ 316L: вер. С-RUZ5-01/02/л							-RU25-01/02/16			

Hackonьko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Limarosta® 316L

ВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
				A240/A312/A351	
Очень низкое с	одержание углерода	(C <0,03%)			
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содер	жание углерода (С >0	,03%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		GX5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизац	ιueŭ Ti, Nb				
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

ДАННЫЕ ПО Р	АСХОДУ								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг	
(мм)		-	- на электрод при максимальном moke - шт. (kг) на кг напл металла					наплавленного металла 1/N	
			(c)*	Е (kДж)	H (kz/4)		метталла	Memabia bit	
1,5 x 250	20-40								
2,0 x 300	35-50	DC+	39	49	0,59	11,4	155	1,79	
2,5 x 350	45-80	DC+	46	92	0,95	21,5	83	1,79	
3,2 x 350	80-115	DC+	51	157	1,5	35,3	48	1,69	
4,0 x 450	100-155	DC+	75	339	1,9	69,2	24	1,69	
5,0 x 450	150-220	DC+	85	577	2,7	107,8	16	1,69	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр	аметр Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
1,5	30A	35A	35A							
2,0	40A	45A	45A	40A	40A	40A				
2,5	70A	70A	70A	60A	60A	60A				
3,2	100A	100A	100A	70A	70A	70A				
4,0	140A	140A	140A							
5,0	180A	180A								

Vertarosta® 316L

КЛАССИФИКАЦИЯ

AWS A5.4 E 19 12 3 L R 2 1 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-60...+350°C Стойкость к окислению : н/а

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки нержавеющей стали марки 316L и ее аналогов в любых пространственных положениях

Содержание молибдена минимим 2,7%

Предназначен для вертикальной сварки в направлении сверху вниз на постоянном токе

Сварка корневых проходов

Высокая общая коррозионная стойкость

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC/DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	TÜV
+	316L	316L	4429	316L	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr	Ni	Mo	FN (no WRC 1992)
0,02	0,7	0,85	18,0	11,5	2,8	4-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Cocmo-	Предел mekyчести	Предел прочности	Отн. удлинение	Ударная вязкость по Ша (Дж)		Japnu
	яние	(МПа)	(МПа)	(%)	+20°C	-20°C	-60°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 320 500	мин. 490 мин. 510 620	мин. 30 мин. 25 35	не требуется не требуется 50	45	35

виды упаковк*и*

	Диаметр (мм)	2,5	3,2
	Длина (мм)	300	300
Карт. коробка +	Штук в единице	190	130
ПЭ пленка	Вес нетто/ед. (kг)	2,9	3,1

Идентификационное обозначение: 316L-15 / VERTAROSTA 316 L

Цвет торца электрода: коричневый

Vertarosta*316L: Bep. C-RU24-01/02/16

Vertarosta® 316L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерода	(C <0,03%)			
	X2CrNiMo17-12-2		1,4404	(TP)316L CF-3M	S31603 J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содер	жание углерода (С >0,	03%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		GX5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизац	ιueŭ Ti, Nb				
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

ДАННЫЕ ПО Р	асходу							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	Кг электродов на кг
(мм)			- на электрод при максимальном moke -			wm. (kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		метнияни	Memanna m
2,5 x 300	60-70	DC+	44	71	0,83	14,9	98	1,47
3,2 x 300	80-110	DC+	47	118	1,3	23,9	59	1,41

^{*}Остаток электрода 35 мм

ОПТИМАЛЫ	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ							
	Пространственные положения сварки							
(мм)	PG/3G на cnyck							
2,5	70A							
3,2	100A							

Jungo® 316L

КЛАССИФИКАЦИЯ

AWS A5.4 E 19 12 3 L B 2 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением:-120...+350°С Стойкость к окислению: н/а

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварки сталей, эксплуатирующихся при низкой температуре Высокая ударная вязкость при температуре до -196°C

Высокие сварочно-технологические характеристики и гладкая поверхность шва

Huзkoe cogeржание углерода

Высокая стойкость к общей и межкристаллической коррозии

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

BV

316LBT

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)
0.025	1.6	0.4	18.5	11.0	2.7	4-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние			Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
		(МПа)	прочности удлинение (МПа) (%)		+20°C	-196°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 320 450	мин. 490 мин. 510 650	мин. 30 мин. 25 35	не требуется не требуется 100	35
ВИДЫ УПАКОВКИ						
Диам	етр (мм)	2,5 3,2	4,0			

	Диаметтр (мм) Длина (мм)	350	350	350
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kz)	135 2,7	150 4,8	100 4,8
SRP	Штук в единице Вес нетто/ед. (kг)	-	56 1,8	30 1,4

Идентификационное обозначение: 316L-15 / JUNGO 316 L Цвет торца электрода: красный

Jungo*316L: Bep. C-RU26-01/02/16

Jungo® 316L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое о	одержание углерода	(C <0,03%)			
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содер	жание углерода (С >0,	,03%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		GX5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизац	цией Ті, Nb				
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

ДАННЫЕ ПО Р	АСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	Кг электродов на кг
(мм)		.,	- на элеkm	pog npu максималь	ном moke -	шт. (kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/4)		метнали	Memassia isit
2,5 x 350	50-70	DC+	50	86	0,82	19,2	88	1,89
3,2 x 350	60-90	DC+	51	135	1,3	31,3	53	1,72
4,0 x 350	80-120	DC+	66	206	1,7	47,6	32	1,56

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр Пространственные положения сварки										
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,5	60A	60A	60A	60A	60A	60A				
3,2	95A	90A	90A	75A	75A	75A				
4,0	125A	110A	125A	100A	100A	100A				

Limarosta® 316L-130

КЛАССИФИКАЦИЯ

 AWS A5.4
 E316L-17
 A-Nr
 8
 Mat-Nr
 1,4430

 ISO 3581-A
 E 19 12 3 L R 5 3
 F-Nr
 5

9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-120...+350°C

Стойкость к окислению: н/а

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки нержавеющей стали марки 316L и ее аналогов в любых пространственных положениях

Содержание молибдена минимум 2,7%

Высокая эффективность (130%) и скорость сварки

Высокая смачиваемость основного металла, отсутствие подрезов

Только для сварки в вертикальном направлении на спуск

Подходит для угловой сварки и заполнения V- и X-образных разделок

Возможность сварки на обратной полярности и переменном токе

Доступен только в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)
0,02	0,65	1,0	18,0	11,5	2,8	4-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Cocmo-	Предел текучести	Предел прочности	Отн. удлинение	Ударная (по Шар	Зязкость nu (Дж))
	яние	(МПа)	· (МПа)	[%]	+20°C	-20°C	-105°C
Требования: AWS A5.4 ISO 3581-A Средние значения ПО		не требуется мин. 320 450	мин. 490 мин. 510 580	мин. 30 мин. 25 40	не требуется не требуется 70	60	40

ВИДЫ УПАКОВКИ

	Диаметр (мм)	3,2	4,0	5,0
	Длина (мм)	450	450	450
SRP	Штук в единице	29	23	19
	Вес нетто/ед. (kг)	1,7	2,0	2,3

Идентификационное обозначение: 316L-17 / LIMAROSTA 316 L-130

Цвет торца электрода: розовый

Limarosta°316L-130: Bep. C-RU24-01/02/16

Limarosta® 316L-130

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерода	(C <0,03%)			
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содер:	жание углерода (С >0,	03%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		GX5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизац	ιueŭ Ti, Nb				
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		5	- на элект	pog npu максималь	ном moke -	шт. (kг)	на kz напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/u)		меттали	Memabla bit
3,2 x 450	90-120	DC+	68	227	1,9	60,4	28	1,67
4,0 x 450	120-160	DC+	78	376	2,5	91,0	18	1,67
5,0 x 450	160-200	DC+	81	577	3,7	143,7	12	1,72

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ							
Диаметр	Прос	транственн	ые положения сварки				
(мм)	PA/1G	PB/2F					
3,2	110A	105A					
4,0	155A	150A					
5,0	175A	175A					

Arosta® 318

КЛАССИФИКАЦИЯ

AWS A5.4 E318-16 **A-Nr** 8 **Mat-Nr** 1,4570 **ISO 3581-A** E 19 12 3 Nb R 1 2 **F-Nr** 5

Mat-Nr 1,4576 Детали под избыточным давлением :-60...+400°С

Стойкость к окислению: н/а

ДИАПАЗОН ТЕМПЕРАТУР

ОБЩЕЕ ОПИСАНИЕ

Электроды с рутилово-основным типом покрытия для сварки нержавеющей стали марки 316 со

стабилизацией Ti и Nb в любых пространственных положениях

9606 FM

Высокая стойкость к общей и межкристаллической коррозии

Хороший внешний вид шва

Легкое omgеление шлака

Прочное покрытие электрода

Может использоваться как на переменном, так и постоянном токе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC + / -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr	Ni	Мо	Nb	FN (no WRC 1992)
0,03	0,8	0,85	18,0	11,5	2,7	0,35	6-12

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Cocmo-	Предел текучести	Предел прочности	Отн. удлинение	Ударная вязкость no Шарпи (Дж)		
	яние	(МПа)	· (МПа)	[%]	+20°C	-20°C	-60°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 350 500	мин.550 мин. 550 630	мин. 25 мин. 25 38	не требуется не требуется 60	50	35

ΒΝΠΡΙ ΛΠΨΚυΒΚή

	диаметр (мм)	2,5	3,2	4,0
	Длина (мм)	350	350	350
Карт. коробка +	Штук в единице	135	140	90
ПЭ пленка	Вес нетто/ед. (кг)	2,8	5,0	4,8

Идентификационное обозначение: 318-16 / AROSTA 318

Цвет торца электрода: белый

Arosta°318: Bep. C-RU25-01/02/16

Arosta® 318

СВАРИВАЕМЫЕ МАТЕРИАЛЫ								
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS			
Среднее содер	жание углерода (С >0,	03%]						
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600			
	X4CrNiMo17-13-3		1,4436					
		GX5CrNiMo19-11	1,4408	CF 8M	J92900			
Со стабилизац	μueŭ Ti, Nb							
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635			
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640			
	X6CrNiNb18-10		1,4550	(TP)347	S34700			
		GX5CrNiNb19-10	1,4552	CF-8C	J92710			

ДАННЫЕ ПО Р	АСХОДУ							
Размеры диам. х длина	Tok (A)	Tok (A) Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)			- на электрод при максимальном moke - ^и			wm. (kz)	на kг напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/4)		Memania	Melilabbia biv
2,5 x 350	40-90	DC+	46	82	0,98	20,3	80	1,64
3,2 x 350	70-110	DC+	52	137	1,4	32,1	48	1,54
4,0 x 350	90-140	DC+	61	212	1,9	48,6	31	1,49

^{*}Остаток электрода 35 мм

Диаметр	Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем			
2,5	70A	70A	70A	60A					
3,2	100A	100A	100A	70A	60A	60A			
4,0	140A	140A	140A	80A 70A		70A			

КЛАССИФИКАЦИЯ

AWS A5.4 E310Mo-15* A-Nr 9 Mat-Nr 1,4465 ISO 3581-A E 25 22 2 N L B 2 2* F-Nr 5 *:с отклонениями, см. примечания 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением:-40...+400°С Стойкость к окислению: н/а

ОБЩЕЕ ОПИСАНИЕ

Полностью аустенитный электрод с покрытием основного типа для сварки высоколегированных сплавов CrNiMo в любых пространственных положениях

Высокая коррозионная стойкость в сильно окисляющих и восстанавливающих средах

Предназначен для применения на заводах по производству и переработке мочевины и азотной кислоты

Высокая устойчивость к межкристаллической коррозии

Высокие результаты теста по Хьюи

Возможность сварки на обратной полярности

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	N	N FN (no WRC 1992)	
0,03	4,5	0,4	25,0	22,0	2,2	0,13	0	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел текучести	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
		(M∏a)	(МПа)	[%]	+20°C	-196°C
Tpeбoвания: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 320 400	мин. 550 мин. 510 620	мин. 30 мин. 25 35	не требуется не требуется 90	50

3,2

4,0

ВИЛЫ УПАКОВКИ

	Длина (мм)	350	350	350
Карт. коробка +	Штук в единице	135	150	100
ПЭ пленка	Вес нетто/ед. (кг)	2,8	4,8	4,9

Диаметр (мм)

Идентификационное обозначение: JUNGO 4465

Цвет торца электрода: желтый

2,5

Jungo* 4465: 8ep. C-RU24-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ								
Классы стали	EN 10088-1/-2	Mat. Nr	ASTM / ACI A240/A312/A351	UNS				
Полностью аустен	итные коррозиестойкие	стали CrNiMo						
	X1CrNiMoN25-25-2	1,4465						
	VaCrNiMaTian an	1 4577						

X1CrNiMoN25-25-2 1,4465 X3CrNiMoTi25-25 1,4577 X2CrNi19-11 1,4306 (TP)304L 530403 CF-3 J92500 X2CrNiN18-10 1,4311 (TP)304LN 530453 310S 531008

Также хорошо подходит для наплавки низколегированной стали, например, трубных решеток Промежуточные слои для эксплуатации при температуре от -196°С до +350°С

ДАННЫЕ ПО РАСХОДУ										
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг		
(мм)			- на электрод при максимальном moke -			шт. (kг)	на kг напл. металла	. наплавленного металла 1/N		
			(c)*	E (кДж)	H (kz/4)		метталла	Memoria i/N		
2,5 x 350	50 - 75	DC+	50	86	0,82	21,5	88	1,89		
3,2 x 350	70 - 105	DC+	51	135	1,3	32,5	53	1,72		
4,0 x 350	100 - 135	DC+	66	206	1,7	48,5	32	1,56		

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,5	60A	60A	60A	60A	60A	60A				
3,2	95A	90A	90A	75A	75A	75A				
4,0	125A	110A	125A	100A	100A	100A				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

Cr = 24,5 - 26,0% AWS: Cr = 25,0 - 28,0% Ni = 21,5 - 22,5% AWS: Ni = 20,0 - 22,0% Mn = 4,5 - 5,3% AWS: Mn = 1,0 - 2,5%

AWS: Mn = 1,0 - 2,5% EN: Mn = 1,0 - 5,0%

Максимальная погонная энергия сварки 1,5 кДж/мм

Максимальная температура перед наложением следующего слоя 150°C

КЛАССИФИКАЦИЯ

AWS A5.4 E385-16* A-Nr 9 Mat-Nr 1,4519 ISO 3581-A E 20 25 5 Cu N L R 12 F-Nr 5 *: C omkлонениями. См. примечания 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-60...+400°С Стойкость к окислению : н/а

ОБЩЕЕ ОПИСАНИЕ

Полностью аустенитный электрод с рутилово-основным типом покрытия для сварки в любых пространственных положениях

Хороший внешний виа шва

Легкое отделение шлака

Предназначен для сварки оборудования для работы с фосфорной и серной кислотой и на фабриках по производству бумаги

Пригоден для сварки сплава 904L

Возможность сварки на обратной полярности

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	Cu	FN (no WRC 1992)	
0,02	1,2	0,9	20,0	25,0	5,0	1,5	0	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	mekyvecmu npov		Предел прочности	Отн. удлинение	Ударная вязкость no Шарпи (Дж)		
	япис	(МПа)	(МПа)	(%)	+20°C	-40°C	-60°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 320 410	мин. 520 мин. 510 620	мин. 30 мин. 25 40	не требуется не требуется 100	80	50

виды упаковк*и*

	Диаметр (мм)	2,5	3,2	4,0
	Длина (мм)	350	350	350
Карт. коробка +	Штук в единице	145	185	125
ПЭ пленка	Вес нетто/ед. (кг)	2,9	5,7	5,9

Идентификационное обозначение: JUNGO 4500

Цвет торца электрода: черный

Jungo° 4500: 8ep. C-RU25-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ							
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr				
Полностью аус	тенитные сплавы NiCrN	MoCu u CrNiMoCu					
		GX7NiCrMoCuNb25-20	1,4500				
	X5NiCrMoCuTi20-18		1,4506				
		GX2NiCrMoCuN20-18	1,4531				
		GX2NiCrMoCuN25-20	1,4536				
	X1NiCrMoCu25-20-5	(Cnлaв 904L)	1,4539				
		GX7CrNiMoCuNb18-18	1,4585				
	X5NiCrMoCuNb22-18		1,4586				

ДАННЫЕ ПО Р	ДАННЫЕ ПО РАСХОДУ								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг	
(мм)			- на электрод при максимальном moke -			wm. (kz)	на kг напл. металла	наплавленного металла 1/N	
			(c)*	Е (kДж)	H (kz/4)		менналла	Memajija i/N	
2,5 x 350	40 - 75	DC+	43	72	0,96	19,9	79	1,59	
3,2 x 350	60 - 105	DC+	53	133	1,3	32,1	52	1,69	
4,0 x 350	80 - 145	DC+	61	220	1,8	48,0	32	1,56	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	РН/5G на подъем			
2,5	70A	70A	70A	60A	80A	60A			
3,2	100A	100A	100A	70A	70A	70A			
4,0	140A	140A	140A	80A					

______ ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО П<u>РИМЕНЕНИЮ</u>

Отклонения: химический состав:

Si = makc. 1,0% AWS: Si = makc. 0,9%

Максимальная погонная энергия сварки 1,5 кДж/мм

Максимальная температура перед наложением следующего слоя 150°C

Arosta® 4462

КЛАССИФИКАЦИЯ

AWS A5.4 E2209-16* A-Nr 8 Mat-Nr 1,4462 ISO 3581-A E 22 9 3 N L R 3 2 F-Nr 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-40...+250°С

Стойкость к окислению: н/д

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки дуплексной нержавеющей стали в любых пространственных положениях

Высокие сварочно-технологические характеристики при заполняющих и корневых проходах

Может использоваться при рабочей температуре 250°C

Высокая стойкость к общей, питтинговой и механической коррозии (PREN ~35)

Высокий предел текучести >500 МПа

Может использоваться как на переменном, так и постоянном токе

9606 FM

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC/DC + /-

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

BV	DNV	GL	RINA	ΤÜV
2209	+	4462	2209	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Mo	N	FN (no WRC 1992)	
0,02	0,8	1,0	22,5	9,5	3,2	0,16	30-55	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состо- яние	Предел текучести	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)		•
	япис	ие (МПа)	(МПа)	(%)	+20°C	-30°C	-40°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 450 650	мин. 690 мин. 550 800	мин. 20 мин. 20 27	не требуется не требуется 60	50	40

риды упаковки

	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	5,0 350	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	120 2,6	152 5,0	95 4,8	-	
SRP	Штук в единице Вес нетто/ед. (кг)	69 1,5	52 1,8	29 1,6	24 2,0	

Идентификационное обозначение: 2209-16 / AROSTA 4462 Цвет торца электрода: белый

Arosta® 4462: 8ep. C-RU26-01/02/16

Arosta® 4462

ВАРИВАЕМЫЕ МАТЕРИАЛЫ									
Классы стали	EN 10088-1/-2/-4	Mat. Nr	ASTM / ACI A240	UNS					
Дуплексная нержавею и	цая сталь								
	X2CrNiMoN22-5-3	1,4462		S31803					
		1,4417		S31500					
	X3CrNiMoN27-5-2	1,4460		S31200					
	X2CrNiN23-4	1,4362		S32304					
	X2CrMnNi21-5-1	1,4162		S32101					

Стыки из отличающихся соединений, например, между углеродистой и низколегированной сталью и дуплексной нержавеющей сталью

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры диам. х длина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Tenловложение pog npu максималь	Производи- тельность наплавки ьном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл. металла	Кг электродов на кг наплавленного метапла 1/N
			(c)*	Е (kДж)	H (kz/u)		менналла	менталла і/іч
2,5 x 350	40 - 75	DC+	61	127	0,73	20,6	81	1,67
3,2 x 350	80 - 110	DC+	56	184	1,4	34,3	46	1,59
4,0 x 350	80 - 150	DC+	59	205	2,0	51,5	30	1,52
5,0 x 350	140 - 220		65	357	2,8	77,4	20	1,61

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

ļ uaметр		Пространственные положения сварки						
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем		
2,5	70A	70A	70A	60A	80A	60A		
3,2	100A	100A	100A	70A	70A	70A		
4,0	140A	140A	140A	80A				
5,0	180A	180A	180A					

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Максимальная погонная энергия сварки 2,5 кДж/мм

Максимальная температура перед наложением следующего слоя 150°C

Отклонения: химический состав:

Si = 0,4-1,2 AWS = makc. 1,00

Jungo® 4462

КЛАССИФИКАЦИЯ

 AWS A5.4
 E2209-15
 A-Nr
 8
 Mat-Nr
 1,4462

 ISO 3581-A
 E 22 9 3 N L B 2 2
 F-Nr
 5

 9606 FM
 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-50...+250°C Стойкость к окислению : н/а

ОБЩЕЕ ОПИСАНИЕ

Электроды с покрытием основного типа для сварки дуплексной нержавеющей стали с содержанием хрома 22% Высокие сварочно-технологические характеристики при заполняющих и корневых проходах

Может использоваться при рабочей температуре 250°С

Высокая стойкость к общей, питтинговой и механической коррозии (PREN ~35)

Высокий предел текучести >500 МПа

Пригоден для сварки на обратной полярности (DC+)

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

DC+

<u>ОДОБРЕНИЯ</u> СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DNV

+

химически	СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	N	FN (no WRC 1992)	
0,025	1,6	0,5	23,5	9,0	3,0	0,15	30-60	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Cocmo-	Предел текичести	Предел прочности	Отн. цалинение		іая вязк Царпи (Į		
	яние	(МПа)	(МПа)	(%)	+20°C	-20°C	-40°C	-50°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 450 650	мин. 690 мин. 550 800	мин. 20 мин. 20 28	не требуется не требуется 80	75	70	45

ВИДЫ УПАКОВКИ

	Диаметр (мм)	2,5	3,2	4,0
	Длина (мм)	350	350	350
SRP	Штук в единице	69	55	30
	Вес нетто/ед. (kг)	1,4	1,8	1,5

Идентификационное обозначение: 2209-15 / JUNGO 4462 Цвет торца электрода: красный

Jungo*4462: Bep. C-RU26-01/02/16

S32304

S32101

Jungo[®] 4462

СВАРИВАЕМЫЕ МАТЕРИАЛЫ Классы стали EN 10088-1/-2/-4 Mat. Nr ASTM / ACI UNS A240 Дуплексная нержавеющая сталь X2CrNiMoN22 -5-3 1,4462 S31803 1,4417 S31500 X3CrNiMoN27-5-2 1,4460 S31200

Стыки из отличающихся соединений, например, между углеродистой и низколегированной сталью и дуплексной нержавеющей сталью

1,4362

1,4162

АСХОДУ							
Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
		- на элект	pog npu максималі	ном moke -	wm. (kz)		наплавленного металла 1/N
		(c)*	E (кДж)	H (kz/4)		менналла	менталла ілі
50-80	DC+	74	101	0,62	21,0	78	1,64
70-110	DC+	84	219	0,88	33,8	49	1,64
100-140	DC+	80	304	1,4	50,8	32	1,61
	Tok (A) 50-80 70-110	Tok (A) Pog moka 50-80 DC+ 70-110 DC+	Ток (A) Род ток (СП) Время горения дуги 50-80 DC+ 74 70-110 DC+ 84	Ток (A) Род ток (A) Время горения дуги Тепловложение - на электрод при максимали (c)* Е (кДж) 50-80 DC+ 74 101 70-110 DC+ 84 219	Ток (A) Род ток (A) Время горения дуги Тепловложение инельности финлиавки Производи тельности финлиавки - на электро при максимальном токе - (с)* Е (кДж) Н (кг/ч) 50-80 DC+ 74 101 0,62 70-110 DC+ 84 219 0,88	Ток (A) Род ток (С)* Время горения дуги тепловложения дуги тепловложения дуги тепловложения теплов при максимальном токе - (с)* Производинельном теплов при максимальном токе - (с)* Вес / 1000 шил. (кг) 50-80 DC+ 74 101 0,62 21,0 70-110 DC+ 84 219 0,88 33,8	Ток (A) Род ток (C)* Время горения дуги Тепловложении тепловложении пельность на лавки наплавки наплавки (С)* Вес / 1000 им. (к.) Шт. лектродов на к напл. металавки на пиль им токе - (с)* Вес / 1000 им. (к.) Шт. металавки на предоставления (к.) Вес / 1000 им. (к.) Ишт. металавки на предоставления (к.) Производи-пельность наплавки наплавки на предоставления (к.) Вес / 1000 им. (к.) Ишт. метала им. (к.) Ишт. метала им. (к.) Производи-пельность наплавки наплавки на предоставления (к.) Вес / 1000 им. (к.) Ишт. метала им. (к.)

^{*}Остаток электрода 35 мм

ļ uaметр	Пространственные положения сварки						
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем	
2,5	60A	60A	60A	60A	60A	60A	
3,2	85A	80A	90A	80A	80A	80A	
4,0	120A						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

X2CrNiN23-4

X2CrMnNi21-5-1

Температура перед наложением следующего слоя зависит от конструкции (макс. 150°C)

Jungo® 309L

КЛАССИФИКАЦИЯ

AWS A5.4 E309L-16 A-Nr 8 Mat-Nr 1,4332 ISO 3581-A E 23 12 L B 2 2 F-Nr 5 9606 FM 5

ПИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-196...+300°С Стойкость к окислению : н/q

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа с содержанием высоколегированного сплава CrNi для сварки буферного слоя

Предназначен для сварки нержавеющей и низкоуглеродистой стали и корневых проходов плакированной стали Может использоваться для корневых проходов сплавов AISI 304LN

Исключительные механические характеристики

Высокая устойчивость к возникновению хрупкости

Возможность сварки на обратной полярности и переменном токе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC/DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,025	1,5	0,4	23,0	13,0	10-20

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -196°С
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 320 470	мин.520 мин. 510 570	мин. 30 мин. 25 40	40

виды упаковк*и*

	Диаметр (мм)	2,5	4,0	5,0
	Длина (мм)	350	350	350
Карт. коробка	Штук в единице	117	97	60
+ ПЭ пленка	Вес нетто/еа. (kг)	2,4	4,8	4,8

Идентификационное обозначение: 309L-15 / JUNGO 309 L Цвет торца электрода:

Jungo*309L: 8ep. C-RU07-01/02/16

Jungo® 309L

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Коррозиестойка	ая плакированная сталь			
	X2CrNiN18-10	1,4311	(TP)304LN	S30453
	X2CrNi19-11	1,4306	(TP)304L	S30403
			CF-3	J92500
	X4CrNi18-10	1,4301	(TP)304	S30400

Соединения разнородных металлов (низкоуглеродистой/низколегированной стали и нержавеющей стали CrNi или CrNiMo) Наплавка на низкоуглеродистые и низколегированные стали Буферный слой плакированной стали CrNi

ДАННЫЕ ПО Р	РАСХОДУ								
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного	
(мм)			- на элект	род при максималі	ном moke -	wiii. (K2)	на ка напл. металла	металла 1/N	
			(c)*	Е (кДж)	H (kz/4)				
2,5 x 350	40-75	DC+	50	88	0,93	21,0	77	1,61	
4,0 x 350	80-150	DC+	64	241	1,8	48,3	31	1,49	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ												
Диаметр	аметр Пространственные положения сварки											
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем						
2,5	70A	70A	70A	60A80A	60A	60A						
4,0	140A	140A	140A									

Arosta® 309S

AWS A5.4 F309I -16 A-Nr Mat-Nr 1.4332 ISO 3581-A E 23 12 L R 3 2 F-Nr 5 9606 FM

Детали под избыточным давлением:-120...+300°С Стойкость к окислению: н/а

ОБЩЕЕ ОПИСАНИЕ

Высоколегированный электрод с содержанием CrNi и рутилово-основным покрытием для сварки буферного слоя Предназначается для сварки нержавеющей и низкоуглеродистой стали и корневых проходов плакированной стали Может использоваться для корневых проходов сплавов AISI 304LN

Высокие сварочно-технологические характеристики и легкое отделение шлака

Высокая истойчивость к возникновению хрипкости

Возможность сварки на обратной полярности и переменном токе

Также доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

РОД ТОКА

AC/DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	RMRS	TUV
+	309L	SS/CMn	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,02	0,8	0,8	23,5	12,5	12-20

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Cocmo-	Предел текучести	Предел прочности	Отн. удлинение	Ударная в по Шарп		
	яние	(МПа)	[·] (МПа)	(%)	+20°C	-20°C	-120°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 320 480	мин. 520 мин. 510 560	мин. 30 мин. 25 40	не требуется не требуется 60	50	40

BNUPLAUVKUBKN

DIIDDI / HARODINI						
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	5,0 350	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kг)	135 2,8	150 5,0	100 5,0	65 5,0	
SRP	Штук в единице Вес нетто/ед. (kz)	69 1,4	56 1,9	-	-	

Идентификационное обозначение: 309L-16 / AROSTA 309 S Цвет торца электрода: морская волна

Arosta*309S: Bep. C-RU25-01/02/16

Arosta® 309S

ВАРИВАЕМЫЕ МАТЕРИАЛЫ											
EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS								
Коррозиестойкая плакированная сталь											
X2CrNiN18-10	1,4311	(TP)304LN	S30453								
X2CrNi19-11	1,4306	(TP)304L	S30403								
		CF-3	J92500								
X4CrNi18-10	1,4301	(TP)304	S30400								
	EN 10088-1/-2 кированная сталь X2CrNiN18-10 X2CrNi19-11	EN 10088-1/-2 Mat. Nr кированная сталь X2CrNiN18-10 1,4311 X2CrNi19-11 1,4306	EN 10088-1/-2 Mat. Nr ASTM/ACI A240/A312/A351 кированная сталь	EN 10088-1/-2 Mat. Nr ASTM/ACI UNS A240/A312/A351 кированная сталь X2CrNini8-10 1,4311 (ТР)304LN S30453 X2CrNip-11 1,4306 (ТР)304L S30403 CF-3 J92500							

Соединения разнородных металлов (низкоуглеродистой/низколегированной стали и нержавеющей стали CrNi или CrNiMo) Наплавка на низкоуглеродистые и низколегированные стали Буферный слой плакированной стали CrNi

ДАННЫЕ ПО Р	РАСХОДУ								
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	' Теплокложение тельность		Bec / 1000	Шт. электродов	Кг электродов на кг наплавленного	
(мм)		•	- на элект	oog npu максималь	ном moke -	шт. (kz)	на кг напл. металла	металла 1/N	
			(c)*	Е (kДж)	H (kz/4)		меттилли		
2,5 x 350	40 - 75	DC+	50	88	0,93	21,0	77	1,61	
3,2 x 350	60 - 110	DC+	58	160	1,3	32,5	46	1,49	
4,0 x 350	80 - 150	DC+	64	241	1,8	48,3	31	1,49	
5,0 x 350	140 - 220	DC+	68	372	2,8	78,0	19	1,49	

^{*}Остаток электрода 35 мм

Циаметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,5	70A	70A	70A	60A	60A	60A				
3,2	100A	100A	100A	70A	70A	70A				
4,0	140A	140A	140A	80A						
5,0	180A	180A	180A							

Limarosta® 309S

классификация

AWS A5.4 E309L-17 A-Nr 8 Mat-Nr 1,4332 ISO 3581-A E 23 12 L R 3 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали nog избыточным давлением :-20...+300°С

Стойкость к окислению: н/а

ОБЩЕЕ ОПИСАНИЕ

Высоколегированный электрод с содержанием CrNi и рутилово-основным покрытием для сварки буферного слоя Предназначен для сварки соединений между нержавеющей и низкоуглеродистой или плакированной сталью Самоотделяющийся шлак

Высокая смачиваемость основного металла, отсутствие подрезов, гладкая поверхность шва

Высокая устойчивость к образованию пор

Возможность сварки на обратной полярности и переменном токе

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

Ударная вязкость

AC/DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DNV	GL	LR	RMRS	TÜV	
309L	4432	SS/CMn	SS/CMn	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,02	0,8	1,0	23,0	12,5	10-20

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

			mekuu		прочн		идлинение	по шарпи	(ЖД)
		Состояние	(МП		Прочн (МГ		(%)	+20°C	-20°C
Требования: AWS A5.4 ISO 3581-A Средние значения		ПС	не требуется мин. 320 480		мин. 520 мин. 510 560		мин. 30 мин. 25 40	не требуется не требуется 55	50
ВИДЫ УПАКОІ	ВКИ								
	Диаме: Длина	тр (мм) (мм)	2,0 300	2,5 350	3,2 350	4,0 450	5,0 450		
Карт. коробка			200	125	135	85	55		
ПЭ пленка		ımo/eg. (kz)	2,3	2,8	4,9	5,9	6,0		
SRP		единице	-	65	50	28	-		
	Вес нет	ımo/eg. (kz)	-	1,5	1,8	2,0	-		
Linc Can™	Штук в	единице	-	197	127	79	-		
		ımo/eg. (kz)	-	4,4	4,5	5,4	-		

Идентификационное обозначение: 309L-17 / LIMAROSTA 309 S

Цвет торца электрода: морская волна

Limarosta 309S: Bep. C-RU25-01/02/16

Limarosta® 309S

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Коррозиестойкая пл	акированная сталь			
	X2CrNiN18-10	1,4311	(TP)304LN	S30453
	X2CrNi19-11	1,4306	(TP)304L	S30403
			CF-3	J92500
	X4CrNi18-10	1,4301	(TP)304	S30400

Соединения разнородных металлов (низкоуглеродистой/низколегированной стали и нержавеющей стали CrNi или CrNiMo) Наплавка на низкоуглеродистые и низколегированные стали Буферный слой плакированной стали CrNi

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры диам. х длина	Tok (A)	ok (A) Pog moka namaoka		Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного металла 1/N		
(мм)			- на элект	металла				
			(c)*	E (кДж)	H (kz/4)		метналла	Memabla bit
2,0 x 300	35-55	DC+	38	49	0,66	11,3	142	1,59
2,5 x 350	45-80	DC+	48	95	0,99	22,1	77	1,69
3,2 x 350	80-115	DC+	56	160	1,4	35,1	46	1,59
4,0 x 350	100-155	DC+	76	317	2,0	69,9	23	1,64
5,0 x 350	150-220	DC+	84	575	2,9	108,0	15	1,59

^{*}Остаток электрода 35 мм

	АПОЛНЯЮШИХ ПРОХОДОВ

цаметр	Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем			
2,0		45A	45A	40A	40A	40A			
2,5	70A	70A	70A	60A	60A	60A			
3,2	100A	100A	100A	70A	70A	70A			
4,0	140A	140A	140A						
5,0	180A	180A							

Arosta® 309Mo

КЛАССИФИКАЦИЯ

AWS A5.4 E309LM0-16 A-Nr 8 Mat-Nr 1,4459 ISO 3581-A E 23 12 2 L R 3 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением:-60...+300°C Стойкость к окислению: н/д

ΠΕΙΙΙΕΕ ΠΠИΓΔΗΝΕ

Высоколегированный электрод с содержанием CrNiMo с покрытием рутилово-основного типа для сварки в любых пространственных положениях

Высокая коррозионная стойкость

Предназначен для сварки соединений между нержавеющей и низкоуглеродистой сталью, а также горячих проходов при плакировке

Максимальная толщина пластины в стыковых соединениях ~12 мм

Хорошо подходит для ремонтных работ, требующих сварки стыков из разных или трудносвариваемых металлов Возможность сварки на обратной полярности и переменном токе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC/DC +

	ЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	RINA	RMRS	ΤÜV	DB	
+	309Mo	309Mo	4459	SS/CMn	309Mo	SS/CMn	+	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)
0,02	0,8	0,8	23,0	12,5	2,7	15-25

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел		Предел		Отн.	Ударная вязкость по Шарпи (Дж)		
	Состояние	mekyчести (МПа)		прочности (МПа)		удлинение (%)	+20°C	-20°C	-60°C
Требования: AWS A5 ISO 3581 Средние значен	-A	не mpeбyer мин. 350 580		мин. 520 мин. 550 700		мин. 30 мин. 25 30	не требуется не требуется 57	50	45
ВИДЫ УПАКОВКИ									
	иаметр (мм) лина (мм)	2,0 300	2,5 350	3,2 350	4,0 350	5,0 450			
	Ітук в единице ес нетто/ед. (кг	180 2,4	110 2,6	120 4,7	85 4,8	55 5,4			

Идентификационное обозначение: 309LMo-16 / AROSTA 309 Mo

Цвет торца электрода: голубой

Arosta[®] 309Mo: βep. C-RU23-01/02/16-01/02/16

Arosta® 309Mo

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Первый слой пла	kupoBku CrNiMo				
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635
	X10CrNiMoTi17-3		1,4573	316Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640
		GX5CrNiMo19-11	1,4408		

Сварка разнородных соединений: низкоуглеродистой или низколегированной стали и нержавеющей стали CrNiMo с максимальной толщиной 12 мм

Наплавка на низкоуглеродистые и низколегированные стали

Размеры guaм. x gлина Тok (A)		Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	
- HA 3 GEKMONG DOLL MAKCUMAN HOME -								наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		MCIIIaJIJIa	Melliamia mi
2,0 x 300	30 - 60	DC+	44	46	0,54	10,8	149	1,61
2,5 x 350	40 - 80	DC+	52	90	0,91	20,4	76	1,54
3,2 x 350	60 - 80	DC+	58	122	1,4	33,2	45	1,49
4,0 x 350	80 - 150	DC+	64	259	1,9	51,6	30	1,54
5,0 x 450	140 - 190	DC+	99	549	2,6	98,7	14	1,38

^{*}Остаток электрода 35 мм

Ц иаметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,0		45A	45A	40A	40A	40A				
2,5	70A	70A	70A	60A	60A	60A				
3,2	100A	100A	100A	70A	70A	70A				
4,0	140A	140A	140A	80A						
5,0	180A	180A	180A							

Nichroma

КЛАССИФИКАЦИЯ

AWS A5.4 E 20 10 3 R 3 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУЯ

Детали под избыточным давлением :-20...+300°C Стойкость к окислению : н/а

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки разнородных соединений в любых пространственных положениях

Универсальный электрод для ремонтной сварки

Подходит для бытового и профессионального применения

Легкое omgеление шлака и гладкая поверхность шва

Также может использоваться для сварки трудносвариваемых сталей

Возможность сварки на обратной полярности и переменном токе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC/DC +

PA/1G

 BV
 DNV
 GL
 TÜV
 DB

 UP
 308Mo
 4431
 +
 +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)
0,025	0,8	1,0	20,0	9,5	2,3	20

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текучести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	Состояние	(МПа)	(МПа)	(%)	+20°C	-20°C
Требования: AWS A5.4 ISO 3581-A		не требуется мин. 400	мин. 520 мин. 620	мин. 35 мин. 20	не требуется не требуется	
Средние значения	ПС	500	720	30	70	60
ВИДЫ УПАКОВКИ						

3.2

4.0

виды упаковки

	Длина (мм)	350	350	350
Карт. коробка +	Штук в единице	135	150	100
ПЭ пленка	Вес нетто/ед. (kг)	2,7	4,9	5,0

Диаметр (мм)

Идентификационное обозначение: 308LMo-16 / NICHROMA Цвет торца электрода: сиреневый

Nichroma: 8ep. C-RU27-01/02/16

2.5

Nichroma

СВАРИВАЕМЫЕ	ЫЕ МАТЕРИАЛЫ					
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS	
Первый слой пл	akupo8ku CrNiMo					
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603	
				CF-3M	J92800	
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603	
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653	
	X2CrNiMoN17-13-3		1,4429			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600	
	X4CrNiMo17-13-3		1,4436			
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635	
	X10CrNiMoTi17-3		1,4573	316Ti	S31635	
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640	
		GX5CrNiMo19-11	1,4408			

Сварка разнородных соединений: низкоуглеродистой/низколегированной и нержавеющей стали CrNi и CrNiMo Наплавка на низкоуглеродистые и низколегированные стали

ДАННЫЕ ПО	РАСХОДУ							
Размеры guaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
(мм)			- на элект	род при максималь	ном moke -	will (itc)	металла	металла 1/N
			(c)*	E (kДж)	H (kz/4)		метталла	Memanna ni
2,5 x 350	40 - 75	DC+	54	99	0,86	19,8	78	1,54
3,2 x 350	60 -110	DC+	52	132	1,5	33,4	46	1,54
4,0 x 350	80 - 150	DC+	62	234	1,9	49,6	30	1,49
5.0 x 450	140 - 220	DC+	66	365	2,8	78,4	19	1,52

^{*}Остаток электрода 35 мм

иаметр	Пространственные положения сварки						
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем	
2,5	70A	70A	70A	60A	60A	60A	
3,2	100A	100A	100A	70A	70A	70A	
4,0	140A	140A	140A	80A			
5,0	180A	180A	180A				

Nichroma 160

КЛАССИФИКАЦИЯ

AWS A5.4 E309Mo-26 **A-Nr** 8 **Mat-Nr** 1,4459 **ISO 3581-A** E 23 12 2 LR 53* **F-Nr** 5

*:c omkлонениями, см. примечания **9606 FM** 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-20...+300°C

Стойкость к окислению: н/а

ОБЩЕЕ ОПИСАНИЕ

Высокопроизводительный (160%) электрод с рутилово-основным типом покрытия для судостроительных работ Предназначен для сварки углеродистой и нержавеющей стали в вертикальном направлении сверху вниз

Подходит для угловой сварки

Высокая устойчивость к образованию пор при сварке загрунтованных поверхностей

Может использоваться на высоких сварочных токах

Высокая производительность наплавки

Хороший внешний вид шва и легкое отделение шлака

Возможность сварки на обратной полярности и переменном токе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC/DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	RINA	RMRS	
+	UP	309Mo	4431	309Mo	SS/CMn	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)
0.05	0.7	1.0	23.7	12.8	2.4	15

<u>МЕХАНИЧЕСКИЕ</u> ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текичести	Предел прочности	Отн. цалинение	Ударная вяз по Шарпи	
	Состояние	(МПа)	(МПа)	(%)	+20°C	-20°C
Требования: AWS A5.4 ISO 3581-A		не требуется мин. 350	мин. 550 мин. 550	мин. 30 мин. 25	не требуется не требуется	
Средние значения	ПС	550	740	28	· 50 ັ	45

ВИДЫ УПАКОВКИ

	Диаметр (мм)	3,2	4,0
	Длина (мм)	450	450
Карт. коробка	Штук в единице	90	55
+ ПЭ пленка	Вес нетто/ед. (кг)	6,1	5,9

Идентификационное обозначение: 309Mo-26 / NICHROMA 160

Цвет торца электрода: морская волна

Nichroma 160: Bep. C-RU25-01/02/16

Nichroma 160

СВАРИВАЕМЫЕ МАТЕРИАЛЫ								
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS			
Первый слой пл	akupoßku CrNiMo							
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603			
	CF-3M	J92800						
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600			
	X4CrNiMo17-13-3		1,4436					
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635			
	X10CrNiMoTi17-3		1,4573	316Ti	S31635			
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640			
		GX5CrNiMo19-11	1,4408					

Сварка разнородных соединений: низкоуглеродистой или низколегированной стали и нержавеющей стали CrNiMo с максимальной толщиной 12 мм

Наплавка на низкоуглеродистые и низколегированные стали

Производи-Время Шт. Кг электродов Тепловложение тельность Размеры горения дуги Вес/1000 электродов на кг наплавки Tok (A) диам. х длина Pog moka наплавленного um. (kz) на kг напл. - на электрод при максимальном токе -(MM) металла металла 1/N Е (кДж) H (kz/u) 140-170 DC+ 3,2 x 450 86 409 1,9 68,1 22 1,52 4,0 x 450 180-230 DC+ 80 644 3,0 105,5 15 1,59

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ					
Диаметр	Прос	транственн	ые положения сварки		
(мм)	PA/1G	PB/2F			
3,2	175A	140A			
4,0	200A	180A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

C = Makc. 0,05% EN: C = Makc. 0,04%

^{*}Остаток электрода 35 мм

Limarosta® 312

КЛАССИФИКАЦИЯ							
AWS A5.4	E312-17	A-Nr	8	Mat-Nr	1,4337		
ISO 3581-A	E 29 9 R 12	F-Nr	5				

ДИАПАЗОН ТЕМПЕРАТУ

Детали под избыточным давлением :-10...+350°C Стойкость к окислению : н/а

ОБЩЕЕ ОПИСАНИЕ

Высоколегированный электрод с рутилово-основным типом покрытия с содержанием CrNi для сварки в любых пространственных положениях

Подходит для ремонтной сварки

Предназначен для сварки трудносвариваемых металлов, например, броневых пластин, аустенитных сплавов Мп и сталей с высоким содержанием иглерода

Высокие сварочно-технологические характеристики и легкое отделение шлака

Возможность сварки на обратной полярности и переменном токе

9606 FM 5

Takже доступен в вакуумной упаковке Sahara ReadyPack® (SRP)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

POД TOKA AC/DC +

Упарная вязкость

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DB

+

химический состав наплавленного металла (%)

C	Mn	Si	Cr	Ni
0,11	0,9	1,0	29,0	9,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Состояние	Преде mekyчес (МПа)	mu	Предо прочно (МПа	cmu	Отн. удлинение (%)	no Шарпи (Дж) +20°C	
Tpeбoвания: AW ISO 35 Средние значе	81-A	ПС	не требую мин. 4 <u>9</u> 700		мин. 6 мин. 6 800	50	мин. 22 мин. 15 20	е требуется е требуется 50	
ВИДЫ УПАКОВКИ									
		иетр (мм) на (мм)	2,0 300	2,5 350	3,2 350	4,0 350			
Карт. коробка + ПЭ пленка		ук в единице нетто/ед. (кг)	175 2,2	125 2,6	150 5,0	100 5,0			
SRP		ук в единице нетто/ед. (кг)	- -	69 1,5	52 1,8	31 1,5			
Linc Pack		ук в единице нетто/ед. (кг)	- -	48 1,0	30 1,0	-			
Идентификационное обозн	ачение: 3	12-17 / LIMAROSTA 312 L	Цвет торца элеkn	прода: чер	ный			Limarosta*312: 8ep. C-Rl	J26-01/02/16

Limarosta® 312

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Различные марки стали, например:

- броневые плиты;
- закаливаемые и трудносвариваемые марки стали;
- немагнитные аустенитные марки стали;
- самоупрочняющиеся аустенитные марганцевые стали;
- разнородные соединения (сплавы СМп и нержавеющая сталь) с максимальной толщиной 12 мм

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры диам. х длина Ток (A) (мм)		Pog moka	Время горения дуги - на электр	Тепловложение род при максималь	Производи- тельность наплавки ьном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
			(c)*	E (kДж)	H (kz/4)		металла	металла 1/N
2,0 x 300	40-55	DC+	41	45	0,59	12,0	150	1,80
2,5 x 350	50-70	DC+	57	91	0,73	20,7	87	1,79
3,2 x 350	70-100	DC+	60	126	1,1	33,0	52	1,72
4,0 x 350	100-130	DC+	72	273	1,4	49,7	35	1,72

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр		Пространственные положения сварки								
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,5	70A	70A	70A	60A	60A	60A				
3,2	100A	90A	100A	65A	65A	65A				
4,0	130A	125A	130A	80A						

Arosta[®]307

КЛАССИФИКАЦИЯ

ПИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-60...+350°C Стойкость к окислению : н/а

ОБШЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки сплавов нержавеющей стали с содержанием Mn 5% в любых пространственных положениях

Предназначен для трудносвариваемых металлов, например, броневых пластин и аустенитных сплавов Mn Часто используется в качестве буферного слоя при наплавке

Возможность сварки на обратной полярности и переменном токе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC/DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TÜV DB

+ +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,09	5,0	0,6	18,5	8,5	0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел текичести	Предел прочности	Отн. цалинение	Ударная вязк по Шарпи (
	Состояние	(МПа)	(МПа)	(%)	+20°C	-60°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 350 450	мин. 590 мин. 500 650	мин. 30 мин. 25 35	не требуется не требуется 110	75

ВИДЫ УПАКОВКІ

	диаметр (мм)	2,5	3,2	4,0
	Длина (мм)	350	350	350
Карт. коробка +	Штук в единице	125	135	85
ПЭ пленка	Вес нетто/еа. (kг)	2,6	4,7	4,6

Идентификационное обозначение: AROSTA 307

Цвет торца электрода: темно-синий

Arosta 307: Bep. C-RU23-01/02/16

Arosta®307

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Различные марки стали, например:

- броневые плиты;
- закаливаемые и трудносвариваемые марки стали;
- немагнитные аустенитные марки стали;
- самоупрочняющиеся аустенитные марганцевые стали;
- разнородные соединения;
- трудносвариваемые марки стали

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)			- на элект	pog npu максималь	ном moke -	wm. (kz)	на кг напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		менналла	Memajija i/N
2,5 x 350	70-80	DC+	52	108	0,74	20,4	94	1,92
3,2 x 350	90-120	DC+	56	148	1,2	34,7	54	1,87
4,0 x 350	110-140	DC+	84	251	1,3	53,6	33	1,77

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ								
Диаметр	аметр Пространственные положения сварки							
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем		
2,5	80A	80A	A08	80A	80A	80A		
3,2	100A	100A	100A	90A				
4,0	140A	115A	130A	110A				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

Mn = 4,5 - 6,0% AWS: Mn = 3,30 - 4,75%

Arosta® 307-160

КЛАССИФИКАЦИЯ

AWS A5.4 E307-26* **A-Nr** 8 **Mat-Nr** 1,4370

 ISO 3581-A
 E 18 8 Mn R 5 3
 F-Nr
 5

 * самый близкий класс, см. Примечания
 9606 FM
 5

ОБШЕЕ ОПИСАНИЕ

Электрод с рутиловым покрытием для сварки сплавов нержавеющей стали с содержанием Мп 6%

Предназначен для трудносвариваемых металлов, например, броневых пластин и аустенитных сплавов Mn Часто используется в качестве буферного слоя при наплавке

Пригоден для сварки на обратной полярности (DC+)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

POД TOKA AC/DC +

PA/1G

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni
0,06	6,0	1,0	18,0	8,0

МЕХАНИЧЕСКИЕ ХАРАН	КТЕРИСТИКИ	HAIIJIABJIEHHUI	METAJIJIA (9	⁄6J		
		Предел текичести	Предел прочности	Отн. цалинение	Ударная вязкость	по Шарпи (Дж)
	Состояние	(МПа)	(МПа)	(%)	+20°C	-10°C
Требования: AWS A5.4 ISO 3581-A	E.C.	не требуется мин. 350	мин. 590 мин. 500	мин. 30 мин. 25	не требуется не требуется	
Средние значения	ПС	425	650	35	85	60

ВИДЫ УПАКОВКИ				
	Диаметр (мм) Длина (мм)	3,2 350	4,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (kz)	94 4,7	62 6,0	

Идентификационное обозначение: AROSTA 307-160

Цвет торца электрода: красный

Arosta*307-160: Bep. C-RU06-01/02/16

Arosta[®] **307-160**

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Различные марки стали, например:

- броневые плиты;
- закаливаемые и трудносвариваемые марки стали;
- немагнитные аустенитные марки стали;
- самоупрочняющиеся аустенитные марганцевые стали;
- разнородные соединения (сплавов СМп и нержавеющей стали)

ПАННЫЕ ПО РАСХОЛУ

Размеры диам. х длина	Tok (A)	A) Pog moka	Время горения дуги Тепловложение - на электрод при максималы		Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
(мм)							металла	металла 1/N
			(c)*	E (кДж)	H (kz/4)			
3,2 x 350	110-150	DC+	53	132	1,4	29,1	48	1,39
4,0 x 450	140-200	DC+	86	264	1,7	55,9	25	1,41

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаме	emp	Просі	транственн	ые положения	сварки
(мм)	PA/1G	PB/2F	PC/2G	
3,2		150A	140A	140A	
4,0		200A	180A	160A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

Mn = 4,5 - 7,5% AWS: Mn = 3,30 - 4,75% Cr = 17,0 - 20,0% AWS: Cr = 18,0 - 21,5% Ni = 7,0 - 10,0% AWS: Ni = 9,0 - 10,7%

Jungo[®]307

AWS A5.4 F307-15* A-Nr 8 Mat-Nr 1,4370 ISO 3581-A E 18 8 Mn B 2 2 F-Nr 5 9606 FM *:с отклонениями, см. примечания

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением:-120...+350°C Стойкость к окислению: н/а

ОБШЕЕ ОПИСАНИЕ

Электрод с полностью основным типом покрытия для сварки сплавов нержавеющей стали с содержанием Мп 5% в любых пространственных положениях

Предназначен для тридносвариваемых металлов, например, броневых пластин и аустенитных сплавов Мп Часто используется в качестве буферного слоя при наплавке

Пригоден для сварки на обратной полярности (DC+)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC/DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

С	Mn	Si	Cr	Ni
0,08	5,5	0,3	19,0	8,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел текучести	Предел прочности	Отн. удлинение	Ударная вязк по Шарпи (ость Дж)
	Состояние	(M∏a)	(МПа)	[%]	+20°C	-120°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 350 500	мин. 590 мин. 500 650	мин. 30 мин. 25 35	не требуется не требуется 100	35

	Диаметр (мм) Длина (мм)	3,2 350	4,0 450	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (кг)	170 5,0	110 6,5	
SRP	Штук в единице Вес нетто/ед. (кг)	56 1,8	-	

Идентификационное обозначение: JUNGO 307

Цвет торца электрода: серебристый

Jungo 307- Bep. C-RU27-01/02/16

Jungo[®]307

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Различные марки стали, например:

- броневые плиты;
- закаливаемые и трудносвариваемые марки стали;
- немагнитные аустенитные марки стали;
- самоупрочняющиеся аустенитные марганцевые стали;
- разнородные соединения;
- трудносвариваемые марки стали

ДАННЫЕ ПО І	РАСХОДУ							
Размеры guaм. х gлина (мм)	Tok (A)	Pog moka	Время горения дуги	Тепловложение род при максималя	Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
(ММ)							металла	металла 1/N
			(c)*	Е (кДж)	H (kz/u)			
3,2 x 350	70 - 100	DC+	53	132	1,4	29,1	48	1,39
4 N x 45N	100 - 130	DC+	86	264	17	55.9	25	1.41

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ІЫЕ РЕЖИМІ	Ы СВАРКИ ЗА	полняющи	х проходов	
Диаметр		Прос	транственн	ные положения сварки	
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	
3,2	90A	90A	90A	70A	
4,0	140A	115A	130A	95A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

Mn = 4,5 - 6,5% AWS: Mn = 3,30 - 4,75% Ni = 7,5 - 9,5% AWS: Ni = 9,0 - 10,7%

Arosta®304H

КЛАССИФИКАЦИЯ

AWS A5.4 E308H-16 A-Nr 8 Mat-Nr 1,4829 ISO 3581-A E 19 9 H R 12 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-20...+730°С Стойкость к окислению : до 800°С

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки нержавеющей стали в любых пространственных положениях

Предназначен для применения в условиях высокой температуры (до 730°C) — например, сталей AISI 304H или Mat. Nr. 1.4948

Малая чувствительность к дисперсионному уплотнению интерметаллических фаз

Может использоваться как на переменном, так и постоянном токе

Широко используется в нефтехимической и химической промышленности

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC/DC + / -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,05	0,75	0,85	18,5	9,5	3-7

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текичести	Предел прочности	Отн. удлинение	Ударная вязк no Шарпи (£	
	Состояние	(MΠa)	(MΠa)	(%)	+20°C	-20°C
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 350 450	мин. 550 мин. 550 600	мин. 35 мин. 30 44	не требуется не требуется 85	50

ВИДЫ УПАКОВК*И*

	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	
Карт. коробка	Штук в единице	145	150	100	
+ ПЭ пленка	Вес нетто/ед. (kг)	2,8	4,8	4,9	

Идентификационное обозначение: 308H-16 / AROSTA 304 H Цвет торца электрода: зеленый

Arosta*304H; Bep. C-RU25-01/02/16

Arosta®304H

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
Среднее содер	жание углерода (С >	0,03%)			302
	X4CrNi18-10		1,4301	(TP)304	S30400
				(TP)304H	S30409
		GX5CrNi19-10	1,4308	CF8	J92600
			1,4948		
Со стабилизац	цией Ті, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
				(TP)347H	S34709
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг наплавленного
(мм)			- на элект	pog npu максималь	ном moke -	mnke -		
			(c)*	E (кДж)	H (kz/4)		метталла	металла 1/N
2,5 x 350	40 - 75	DC+	51	89	0,99	19,4	79	1,54
3,2 x 350	60 - 110	DC+	58	121	1,3	31,5	48	1,52
4,0 x 350	80 - 150	DC+	64	258	1,8	48,0	32	1,54

^{*}Остаток электрода 35 мм

l uaметр			Пространсп	пвенные положения с	:Bapku	
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем
2,5	70A	70A	70A	60A	60A	60A
3,2	100A	100A	100A	70A	70A	70A
4,0	140A	140A	140A	80A		

Arosta®309H

AWS A5.4 E309H-16* A-Nr 8 Mat-Nr 1,4829 ISO 3581-A E 23 12 R 3 2* F-Nr 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением:-10...+400°С Стойкость к окислению: qo 1100°C

ОБЩЕЕ ОПИСАНИЕ

*:с отклонениями, см. примечания

Электрод с рутилово-основным типом покрытия для сварки нержавеющей стали в любых пространственных положениях

Предназначен для применения в исловиях высокой температиры, например, в промышленных печах

Высокая устойчивость к окислению при температуре до 1050°C

Может использоваться как на переменном, так и постоянном токе

9606 FM 5

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC/DC + / -

VIABALALIECIZIALA	СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%	73
XUIVIUIGELKUU	I III IAB HAIIIIABHEHHIII II METAIIIIA 19	

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,10	0,8	1,6	22,0	11,0	3-8

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) +20°С
Требования: AWS A5.4	ПС	не требуется	мин. 550	мин. 30	не требуется
ISO 3581-A		мин. 350	мин. 550	мин. 25	не требуется
Средние значения		500	700	30	50

	Диаметр (мм)	2,5	3,2
	Длина (мм)	350	350
Карт. коробка +	Штук в единице	120	130
ПЭ пленка	Вес нетто/ед. (kг)	2,6	4,8

Идентификационное обозначение: AROSTA 309 H

Цвет торца электрода: желтый

Arosta*309H; Bep. C-RU25-01/02/16

Arosta®309H

лассы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
		GX30CrSi6	1,4710		
	X10CrAl7		1,4713	502	
	X10CrAl13		1,4724	410/414-TP405-CA15	
		GX40CrSi13	1,4729		
		GX40CrSi17	1,4740		
	X10CrAl18		1,4742	430-TP430-CB30	
	X10CrAl24		1,4762	TP443	
		GX25CrNiSi18-9	1,4825		J92502
		GX40CrNiSi22-9	1,4826		
	X15CrNiSi20-12		1,4828	TP309	S30900
		GX25CrNiSi20-14	1,4832		
	X12CrNiTi18-9				

ДАННЫЕ ПО Р	асходу								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	. Tenuukuumehile meuphucmp		Bec/1000	Шт. электродов	Кг электродов на кг	
, ,			- на электрод при максимальном moke -			աm. (kz)	на кг напл.	наплавленного	
(мм)			- Ha shekiii	роў при максималь	ном шоке -		метаппа	метапла 1/N	
(MMJ			- Ha silekiii	роў при максимало Е (кДж)	ном токе - Н (кг/ч)		металла	металла 1/N	
[мм] ———————————————————————————————————	40-110	DC+				19,7	металла 73	металла 1/N 1,44	

^{*}Остаток электрода 35 мм

Диаметр Пространственные положения сварки									
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем			
2,5	70A	70A	70A	60A	60A	60A			
3,2	100A	100A	100A	70A	70A	70A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

Si = makc. 2,0% AWS: Si = makc. 1,0% Cr = 20,0 - 23,0% AWS: Cr = 22,0 - 25,0%

Ni = 10,0 - 13,0% AWS: Ni = 12,0 - 14,0%

EN: Si = makc. 1,2%

Intherma® 310

КЛАССИФИКАЦИЯ

AWS A5.4 E310-16 ISO 3581-A E 25 20 R 1 2 A-Nr 9 Mat-Nr 1,4842 F-Nr 5 9606 FM 5 ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением:-20...+400°C Стойкость к окислению: до 1200°C

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки в любых пространственных положениях, кроме вертикального направления сверху вниз

Полностью аустенитный металл сердечника электрода с высоким содержанием Cr и Ni для эксплуатации при очень высокой температуре

Высокая устойчивость к окислению при температуре вплоть до 1200°С

Может использоваться как на переменном, так и постоянном токе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАР<u>КИ (ISO/ASME</u>

РОД ТОКА

AC/DC +

PA/1G

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
С	Mn	Si	Cr	Ni	FN (no WRC 1992)				
N12	25	0.5	26.0	20.5	Π				

п	МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]									
			Предел текичести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)				
		Состояние	(МПа)	(МПа)	(%)	+20°C				
	Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 350 440	мин. 550 мин. 550 600	мин. 30 мин. 20 30	не требуется не требуется 80				

ВИДЫ УПАКОВКИ					
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (кг)	145 3,0	150 5,1	100 5,1	

Идентификационное обозначение: 310-16 / INTHERMA 310 Цвет торца электрода: темно-зеленый

Intherma 310: 8ep. C-RU25-01/02/16

Intherma®310

СВАРИВАЕМЫЕ МАТЕРИАЛЫ									
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A351	UNS				
Жаростойкая с	таль								
	X10CrAl24		1,4762						
		GX25CrNiSi18-9	1,4825						
		GX40CrNiSi22-9	1,4826						
	X15CrNiSi20-12		1,4828						
		GX25CrNiSi20-14	1,4832						
	X15CrNiSi25-20		1,4841	310S	S31008				
				CK20	J94202				
	X12CrNi25-21		1,4845						
		GX40CrNiSi25-20	1,4848	HK40					

ДАННЫЕ ПО Р	АСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	· тепловложение мельность		Bec/1000	Шт. электродов	Кг электродов на кг
(мм)		•	- на электрод при максимальном moke -			шт. (kг)	на kz напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		метталла	Memoria i/N
2,5 x 350	80-110	DC+	50	84	0,74	18,9	97	1,83
3,2 x 350	90-140	DC+	56	155	1,31	31,8	49	1,56
4,0 x 350	130-175	DC+	72	233	1,55	50,7	32	1,64

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр		Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	РН/5G на подъем					
2,5	100A	100A	100A	90A	90A	90A					
3,2	130A	120A	130A	110A	110A	110A					
4,0	160A	160A	160A	140A							

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Максимальная погонная энергия сварки 1,5 кДж/мм

Максимальная температура перед наложением следующего слоя 100°C

Intherma®310B

КЛАССИФИКАЦИЯ

 AWS A5.4
 E310-15*
 A-Nr
 9
 Mat-Nr
 1,4842

 ISO 3581-A
 E 25 20 B 12
 F-Nr
 5

*:c omkлонениями, см. примечания **9606 FM** 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-20...+400°C Стойкость к окислению : до 1200°C

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для сварки в любых пространственных положениях, кроме вертикального направления сверху вниз

Полностью аустенитный металл сердечника электрода с высоким содержанием Cr и Ni для эксплуатации в условиях очень высоких температур

Высокая устойчивость к окислению при температуре вплоть до 1200°C

Рекомендуется избегать рабочих температур от 650 до 850°C

Сварка возможна только на постоянном токе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,1	3,0	0,3	25,0	21,0	0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) +20°C
Требования: AWS A5.4	ПС	не требуется	мин. 550	мин. 30	не требуется
ISO 3581-A		мин. 350	мин. 550	мин. 20	не требуется
Средние значения		440	600	30	100

пы			

	диаметр (мм)	2,5	3,2	4,0
	Длина (мм)	350	350	350
Карт. коробка +	Штук в единице	135	150	100
ПЭ пленка	Вес нетто/ед. (kг)	2,4	4,3	4,3

Идентификационное обозначение: INTHERMA 310 В

Цвет торца электрода: темно-зеленый

Intherma '310B: 8ep. C-RU24-01/02/16

Intherma® 310B

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A351	UNS
Жаростойкая с	таль				
	X10CrAl24		1,4762		
		GX25CrNiSi18-9	1,4825		
		GX40CrNiSi22-9	1,4826		
	X15CrNiSi20-12		1,4828		
		GX25CrNiSi20-14	1,4832		
	X15CrNiSi25-20		1,4841	310S	S31008
				CK20	J94202
	X12CrNi25-21		1,4845		
		GX40CrNiSi25-20	1,4848	HK40	

ДАННЫЕ ПО РАСХОДУ

Размеры guaм. х длина (мм)	Tok (A)
2,5 x 350	60-70
3,2 x 350	80-90
4.0 x 350	110-130

^{*}Остаток электрода 35 мм

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

Mn = мakc. 5,0% AWS: Mn = 1,0 - 2,5%

Максимальная погонная энергия сварки 1,5 кДж/мм

Максимальная температура перед наложением следующего слоя 100°C

Linox P308L

КЛАССИФИКАЦИЯ

AWS 45.4 E 19 9 L R 3 2 F-Nr 5 9606 FM 5

<u>ДИАП</u>АЗОН ТЕМПЕРАТУР

Детали под избыточным давлением:-196...+350°C Стойкость к окислению:qo 800°C

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием рутилового типа для сварки нержавеющей стали марки 304L или ее эквивалентов Пригоден для сварки в любых пространственных положениях, в том числе зафиксированных труб Хороший внешний вид шва

Минимальное разбрызгивание и высокая устойчивость к образованию пор

Высокая смачиваемость основного металла, отсутствие подрезов

Легкое omgеление шлака

Moжет использоваться kak на переменном, mak и постоянном токе

Takже gocmyneн в вакуумной ynakoвке PROTECH™

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS TÜV

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,025	0,8	0,6	19,0	9,5	3-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

				•	Отн. иалинение	Ударная вязкость по Шарпи (Дж)
Состояние					[%]	-100°C
581-A			MUH.	510	мин. 35 мин. 30 45	35
Диаметр (мм) Длина (мм)	2,0 300	2,5 350	3,2 350	4,0 450		
Штук в единице Вес нетто/ед. (кг)	194 2,13	119 2,38	82 2,7	55 3,59		
Штук в единице Вес нетто/ед. (kz)	158 1,74	110 2,2	70 2,33	46 3,0		
	. A5.4 581-A ения ПС Диаметр (мм) Длина (мм) Штук в единице Вес нетто/ед. (кг)	Состояние текучее (МПа) 6 А5.4 не требу мин. 3 ения ПС 581-A мин. 3 ения ПС 450 Диаметр (мм) Длина (мм) 2,0 300 Штук в единице Вес нетто/ед. (kz) 194 2,13 Штук в единице 158	АБ.4 не требуется мин. 310 нения ПС 450 Диаметр (мм) 2,0 2,5 Длина (мм) 300 350 Штук в единице 194 119 вес нетомоед. (kг) 2,13 2,38 Штук в единице 158 110	Состояние mekyчести (МПа) прочні (МПа) к АБ.4 не требуется мин. 310 мин. 310 мин. 310 мин. 310 мин. 310 мин. 359 мин. 350 мин. 359 Диаметр (мм) Длина (мм) 2,0 2,5 3,2 350 350 Штук в единице Вес нетто/ед. (кг) 194 119 82 2,7 38 2,7 Штук в единице 158 110 70	Состояние mekyчести (МПа) прочности (МПа) 4 А5.4 в81-А ения ПС не требуется мин. 510 590 мин. 510 590 Диаметр (мм) Длина (мм) 2,0 2,5 3,2 4,0 350 350 350 450 Штук в единице Вес нетто/ед. (kг) 194 119 82 55 2,7 3,59 Штук в единице Вес нетто/ед. (кг) 2,13 2,38 2,7 3,59 Штук в единице 158 110 70 46	Состояние текучести (МПа) прочности (МПа) удлинение (%) 4.5.4 не требуется мин. 310 мин. 510 мин. 510 мин. 35 мин. 510 мин. 30 590 45 681-А ения ПС 450 590 45 Диаметр (мм) Длина (мм) 2,0 2,5 3,2 4,0 Длина (мм) 300 350 350 450 Штук в единице Вес нетто/ед. (кг) 2,13 2,38 2,7 3,59 Штук в единице 158 110 70 46

Идентификационное обозначение: 308L-16 / LINOX P 308L Цвет торца электрода: нет

Linox P308L: Bep. C-RU01-01/02/16

Linox P308L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерод	ja (C <0,03%)			
	X2CrNi19-11		1,4306	(TP)304L	S30403
				CF-3	J92500
Среднее содер	жание углерода (С >	0,03%]			
	X4CrNi18-10		1,4301	(TP)304	S30409
		GX5CrNi19-10	1,4308	CF 8	J92600
Со стабилизац	цией Ті, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
				(TP)347H	S34709
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

иаметр			Прост	ранственные полож	сения свар	ku
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем
2,0		45A	45A	40A	40A	40A
2,5	70A	70A	70A	60A	60A	60A
3,2	100A	100A	100A	70A	70A	70A
4,0	140A	140A	140A	80A		

Linox 308L

КЛАССИФИКАЦИЯ

 AWS A5.4
 E308L-17
 A-Nr
 8
 Mat-Nr
 1,4316

 ISO 3581-A
 E 19 9 L R 3 2
 F-Nr
 5

 9606 FM
 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-196...+350°C Стойкость к окислению :qo 800°C

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием рутилового типа для сварки нержавеющей стали марки 304L или ее эквивалентов Хороший внешний вид шва

Минимальное разбрызгивание и высокая устойчивость к образованию пор

Высокая смачиваемость основного металла, отсутствие подрезов

Легкое omgеление шлака

Может использоваться как на переменном, так и постоянном токе

Takже gocmuneн в вакцимной unakoвke PROTECH™

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

V----------

AC / DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	DNV	ΤÜV
+	в процессе оформления	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,025	0,8	0,8	19,0	9,5	3-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Пред mekyve		Пре прочн	_	Отн.	Ударная вязк по Шарпи (Į	
	Состояние	(МП		прочн (МГ		удлинение (%)	+20°C	-20°C
Требования: AW ISO : Средние зна	3581-A	не треб мин. 450	310	мин. мин. 59	510	мин. 35 мин. 30 45	не требуется не требуется 70	50
ВИДЫ УПАКОВКИ								
	Диаметр (мм) Длина (мм)	2,0 300	2,5 350	3,2 350	4,0 450	5,0 450		
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (кг)	196 2,3	120 2,53	80 2,78	55 3,69	32 3,43		
Protech™	Штук в единице Вес нетто/ед. (кг)	160 1,84	110 2,32	69 2,4	45 3,09	30 3,2		

Идентификационное обозначение: 308L-17 / LINOX 308 L Цвет торца электрода: нет

Linox308L: Bep. C-RU03-01/02/16

Linox 308L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерод	ja (C <0,03%)			
	X2CrNi19-11		1,4306	(TP)304L	S30403
				CF-3	J92500
Среднее содера	жание углерода (С >	0,03%]			
	X4CrNi18-10		1,4301	(TP)304	S30409
		GX5CrNi19-10	1,4308	CF 8	J92600
Со стабилизац	ιueŭ Ti, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
				(TP)347H	S34709
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

Диаметр	Пространственные положения сварки						
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G		
2,0		45A	45A	40A	40A		
2,5	70A	70A	70A	60A	60A		
3,2	100A	100A	100A	70A	70A		
4,0	140A	140A	140A				
5,0	180A	180A					

Linox P 316L

КЛАССИФИКАЦИЯ

AWS 45.4 E308L-16 A-Nr 8 Mat-Nr 1,4430 ISO 3581-A E19 12 3 L R 3 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением:-120...+350°C Стойкость к окислению: н/q

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием рутилового типа для сварки нержавеющей стали марки 316L или ее эквивалентов

Пригоден для сварки в любых пространственных положениях, в том числе зафиксированных труб

Хороший внешний вид шва

Минимальное разбрызгивание и высокая устойчивость к образованию пор

Высокая смачиваемость основного металла, отсутствие подрезов

Легкое omgеление шлака

Может использоваться как на переменном, так и постоянном токе

Takже gocmyneн в вакуумной ynakoвке PROTECH™

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS TÜV

+ +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Идентификационное обозначение: 316L-16 / LINOX P 316L Цвет торца электрода: нет

С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)
0,025	0,8	0,6	19,0	12,0	2,5	3-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текичести	Предел прочности	Отн. I удлинение	Ударная вязк по Шарпи (
	Состояние	(МПа)	(МПа)	(%)	+20°C	-105°C
Tребования: AWS A5 ISO 3581- Средние значени	-A	не требуется мин. 320 480	мин. 520 мин. 510 580	мин. 30 мин. 25 41	не требуется не требуется 70	40
ВИДЫ УПАКОВКИ						
	Диаметр (мм) Длина (мм)	2,0 300	2,5 3,2 350 350	4,0 5,0 450 450		
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (k	195 2, 15	119 79 2,41 2,7	55 32 3,62 3,29		
Protech™	Штук в единице Вес нетто/ед. (k	159 2) 1,75	110 70 2,21 2,34	46 28 3,05 3,11		

Linox P316L: Bep. C-RU02-01/02/16

Linox P 316L

ВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерода	[C <0,03%]			
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
Среднее содера	жание углерода (C >0	,03%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		GX5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизац	ιueŭ Ti, Nb				
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

иаметр	Пространственные положения сварки						
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем	
2,0	40A	45A	45A	40A	40A	40A	
2,5	70A	70A	70A	60A	60A	60A	
3,2	100A	100A	100A	70A	70A	70A	
4,0	140A	140A	140A	80A			
5,0	180A	180A	180A				

Linox 316L

КЛАССИФИКАЦИЯ

 AWS A5.4
 E30816L-16
 A-Nr
 8
 Mat-Nr
 1,4430

 ISO 3581-A
 E 19 12 3 L R 3 2
 F-Nr
 5

 9606 FM
 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-120...+350°C Стойкость к окислению : н/д

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием рутилово-основного типа для сварки нержавеющей стали марки 316L или ее эквивалентов

Хороший внешний вид шва

Минимальное разбрызгивание и высокая устойчивость к образованию пор

Высокая смачиваемость основного металла, отсутствие подрезов

Легкое omgеление шлака

Может использоваться как на переменном, так и постоянном токе

Takже gocmyneн в вакуумной ynakoвке PROTECH™

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

POД TOKA AC/DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS DNV TÜV

в процессе оформления

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Mo	FN (no WRC 1992)
0,025	0,8	0,8	18,0	12,0	2,5	3-10

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текичести		Предел прочности		Отн. цалинение	ударная оязк по Шарпи (£	
	Состояние	(МПа)		(МПа)	<u>'</u>	(%)	+20°C	-105°C
Требования: AWS A5.4 ISO 3581-A Средние значения		не требуется мин. 320 480	1	мин. 490 мин. 510 600		мин. 30 мин. 25 42	не требуется не требуется 70	40
ВИДЫ УПАКОВКИ								
	Диаметр (мм) Длина (мм)	,	2,5 350	3,2 350	4,0 450	5,0 450		
	Штук в единице Вес нетто/ед. (кг)		120 2,53	80 2,78	55 3,75	31 3,41		
	Штук в единице Вес нетто/ед. (кг)		110 2,32	69 2,4	46 3,12	28 3,08		

Идентификационное обозначение: 316L-17 / LINOX 316 L Цвет торца электрода: нет

Linox316L: Bep. C-RU03-01/02/16

Vaanuaa Raakoemi

Linox 316L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое (одержание углерода	(C <0,03%)			
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
Среднее содер	жание углерода (С >0	,03%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		GX5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилиза	цией Ti, Nb				
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		GX5CrNiNb19-10	1,4552	CF-8C	J92710

ОПТИМАЛЬН	ЫЕ РЕЖИМ	ІЫ СВАРКИ З	ОВНПОПА	щих проходов		
Диаметр			Прост	ранственные полож	ения сварки	
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	
2,0	40A	45A	45A	40A	40A	
2,5	70A	70A	70A	60A	60A	
3,2	100A	100A	100A	70A	70A	
4,0	140A	140A	140A			
5,0	180A	180A				

Linox P309L

AWS A5.4 E309L-16 A-Nr 8 Mat-Nr 1,4332 5

ISO 3581-A E 23 12 L R 3 2 F-Nr

9606 FM 5

Детали под избыточным давлением:-20...+350°C

Стойкость к окислению: н/а

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием рутилового типа для формирования промежуточных слоев на высоколегированной стали CrNi в любых пространственных положениях

Пригоден для сварки в любых пространственных положениях, в том числе зафиксированных труб

Пригоден для сварки соединений между нержавеющей и углеродистой или низколегированной сталью, плакированной нержавеющей стали

Хороший внешний вид шва

Минимальное разбрызгивание и высокая устойчивость к образованию пор

Высокая смачиваемость основного металла, отсутствие подрезов

Легкое отделение шлака

Может использоваться как на переменном, так и постоянном токе

Takже достипен в вакцимной цпаковке PROTECH™

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC/DC +

PA/1G

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS ΤÜV

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,025	0,8	0,6	23,5	13,0	8-20

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел	Предел	Отн.	по Шарпи (Дж)	•
	Состояние	mekyчести (МПа)	прочност (МПа)	и удлинение (%)	-20°C	
Требования: AWS A5. ISO 3581- Средние значени	A	не требуется мин. 320 495	мин. 520 мин. 510 595		не требуется не требуется 45	
ВИДЫ УПАКОВКИ						
	Диаметр (мм) Длина (мм)	2,5 350	3,2 4,0 350 450			
Карт. коробка + ПЭ пленка	Штук в единице Вес нетто/ед. (80 55 2,8 3,76			

70

2,42

46

3,15

Идентификационное обозначение: 309L-17 / LINOX P 309L Цвет торца электрода: нет

Штик в единице

Bec Hemmo/eq. [kz]

Linox P309L: 8ep. C-RU01-01/02/16

Упапная Вязкость

110

2,31

Protech™

Linox P309L

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Коррозиестойкая пла	кированная сталь			
	X2CrNiN18-10	1,4311	(TP)304LN	S30453
	X2CrNi19-11	1,4306	(TP)304L	S30403
			CF-3	J92500
	X4CrNi18-10	1,4301	(TP)304	S30400

Соединения разнородных металлов (низкоуглеродистой/низколегированной стали и нержавеющей стали CrNi или CrNiMo) Наплавка на низкоуглеродистые и низколегированные стали Буферный слой плакированной стали CrNi

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

ļ uaметр			Про	остранственные по	ложения с	:варки
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем
2,5	70A	70A	70A	60A	60A	60A
3,2	100A	100A	100A	70A	70A	70A
4,0	140A	140A	140A	A08		

Linox 309L

КПАССИФИКАНИЯ

AWS A5.4 E309L-17 A-Nr 8 ISO 3581-A E 23 12 L R 3 2 F-Nr 5 9606 FM 5

ДИАПАЗОН ТЕМПЕРАТУР

Детали под избыточным давлением :-20...+300°C Стойкость к окислению : н/q

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием рутилового типа для формирования промежуточных слоев на высоколегированной стали CrNi в любых пространственных положениях

Пригоден для сварки соединений между нержавеющей и углеродистой или низколегированной сталью, плакированной нержавеющей стали

1.4332

Mat-Nr

Хороший внешний вид шва

Минимальное разбрызгивание и высокая устойчивость к образованию пор

Высокая смачиваемость основного металла, отсутствие подрезов

Легкое omgеление шлака

Может использоваться как на переменном, так и постоянном токе

Takже gocmuneн в вакцимной unakoвke PROTECH™

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

Упапная Вязкость

AC/DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS DNV TÜV

в процессе оформления

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	FN (no WRC 1992)
0,025	0,7	0,7	24,0	12,5	8-20

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

			редел кичести		едел ности	Отн. удлинение	no Шарпи (
	Состояние		МПа)		Па)	(%)	+20°C	-20°C
Требования: AWS A5.4 ISO 3581-A Средние значения	_	Мi	ребуется ин. 320 500	MUH	ı. 520 ı. 510 20	мин. 30 мин. 25 40	не требуется не требуется 55	40
ВИДЫ УПАКОВКИ								
	Диаметр (мм Длина (мм))	2,5 350	3,2 350	4,0 450			
Карт. коробка + ПЭ пленка	Штук в едини Вес нетто/ед		120 2,59	80 2,9	58 4,12			
Protech™	Штук в едини Вес нетто/ед		110 2,37	69 2,5	45 3,2			

Идентификационное обозначение: 309L-17 / LINOX 309 L Цвет торца электрода: нет

Linox 309L: Bep. C-RU02-01/02/16

Linox 309L

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Коррозиестойкая плак	сированная сталь			
	X2CrNiN18-10	1,4311	(TP)304LN	S30453
	X2CrNi19-11	1,4306	(TP)304L	S30403
			CF-3	J92500
	X4CrNi18-10	1,4301	(TP)304	S30400

Соединения разнородных металлов (низкоуглеродистой/низколегированной стали и нержавеющей стали CrNi или CrNiMo) Наплавка на низкоуглеродистые и низколегированные стали Буферный слой плакированной стали CrNi

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки						
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G		
2,5	70A	70A	70A	60A	60A		
3,2	100A	100A	100A	70A	70A		
4,0	140A	140A	140A				
4,0	140A	140A	140A				

NiCro 31/27

КЛАССИФИКАЦИЯ

AWS A5.4 E383-16* A-Nr 9 Mat-Nr 1,4563

ISO 3581-A E 27 31 4 Cu L R 12 **F-Nr** 5 * самый близкий класс **9606 FM** 5

ОБШЕЕ ОПИСАНИЕ

Полностью аустенитный электрод с покрытием рутилово-основного типа и содержанием NiCrMoCu для сварки в любых пространственных положениях

Разработан для применения на заводах по производству серной и фосфорной кислоты

Предназначен для сварки высоколегированных сплавов NiCr с содержанием Мо и Си

Гладкая поверхность шва и легкое omgеление шлака

Также пригоден для сварки разнородных металлов для эксплуатации при температуре до 450°C

Высокая устойчивость к питтинговой коррозии (PREN ~40)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC/DC +

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

С	Mn	Si	Cr	Ni	Мо	Cu	Fe	FN (no WRC 1992)
0,02	0,8	0,9	27,1	31,0	3,5	0,9	бал.	0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) +20°С	
Требования: AWS A5.4 ISO 3581-A Средние значения	ПС	не требуется мин. 240 440	мин. 520 мин. 500 640	мин. 30 мин. 25 38	не требуется не требуется 70	

ВИДЫ УПАКОВКІ

	Диаметр (мм)	2,5	3,2	4,0
	Длина (мм)	350	350	350
ПЭ тубус	Штук в единице	91	66	45
	Вес нетто/еа. (kz)	1,8	2,0	2,0

Идентификационное обозначение: NICRO 31/27

Цвет торца электрода: оранжевый

NiCro 31/27: 8ep. C-RU26-01/02/16

NiCro 31/27

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ					
Классы стали	Стандарт	Tun	Mat. Nr	ASTM/ACI	UNS	
Медные сплавы	CrNiMo u NiCrMo					
	EN 10088-1/-2	X1NiCrMoCu31-27-4	1,4563	Сплав 28	N08028	
		X1NiCrMoCu25-20-5	1,4539	Сплав 904L	N08904	

ДАННЫЕ ПО Р	АСХОДУ							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение Производи- тепловложение тельность наплавки		Bec / 1000	Шт. электродов	Кг электродов на кг
(мм)			- на электрод при максимальном moke -			шт. (kг)	на kz напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		менталла	Memajija i/N
2,5 x 350	45-70	DC+	52	95	0,84	21,3	83	1,75
3,2 x 350	70-95	DC+	56	132	1,3	31,2	48	1,49
4,0 x 350	110-150	DC+	53	198	2,0	46,0	34	1,56

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	РН/5G на подъем				
2,5	65A	70A	70A	70A	60A	60A				
3,2	95A	95A	95A	95A	A08	80A				
4,0	120A	120A								

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Максимальная погонная энергия сварки 1,5 kДж/мм

Максимальная температура перед наложением следующего слоя 150°C

NiCro 60/20

КЛАССИФИКАЦИЯ

AWS A5.11 ENiCrMo-3 A-Nr - Mat-Nr 2,4621

ISO 14172 E Ni 6625 (NiCr22Mo9Nb) F-Nr 43

9606 FM 6

ОБЩЕЕ ОПИСАНИЕ

Аустенитный электрод на основе Ni с полностью основным типом покрытия с содержанием

высоколегированного сплава CrMoNb для сварки в любых пространственных положениях

Сверхвысокая стойкость к общей, межкристаллической, питтинговой и щелевой коррозии, а также коррозионному растрескиванию

Подходит для сварки изделий из разнородных металлов; обладает высокой устойчивостью к образованию горячих трещин

Устойчивость к окислению при высокой температуре (макс. 1200°C) и насыщению углеродом

Хорошие показатели ударной вязкости при низких температурах (вплоть до -196°C), пригоден для сварки стали с содержанием Ni 9%

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	Nb	Fe	
0,03	0,5	0,35	22,0	62,0	9,0	3,4	0,9	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -196°C	
Требования: AWS A5.11		не требуется	мин. 760	мин. 30	не требуется	
ISO 14172 Средние значения	ПС	мин. 420 510	760 770	мин. 27 44	не требуется 92	

ВИДЫ УПАКОВКИ

	Диаметр (мм)	2,5	3,2	4,0
	Длина (мм)	300	300	350
ПЭ тубус	Штук в единице	94	61	45
	Вес нетто/ед. (kz)	1,6	1,7	2,1

Идентификационное обозначение: NiCrMo-3 / NICRO 60/20 Цвет торца электрода: зеленый

NiCro 60/20: Bep. C-RU23-01/02/16

NiCro 60/20

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	DIN/EN	Mat. Nr	ASTM/ACI	UNS
Сплав 625 muna NiCrMo	и другие марки жаросто	ойкой стали NiCrMo дл	я эксплуатации в услови:	ях высокой коррозии
	X1NiCrMoCuN25-20-6	1,4529	Сплав 925	N08925
	X1NiCrMoCu25-20-5	1,4539	Сплав 904L	N08904
	X1CrNiMoCuN20-18-7	1,4547	Сплав 254	S31254
	X2NiCrAlTi32-20	1,4558	Сплав 800L	N08800
	G-X10NiCrNb32-20	1,4859		
	X10NiCrAlTi32-20	1,4876	Сплав 800/800Н	N08800/-10
	NiCr22Mo6Cu	2,4618	Сплав G	N06007
	NiCr22Mo7Cu	2,4619	Сплав G-3	N06985
	NiCr21Mo6Cu	2,4641	Сплав 825hMo	N08821
	NiCr20CuMo	2,4660	Сплав 20	N08020
	NiCr15Fe	2,4816	В168-Сплав 600	N06600
	NiCr22Mo9Nb	2,4856	В443-Сплав 625	N06625
	NiCr21Mo	2,4858	В424-Сплав 825	N08825
	NiCr20Ti	2,4951	Сплав 75	N06075
	NiCr20TiAl	2,4952	Сплав 80А	N07080
Низколегированная ст	аль			
	10Ni14 (3,5% Ni)	1,5637	ASTM A333 Copm 3	-
	12Ni19, X12Ni5	1,5680	=	K41583
Сталь для резервуаро	В хранения СПГ с содержа	анием Ni 9%		
	X8Ni9 (9% Ni)	1,5662	A353/A353M	=
	X8Ni9 (9% Ni)	1,5662	A553/A553M Tun I	=
	(8% Ni)		A553/A553M Tun II	K71340

ДАННЫЕ ПО РАСХОДУ

Размеры guaм. х длина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Tenловложение pog npu максималь	Производи- тельность наплавки ном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
			(c)*	Е (kДж)	H (kz/4)		металла	металла 1/N
2,5 x 300	45-70	DC+	44	80	0,95	17,2	87	1,51
3,2 x 300	70-100	DC+	44	101	1,5	26,8	55	1,48
4,0 x 350	100-130	DC+	53	215	2,2	46,4	30	1,41

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр			Пространс	твенные положения	сварки		
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем	
2,5	60A	55A	60A	60A	60A	60A	
3,2	90A	80A	85A	80A	A08	A08	
4,0	120A	120A					

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Максимальная погонная энергия сварки 1,5 кДж/мм

Максимальная температура перед наложением следующего слоя 150°C

NiCro 70/15

КЛАССИФИКАЦИЯ

AWS A5.11 ENiCrFe-2* **A-Nr** - **Mat-Nr** 2,4807

ISO 14172 E Ni 6182* (NiCr15Fe6Mn) **F-Nr** 43 *:с отклонениями. см. примечания **9606 FM** 6

ОБЩЕЕ ОПИСАНИЕ

Электрод из NiCr с основным типом покрытия для сварки в любых пространственных положениях

Высокая теплоустойчивость при температуре до 815°C

Высокая устойчивость к возникновению хрупкости

Высокая прочность в условиях низкой температуры (-196°C)

Предназначен для сварки сплавов на основе Ni (например, сплава 600) и изделий из разнородных металлов

Высокая устойчивость к насыщению углеродом

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

BA/16

<u>ОДОБРЕНИЯ</u> СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Nb	Fe	
0,02	4,4	0,45	18,0	бал.	1,9	6	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел текичести	Предел прочности	Отн. цалинение	Ударная вязк по Шарпи (£	
	Состояние	(MПа)	(МПа)	[%]	+20°C	-196°C
Требования: AWS A5.11 ISO 14172 Средние значения	ПС	не требуется мин. 360 430	мин. 550 мин. 550 680	мин. 30 мин. 27 40	не требуется не требуется 145	130

виды упаковки								
	Диаметр (мм) Длина (мм)	2,5 300	3,2 300	4,0 350				
ПЭ тубус	Штук в единице Вес нетто/ед. (kz)	90	57	43				
	Bec Hemmo/ea. (kz)	1.6	1.9	2.0				

Идентификационное обозначение: NICRO 70/15

Цвет торца электрода: серебристый

NiCro 70/15: Bep. C-RU24-01/02/16

NiCro 70/15

СВАРИВАЕМЫЕ	ВАРИВАЕМЫЕ МАТЕРИАЛЫ							
Классы стали	BS 3076	DIN 17742 SEW 470/595	Mat. Nr	ASTM / ACI B366	UNS			
Сплавы на осно	ве Ni с добавление	м Cr для эксплуатации в условия	х высокой и низкої	й температуры				
		LC-NiCr15Fe	2,4817		N06600			
	NA14	NiCr15Fe	2,4816	Сплав 600/В168	N06600			
		NiCr23Fe	2,4851	Сплав 601(Н)	N06601			
		NiCr60-15	2,4867		N06004			
		NiCr80-20	2,4869		N06003			
		NiCr20Ti	2,4951	Сплав 75	N06075			
		NiCr20TiAl	2,4952	Сплав 80А	N07080			
	NA17	X12NiCrSi36-16	1,4864	330	N08330			
		G-X10NiCrNb32-20	1,4859					
	NA15	X10NiCrAlTi32-20	1,4876	Сплав 800/800Н	N08800/			
					N08810			

Подходит для сварки разнородных соединений:

- низкоуглеродистой/низколегированной и нержавеющей стали;
- · низкоиглеродистой/ низколегированной стали и сплавами на основе Ni;
- нержавеющей стали и низколегированной жаропрочной стали.

Не имеет склонности к повышению хрупкости после термообработки

АСХОДУ							
Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
	. 09	- на элект	pog npu максималь	ном moke -	wm. (kz)		наплавленного металла 1/N
		(c)*	Е (kДж)	H (k2/4)		менталла	Memania i/N
45-60	DC+	44	63	0,9	17,5	91	1,59
70-100	DC+	52	107	1,3	29,2	52	1,54
90-160	DC+	61	214	2,0	51,0	29	1,47
	Tok (A) 45-60 70-100	Tok (A) Pog moka 45-60 DC+ 70-100 DC+	Ток (A) Род ток (СП) Время горения дуги (СП)* 45-60 DC+ 44 70-100 DC+ 52	Ток (A)Род ток (С)*Время горения дугиТепловложение- на электрод при максимали (с)*Е (КДж)45-60DC+446370-100DC+52107	Ток (A) Род ток (A) Время горения дуги пельность иналавки горения дуги пельность на электро при максиматьном токе (с)* Е (кДж) Н (кг/ч) 45-60 DC+ 44 63 0,9 70-100 DC+ 52 107 1,3	Ток (A) Род ток (A) Время горения дуги орения дуги орения дуги (С)* Тепловложении орения дуги орен	Ток (A) Род ток (A) Время горения дуги Тепловложение имельность на электро при максимальтьюм токе - (с)* Производительность на электро при максимальтьюм токе - (с)* Вес / 1000 им. (к.г.) Шт. (к.г.) электродов на кг налл. металла 45-60 DC+ 44 63 0,9 17,5 91 70-100 DC+ 52 107 1,3 29,2 52

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ІЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОІ	

Циаметр	Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем				
2,5	60A	55A	60A	60A	60A	60A				
3,2	90A	80A	85A	80A	80A	80A				
4,0	120A	120A								

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

Максимальная погонная энергия сварки 1,5 кДж/мм

Максимальная температура перед наложением следующего слоя 150°C

NiCro 70/15Mn

КЛАССИФИКАЦИЯ

AWS A5.11 ENICrFe-3 A-Nr - Mat-Nr 2,4620

ISO 14172 E Ni 6182 (NiCr15Fe6Mn)) F-Nr 43

9606 FM 6

ОБЩЕЕ ОПИСАНИЕ

Электрод из NiCr с основным типом покрытия для сварки в любых пространственных положениях

Предназначен для сварки сплавов на основе Ni (например, сплава 600), плакировки и изделий из разнородных металлов

Высокая теплоустойчивость при температуре до 815°C

Высокая устойчивость к возникновению хрупкости

Высокая прочность, в том числе при низкой температуре (-196°C)

Высокая устойчивость к насыщению углеродом

Дополнительные ~6% Мп придают сплаву стойкость к образованию горячих трещин

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

PAKO

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО	METY UUV (0%)
ANIMINI TECKNINI COCTAD HATDIADJIETHIOLO	IVIL I AJ IJ IA (70)

С	Mn	Si	Cr	Ni	Nb	S	Fe	
0,025	5,5	0,4	16,0	бал.	2,0	0,01	6,5	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) -196°С
Требования: AWS A5.11	ПС	не требуется	мин. 550	мин. 30	не требуется
ISO 14172		мин. 360	мин. 550	мин. 27	не требуется
Средние значения		400	630	40	125

виды упаковки								
	Диаметр (мм) Длина (мм)	2,5 300	3,2 300	4,0 350				
ПЭ тубус	Штук в единице Вес нетто/ед. (kг)	91 1,6	57 1,7	39 1,9				

Идентификационное обозначение: NiCrFe-3 / NICRO 70/15Mn

Цвет торца электрода: желтый

NiCro 70/15Mn: Bep. C-RU24-01/02/16

NiCro 70/15Mn

СВАРИВАЕМЫЕ МАТЕРИАЛЫ								
Классы стали	BS 3076	DIN 17742 Mat. Nr ASTM / ACI SEW 470/595 B366		UNS				
Сплавы на основ	ве Ni c добавлением Cr для з	ксплуатации в условиях выс	окой и низкой т	емпературы				
		LC-NiCr15Fe	2,4817		N06600			
	NA14	NiCr15Fe	2,4816	Сплав 600/В168	N06600			
		NiCr23Fe	2,4851	Сплав 601(Н)	N06601			
		NiCr60-15	2,4867		N06004			
		NiCr80-20	2,4869		N06003			
		NiCr20Ti	2,4951	Сплав 75	N06075			
		NiCr20TiAl	2,4952	Сплав 80А	N07080			
	NA17	X12NiCrSi36-16	1,4864	330	N08330			
		GX10NiCrNb32-20	1,4859					
	NA15	X10NiCrAlTi32-20	1,4876	Сплав 800/800Н	N08800/			
					N08810			

Подходит для сварки разнородных соединений:

- низкоуглеродистой/низколегированной и нержавеющей стали;
- · низкоиглеродистой/ низколегированной стали и сплавами на основе Ni;
- нержавеющей стали и низколегированной жаропрочной стали.

Не имеет склонности к повышению хрупкости после термообработки

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг
(мм)			- на элект	pog npu максималь	ном moke -	wm. (kz)	на kz напл. металла	наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/4)		менталла	Meiliaiiia i/N
2,5 x 300	40-70	DC+	80	119	0,52	17,4	86	1,49
3,2 x 300	70-100	DC+	77	193	0,84	29,0	56	1,61
4,0 x 350	90-140	DC+	74	289	1,7	50,9	29	1,47

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр	Диаметр Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	РН/5G на подъем				
2,5	60A	55A	60A	60A	60A	60A				
3,2	90A	80A	90A	80A	80A	A08				
4,0	120A	120A								

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Максимальная погонная энергия сварки 1,5 кДж/мм

Максимальная температура перед наложением следующего слоя 100°C

NiCro 70/19

КЛАССИФИКАЦИЯ

AWS A5.11 ENiCrFe-2* **A-Nr** - **Mat-Nr** 2,4648

ISO 14172 E Ni 6082 (NiCr20Mn3Nb) **F-Nr** 43 *:c отклонениями. см. примечания **9606 FM** 6

ОБЩЕЕ ОПИСАНИЕ

Электрод из сплава NiCr с основным типом покрытия для сварки в любых пространственных положениях Предназначен для сварки высоколегированных металлов на основе Ni, например Сплава 600 и Сплава 601

Takже пригоден для сварки стыков из разных материалов и плакированных сплавов из СМп и низколегированных металлов

Высокая истойчивость к окислению при высокой температире

Высокие показатели ударной вязкости в условиях низкой температуры (-196°C)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr	Ni	Mo	Nb	Fe
0,03	4,7	0,6	19,0	бал.	1,5	1,9	4,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел текичести	Предел прочности	Отн. цалинение	Ударная вязі по Шарпи (
	Состояние	(MΠa)	(МПа)	(%)	+20°C	-196°C
Требования: AWS A5.11		не требуется мин. 360	мин. 550 мин. 600	мин. 30 мин. 22	не требуется не требуется	
ISO 14172 Средние значения	ПС	400	650	40	110	90

ВИДЫ УПАКОВК*И*

	Диаметр (мм)	2,5	3,2	4,0	5,0
	Длина (мм)	300	300	350	450
ПЭ тубус	Штук в единице	76	57	31	45
	Вес нетто/ед. (kz)	1,5	1,7	1,8	4,5

Идентификационное обозначение: NICRO 70/19

Цвет торца электрода: синий

NiCro 70/19 Bep. C-RU24-01/02/16

NiCro 70/19

СВАРИВАЕМЫЕ МАТЕРИАЛЫ								
Классы стали	BS3076	DIN 17744/17465	Mat. Nr	ASTM/ACI	UNS			
		SEW 595	SEW 595					
Сплавы на осно	ве Ni с добавление	м Сг для применения в агрессивн	ых коррозионных с	pegax				
	NA 14	NiCr15Fe	2,4816	В168-Сплав 600	N06600			
		LC-NiCr15Fe	2,4817	Сплав 600L	N06600			
		NiCr20Ti	2,4951	Сплав 75				
		NiCr20TiA1	2,4952	Сплав 80А	N07080			
	NA 15	X10NiCrAlTi32-20	1,4876	Сплав 800/800Н	N08800/10			
		NiCr23Fe	2,4851	Сплав 601(Н)	N06601			
	NA 17	X12NiCrSi36-16	1,4864	330	N08330			
		GX40NiCrNb35-25	1,4852					
		GX40NiCrSi35-25	1,4857	HP				

Подходит для сварки разнородных соединений:

- низкоуглеродистой/низколегированной и нержавеющей стали;
- · низкоуглеродистой/ низколегированной стали и сплавами на основе Ni;
- нержавеющей стали и низколегированной жаропрочной стали.

Не имеет склонности к повышению хрупкости после термообработки

DC+

75

HAIIIIDIL IIO I	аслод/							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000 wm. [k2]	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
(мм)			- на элект	род при максималі	ном moke -	(KZ)	на ка напл.	металла 1/N
			(c)*	E (кДж)	H (k2/4)		метналла	Memania in
2,5 x 300	45-65	DC+	41	61	0,95	19,3	92	1,79
3,2 x 300	70-95	DC+	59	127	1,2	32,7	51	1,64

314

1.7

100-140

4,0 x 350

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ										
Диаметр Пространственные положения сварки										
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	РН/5G на подъем				
2,5	60A	55A	60A	60A	60A	60A				
3,2	90A	80A	90A	80A	80A	A08				
4,0	120A	120A								

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

Mn = 2,0 - 6,0% AWS: Mn = 1,0 - 3,5% Cr = 18,0 - 22,0% AWS: Mn = 13,0 - 17%

Максимальная погонная энергия сварки 1,5 кДж/мм

Максимальная температура перед наложением следующего слоя 150°C

29

59,3

1,72

^{*}Остаток электрода 35 мм

КЛАССИФИКАЦИЯ

AWS A5.11 ENICrMo-6 **A-Nr** - **ISO 14172** E Ni 6620 (NiCr14Mo7Fe) **F-Nr** 43

9606 FM 6

ОБЩЕЕ ОПИСАНИЕ

Высокопроизводительный электрод с покрытием основного типа для сварки низкотемпературной стали в любых пространственных положениях

Эффективность около 150% обеспечивает высокию производительность наплавки

Предназначен для сварки стали с содержанием Ni 9%

Коэффициент линейного расширения эквивалентен стали с содержанием Ni 9%

Высокие показатели ударной вязкости и предела текучести при низких температурах до -196°C

Возможность сварки на обратной полярности и переменном токе

Доступен только в вакуумной упаковке Sahara ReadyPack

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

POД TOKA

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

GL TÜV

5680 +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Ni	Мо	Nb	Fe	W	
0,05	3	0,4	13	бал.	6,0	1,5	6	1,5	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА **(%)**

		Предел Предел текичести прочности		Отн.	Ударная вязкость по Шарпи (Дж)		
	Состояние	(МПа)	(МПа)	удлинение (%)	+20°C	-196°C	
Требования: AWS A5.11 ISO 14172 Средние значения	ПС	не требуется мин. 350 475	мин. 620 мин. 620 725	мин. 20 мин. 32 40	не требуется не требуется 100	90	
среуние значения	110	473	,23		.00	30	

ВИДЫ УПАКОВКИ

	диаметтр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350
SRP	Штук в единице Вес нетто/ед. (kz)	62 1.7	52 2.2	27 1.8

Идентификационное обозначение: NiCrMo-6 / NYLOID 2

Цвет торца электрода: белый

Nyloid 2: Bep. C-RU25-01/02/16

СВАРИВАЕМЫЕ МАТЕРИ	АЛЫ				
Классы стали	EN 10028-4	Mat. Nr	ASTM	UNS	
Сталь для резервуаров х	ранения СПГ с содержанием	1 Ni 9%			
	X8Ni9	1,5662	A353/A353M		
	X8Ni9 (9% Ni)	1,5662	A553/A553M Tun I		
	[8% Ni]		A 553/A553M Tun II	K71340	
Низколегированная стал	ь для эксплуатации в услов	Виях низкой тег	мпературы		
	X12Ni5 (12Ni19)	1,5680		K41583	
	10Ni14 (3,5% Ni)	1,5637	A333 Copm 3		
	12Ni14 (3,5% Ni)	1,5637	A203 Copm E		

ДАННЫЕ ПО Р	ДАННЫЕ ПО РАСХОДУ								
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec/1000	Шт. электродов	Кг электродов на кг	
(мм)	TOK (A)	r og moku	- на элект	pog npu максималь	ном moke -	wm. (kz)	на kг напл. металла	наплавленного металла 1/N	
			(c)*	Е (kДж)	H (kz/4)		менталла	Memania i/N	
2,5 x 350	70-100	AC	54	128	1,3	26,5	53	1,39	
3,2 x 350	85-145	AC	63	229	1,8	43,6	31	1,37	
4,0 x 350	140-190	AC	73	355	2,4	65,8	21	1,33	
5,0 x 450	180-280	AC	94	764	3,7	133,5	10	1,35	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ										
Диаметр	Диаметр Пространственные положения сварки										
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем					
2,5	90 - 100A	90 - 100A	90 - 100A	90 - 100A	90 - 100A	80 - 100A					
3,2	135 - 145A	135 - 145A	135 - 145A	125 - 135A	125 - 135A	120 - 135A					
4,0	170 - 185A	170 - 185A	170 - 185A	140 - 165A							
5,0	220 - 270A	220 - 280A									

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемая величина погонной энергии зависит от толщины пластины:

≤ 15 мм: 1,4 кДж/мм

15 - 20 мм: 1,6 kДж/мм

> 20 мм: 2.0 кДж/мм

КЛАССИФИКАЦИЯ

 AWS A5.11
 ENiCrMo-6
 A-Nr

 ISO 14172
 E Ni 6620 (NiCr14Mo7Fe)
 F-Nr
 43

 9606 FM
 6

ОБШЕЕ ОПИСАНИЕ

Высокопроизводительный электрод с покрытием основного типа для сварки низкотемпературной стали в любых пространственных положениях

Специально разработан для сварки в положении РЕ/4G (высокая устойчивость к образованию пор)

Предназначен для сварки стали с содержанием Ni 9%

Коэффициент линейного расширения эквивалентен стали с содержанием Ni 9%

Высокие показатели ударной вязкости и предела текучести при низких температурах до -196°C

PH/5Gu

Возможность сварки на обратной полярности и переменном токе

Доступен только в вакуумной упаковке Sahara ReadyPack® (SRP)

PF/3Gu

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

POД TOKA

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

PC/2G

DNV GL BV

в процессе оформления в процессе оформления в процессе оформления

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

С	Mn	Si	Cr	Ni	Мо	Nb	Fe	w
0,05	3,0	0,4	13	бал.	6,0	1,5	6,0	1,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текичести	Предел прочности	Отн. цалинение	Ударная по Шар	вязкость onu (Дж)
	Состояние	(МПа)	(МПа)	(%)	+20°C	-196°C
Требования: AWS A5.11 ISO 14172 Средние значения	ПС	не требуется мин. 350 490	мин. 620 мин. 620 770	мин. 20 мин. 32 33	100	мин. 47 85

ВИДЫ УПАКОВК*И*

	Диаметр (мм) Длина (мм)	2,5 300	3,2 300	4,0 350	
SRP	Штук в единице Вес нетто/ед. (kг)	69 1,3	36 1,1	30 1,7	

Идентификационное обозначение: NiCrMo-6 / NYLOID 4

Цвет торца электрода: желтый

Nyloid 4: 8ep. C-RU02-01/02/16

СВАРИВАЕМЫЕ МАТЕР	ИАЛЫ				
Классы стали	EN 10028-4	Mat. Nr	ASTM/ICA	UNS	
Сталь для отрасли СПГ	с содержанием Ni 9%				
	X8Ni9	1,5662	A353/A353M NN+T		
	X8Ni9 (9% Ni)	1,5662	A553/A553M Tun I		
	(8% Ni)		A553/A553M Tun II	K71340	
Низколегированная ста	ль для эксплуатации в усл	овиях низкой те	мпературы		
	X12Ni5 (12Ni9)	1,5680		K41583	
	10Ni14 (3,5% Ni)	1,5637	A333 Copm 3		
	12Ni14 (3,5% Ni)	1,5637	A203 Copm E		

ДАННЫЕ ПО Р	АСХОДУ							
Размеры quaм. х длина	Tok [A]	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Шт. электродов	Кг электродов на кг	
(мм)			- на электрод при максимальном moke -			на kz напл. металла	наплавленного металла 1/N	
			(c)*	Е (kДж)	H (kz/u)	менналла	Meiliaillid I/N	
2,5 x 300	50-70	AC	52	88	0,9	77	1,47	
3,2 x 300	70-110	AC	60	146	1,3	46	1,50	
4,0 x 350	110-140	AC	75	234	1,9	25	1,41	

^{*}Остаток электрода 35 мм

циметр Пространственные положения сварки [мм] PA/1G PB/2F PC/2G PF/3G на подъем PE/4G 2,5 60 - 70A 60 - 70A 55 - 70A 55 - 70A 55 - 65A
2,5 60 - 70A 60 - 70A 55 - 70A 55 - 70A 55 - 65A
3,2 90 - 105A 90 - 105A 80 - 95A 70 - 90A 85 - 95A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемая величина погонной энергии:

≤ 15 мм: 1,4 kДж/мм 15 - 20 мм: 1,6 kДж/мм > 20 мм: 2,0 kДж/мм

AlMn

КЛАССИФИКАЦИЯ

 AWS A5.3
 E3003*
 F-Nr
 21

 ISO 18273
 Al 3103 (AlMn1)
 Mat-Nr
 3,0516

ОБШЕЕ ОПИСАНИЕ

Хорошо nogxogum gля сварки кованых и литых алюминиево-магниевых и алюминиево-марганцевых сплавов Высокие сварочно-технологические характеристики, отсутствие nop

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME

РОДТОКА

DC+

ХИМИЧЕСКИЙ (ОСТАВ НАПЛАВЛЕННОГ	O METANNA (%)
ATTIVITY IECITORIS	.ociabilalilabilabilaliloi	O ME 1701/17 (70)

Al	Mn	Si	Zn	Fe	Cu	Mg	Другие
бал.	0,9-1,2	макс. 0,3	макс. 0,09	макс. 0,6	макс. 0,02	0,15 max	макс. 0,15

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	
Средние значения	ПС	40	110	20	

ВИДЫ УПАКОВКИ				
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	
Металлический тубус	Штук в единице Вес нетто/ед. (kг)	- 2,0	- 2,0	

AlMn: 8ep. C-RU24-12/05/16

^{*:}с отклонениями, см. примечания

AlMn

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Алюминиево-марганцевые и алюминиево-магниевые сплавы	Mat. Nr
AlMn1	3,0515
AlMn1Mg1	3,0526
AlMg1	3,3315

ДАННЫЕ ПО РАСХОДУ

Размеры			
guaм. х длина (мм)	Tok (A)	Pog moka	Bec / 1000 wm. (kz)
2,5 x 350	40-70	DC+	9,2
3,2 x 350	60-90	DC+	14,0

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Прос	транствені	ные положения сварки
(мм)	PA/1G	PB/2F	PF/3G на подъем
2,5	60A	60A	55A
3,2	80A	80A	75A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Отклонения: химический состав:

Cu = Makc. 0,02% AWS: Cu = 0,05 - 0,20% Mn = 0,9 - 1,2% AWS: Mn = 1,0 - 1,5%

Если толщина составляет более 10 мм, рекомендуется предварительный подогрев при 150 - 250°C

AISi5

КЛАССИФИКАЦИЯ

 AWS A5.3
 E4043
 F-Nr
 23

 ISO 18273
 Al 4043A* (AlSi5[A]) | Mat-Nr
 3,2245

*:с отклонениями, см. примечания

ОБШЕЕ ОПИСАНИЕ

Хорошо nogxogum для сварки кованых и литых алюминиевых сплавов, содержащих менее 5% Si Высокие сварочно-технологические характеристики, отсутствие nop

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

DA/16

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Al Si

бал. 5,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	
Средние значения	ПС	90	160	15	

ВИДЫ УПАКОВКИ					
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	
Металлический тубус	Штук в единице Вес нетто/ед. (kz)	- 2,0	- 2,0	- 2,0	

AlSi5: 8ep. C-RU23-12/05/16

AISi5

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Алюминиево-кремниевые сплавы и стыки нескольких разных алюминиевых сплавов.

с ограничениями: уисперсионно-тоеруеющие сплаов, например:	Mat. M
AlCuMg1	3,1325
AIMgSi1	3,2315
AlZn4,5Mg1	3,4335

ДАННЫЕ ПО РАСХОДУ

Размеры guaм. х длина (мм)	Tok (A)	Pog moka	Bec / 1000 wm. (kz)	
2,5 x 350	40-70	DC+	9,2	
3,2 x 350	60-90	DC+	14,0	
4,0 x 350	80-120	DC+	20,4	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Про	остранств	енные положения сварки
(мм)	PA/1G	PB/2F	PF/3G на подъем
2,5	60A	60A	55A
3,2	80A	80A	75A
4,0	110A	110A	105A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Если толщина составляет более 10 мм, рекомендуется предварительный подогрев при температуре 150 - 250°C Предпочтительна сварка короткой дугой

Наклон электрода над материалом составляет 90°

AISi12

КЛАССИФИКАЦИЯ

 ISO 18273
 AI 4047A [AISi12[A]]
 F-Nr
 23*

 *:c omknohehusmu. cm. npumevahus
 Mat-Nr
 3.2585

ОБЩЕЕ ОПИСАНИЕ

Хорошо nogxogum для сварки кованых и литых алюминиевых сплавов, содержащих более 7% Si Takже может использоваться для сварки облицовочного прохода Высокие сварочно-технологические характеристики, отсутствие пор Может использоваться, когда содержание алюминия в сплаве неизвестно

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Al Si

бал. 12,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%
--

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	
Средние значения	ПС	80	180	5	

ВИДЫ УПАКОВКИ					
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350	
Металлический тубус	Штук в единице Вес нетто/ед. (kz)	- 2,0	- 2,0	- 2,0	

AlSi12: Bep. C-RU23-12/05/16

AlSi₁₂

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Алюминиевые литые сплавы с содержанием кр	оемния не более ~12%, например:	Mat. Nr	
G-AlSi 10Mg	3,2381		
G-AlSi 12	3,2581		

ДАННЫЕ ПО РАСХОДУ

Размеры			
диам. х длина (мм)	Tok (A)	Pog moka	Bec / 1000 wm. (kz)
2,5 x 350	40-70	DC+	8,8
3,2 x 350	60-90	DC+	13,2
4,0 x 350	80-120	DC+	19,6

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	П	ространств	венные положения сварки
(мм)	PA/1G	PB/2F	PF/3G на подъем
2,5	60A	60A	55A
3,2	80A	80A	75A
4,0	110A	110A	105A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Если толщина составляет более 15 мм, рекомендуется предварительный подогрев при температуре 150 - 250°C Предпочтительна сварка короткой дугой

Наклон электрода над материалом составляет 90°

Wearshield® BU-30

DIN 8555 E1-UM-350-GP

EN 14700 E Fe1

ОБЩЕЕ ОПИСАНИЕ

Может использоваться для сварки в направлении сверху вниз и в нестандартных положениях, хотя предпочтительным является нижнее положение

Высокие характеристики диги и низкий уровень разбрызгивания металла

Покрытие электрода позволяет проводить вертикальную сварку сверху вниз

Легкий повторный поджиг диги

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME) (ISO/ASME)

РОД ТОКА

AC / DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Мо
0,2	0,8	1,0	1,5	0,5

СТРУКТУРА

В состоянии сразу после сварки микроструктура большей частью представляет собой мартенсит с добавлениями бейнита

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

1 слой 31 HRc (295 HB) 2 слоя 35 HRc (330 HB) 3 слоя 38 HRc (350 HB)

Наплавка на низкоуглеродистую сталь большой толщины

	Диаметр (мм) Длина (мм)	3,2 350	4,0 350	5,0 450	
ПЭ тубус	Штук в единице Вес нетто/ед. (kz)	65 2.5	44 2.5	23 2.5	

Идентификационное обозначение: WEARSHIELD BU-30 Цвет торца электрода: черный

Wearshield BU-30: Bep. C-RU24-01/02/16

Wearshield®BU-30

ПРИМЕНЕНИЕ

Wearshield BU 30 создает стойкое покрытие без трещин с твердостью 31-38 HRc (295-350 HB) в зависимости от концентрации и количества слоев. Благодаря своей ударной вязкости этот электрод хорошо подходит для использования в условиях умеренного трения и износа Он идеально подходит для применения в условиях качения, скольжения и изнашивания металлических деталей друг о друга. Также он может использоваться в качестве окончательного слоя изделий, которые предполагается подвергнуть последующей обработке на станке, или в качестве наплавленного слоя для других материалов облицовки.

Типичное применение:

Наплавка:

Ножи и режущие кромки ковшей экскаваторов Импеллеры и корпусы насосов Зубъя земснарядов и ковша экскаватора

Эдооя земснарядоо и кооша экскаоаттора Жернова и дробилки Нанесение твердосплавного покрытия:

Колеса строительных кранов и шахтных вагонеток Барабаны для кабеля

Направляющие ролики

Тракторные kamku, noggepживающие ролики, звенья и зибчатые колеса

дополнительная информация

При сварке электродами Wearshield BU30 в большинстве случаев рекомендуется ток DC+, хотя удовлетворительные результаты также могут быть получены и при переменном токе. Независимо от диаметра электрода при использовании метода с поперечными колебаниями электрода ширина шва должна оставаться в пределах 12-20 мм. Для наплавки на кромки и в углах рекомендуется использовать узкие валики сварного шва.

Во избежание появления хрупкости и трещин перед использованием Wearshield ВИЗО нужно снять упрочнившийся основной материал.

Для предотвращения образования трещин, особенно в случае больших или напряженных деталей сложной формы, необходимо обеспечить температуру предварительного подогрева и температуру перед напожением последующего слоя 150-250°С. Работа с деталью должна быть проведена за один раз, а если перерывы неизбежны, перед возобновлением сварки деталь необходимо снова подогреть. После этого наплавленный металл можно будет обработать быстрорежущими или твердосплавными режущими инструментами так, чтобы получить деталь точно необходимого размера.

Для данного электрода нет ограничений по числу слоев направленного металла.

Wearshield BU30 обладает хорошей устойчивостью к растрескиванию и шелушению, а также умеренной устойчивостью к выдалбливанию и истиранию. В условиях более высокого выдалбливания более уместным будет использование Wearshield Mangjet или Wearshield 15CrMn их более выраженному свойству увеличивать твердость под действием ударных нагрузок. При более значительном наволакивании рекомендуются электроды Wearshield MM или Wearshield MM40.

ДАННЫЕ ПО РАСХОДУ

Размеры диам. х длина (мм)	Tok (A)	Pog moka	Время горения дуги	Тепловложение род при максималь	Производи- тельность наплавки	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
(ММ)			(c)*	е (кДж)	H [kz/u]		металла	металла 1/N
3,2 x 350	90-130	DC+	62	229	1,3	37,1	44	1,64
4,0 x 350	140-180	DC+	63	338	1,8	54,4	32	1,72
5,0 x 450	180-260	DC+	99	616	2,6	108,8	14	1,54

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Lincore® 33

Wearshield® Mangjet (e)

КЛАССИФИКАЦИЯ

AWS A5.13 EFeMn-A **F-Nr DIN 8555** E7-UM-200-KP

EN 14700 E Fe9

ОБЩЕЕ ОПИСАНИЕ

Электрод для наплавки с низким содержанием диффузионного водорода в наплавленном металле Отличается легким поджигом дуги, легким отделением шлака и низким разбрызгиванием Покрытие электрода делает возможной сварку в нестандартных положениях Эффективность 140%

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME

POД TOKA AC/DC+/-

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Cr	
0,7	15	3,7	

СТРУКТУРА

В состоянии сразу после наплавки микроструктура материала представляет собой мягкий марганцевый аустенитный сплав, который быстро упрочняется под ударными нагрузками.

ΜΕΧΑΗΝΥΕСΚИΕ ΧΑΡΑΚΤΕΡΝСΤИΚИ ΗΑΠΠΑΒΠΕΗΗΟΓΟ ΜΕΤΑΠΠΑ (%΄

Средние значения твердости

После наплавки 18 HRc (210 HB) После упрочнения 47 HRc (450 HB)

ВИДЫ УПАКО	ВКИ		
	Диаметр (мм)	3,2	4,0
	Длина (мм)	350	450
ПЭ тубус	Штук в единице	53	24
	Вес нетто/ед. (kz)	2.5	2.5

Идентификационное обозначение: WEARSHIELD Mangjet Цвет торца электрода: сиреневый

Wearshield® Mangjet: Bep. C-RU24-01/02/16

Wearshield® Mangjet (e)

ПРИМЕНЕНИЕ

Wearshield Mangjet создает наплавленный материал с содержанием Mn 14%, отличающийся быстрым увеличением твердости под действием ударных нагрузок. Идеально подходит для применения в условиях сильных ударов и выдалбливания в сочетании с умеренным истиранием.

Типичное применение:
Щековые и конусные дробилки
Устройства для перемещения тяжелых камней
Отбойные молотки
Сита дробилок
Детали земснарядов
Гусеницы экскаваторов
Железнодорожные стрелочные съезды, крестовины и переводы

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

При наплавке электродом Wearshield Mangjet DC+ для большинства работ, особенно при сварке в нижнем положении, рекомендуется ток DC+, хотя AC и DC- также могут обеспечить удовлетворительные результаты. Независимо от диаметра электрода при использовании метода с поперечными колебаниями электрода ширина шва должна оставаться в пределах 12-20 мм. Для наплавки на кромки и в углах рекомендуется использовать узкие валики сварного шва.

Перед новой наплавкой нужно удалить весь ранее нанесенный затвердевший под нагрузками материал, так как такие зоны подвержены повышению хрипкости и образованию трещин.

В случае наплавки на аустенитные марганцевые сплавы предварительный подогрев не требуется, однако в случае углеродистой и низколегированной стали может потребоваться подогрев при температуре 150-200°С.

Избегайте накопления избыточного тепла в основном материале. Особенно важно избегать температур выше 260°C, так как это может вызвать появление хрупкости.

Для сварки соединений марганцевых сплавов лучше использовать Wearshield 15CrMn или Jungo 307. Материалы небольшой толщины также можно сваривать электродами Arosta 307. Какого-либо определенного ограничения на число проходов не существует, однако после каждого прохода непосредственно после сварки рекомендуется провести снятие напряжений в шве для сокращения возможных деформация и растрескивания.

ДАННЫЕ ПО РАСХОДУ

Размеры guaм. х gлина (мм)	Tok (A)	Pog moka	Производительность наплавки Н (кг/ч)			
3,2 x 350	95-105	DC+	1,1			
4,0 x 350	130-140	DC+	1,6			

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Lincore® M

Комплект проволоки / флюса: Lincore M / 801 или 802

Wearshield®15CrMn

DIN 8555 F7-UM-250-KP EN 14700 E Fe9

ОБЩЕЕ ОПИСАНИЕ

Электрод с рутиловым покрытием для нанесения твердосплавного покрытия для эксплуатации в условиях

высоких ударных нагрузок и сильного изнашивания абразивом

Легкое отделение шлака и повторное зажигание дуги, низкое разбрызгивание

Покрытие электрода делает возможной сварку в нестандартных положениях

Обеспечивает умеренную устойчивость к абразивному изнашиванию

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr
0,35	14	0,6	15

СТРУКТУРА

В состоянии сразу после наплавки микроструктура материала представляет собой мягкий марганцевый аустенитный сплав, который быстро упрочняется под ударными нагрузками.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

После наплавки	18 - 24 HRC (210-250 HB)
После упрочнения	40 - 50 HRc (375-490 HB)

ВИДЫ УПАКО	ВКИ				
	Диаметр (мм) Длина (мм)	3,2 355	4,0 355	4,8 455	
ПЭ тубус	Штук в единице Вес нетто/ед. (kz)	49 2,5	33 2,5	24 2,5	

Идентификационное обозначение: WEARSHIELD 15CrMn Цвет торца электрода: нет

Wearshield® 15CrMn: Bep. C-RU24-01/02/16

Wearshield®15CrMn

ПРИМЕНЕНИЕ

Wearshield 15CrMn предназначен для наплавки аустенитного хромо-марганцевого покрытия высокого качества. Позволяет произвести аустенитную наплавку на обычной углеродистой стали за один проход. Наплавка быстро упрочняется в условиях сильных ударов.

Наплавленный слой может работать в условиях сильных ударов и выдалбливания в сочетании с умеренным истиранием. Помимо наплавки, высокая устойчивость к трещинообразованию делает Wearshield 15CrMn оптимальным выбором для сварки соединений из марганцевой стали или марганцевой и углеродистой стали с минимальным риском растрескивания по осевой линии.

Типичное применение: железнодорожные крестовины гусеничные траки молоты и сита дробилок землеройное оборудование восстановление аустенитных марганцевых пластин и деталей строительное оборудование

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

При наплавке электродом Wearshield 15CrMn рекомендуется использовать перенос металла короткими замыканиями. Независимо от диаметра электрода ширина шва должна оставаться в пределах 12-20 мм. Для наплавки на кромки и в целах рекомендуется использовать цэкие валики сварного шва.

Перед нанесением нового материала нужно удалить весь ранее нанесенный упрочненный основной материал, так kak такие зоны подвержены повышению хрупкости и образованию трещин.

В случае с аустенитными марганцевыми сплавами предварительный подогрев не требуется, однако в случае углеродистой и низколегированной стали может быть необходим подогрев до 150-200°С для предотвращения растрескивания обрабатываемой зоны.

Избегайте накопления избыточного тепла в основном материале. Также нужно избегать высокой погонной энергии сварки и температуры перед наложением последующего слоя более 260°С, так как это может вызвать повышение хрупкости материала.

Какого-либо определенного ограничения на число проходов не существует, однако после каждого прохода непосредственно после сварки рекомендуется провести снятие напряжений в шве для сокращения возможных деформация и растрескивания. Наплавленный материал Wearshield 15CrMn быстро подвергается упрочнению под действием ударных нагрузок, что может затруднить его последующую механическую обработку. Для получения оптимальных результатов рекомендуется использовать твердосплавные и твердые инструменты. Также можно провести полировку.

Для применения в условиях сильных ударов и истирания нужно использовать наплавку Wearshield 15CrMn в сочетании с одним проходом Wearshield 60 или Lincore 60-0.

Из-за высокого содержания хрома наплавленный материал Wearshield 15CrMn трудно поддается газовой резке, тем не менее, для этого можно применить плазменную резку или воздушно-дуговую резку угольным электродом.

ДАННЫЕ ПО РАСХОДУ

Размеры

48 x 455

диам. х длина	
(мм)	Tok (A)
3,2 x 355	140-160
4,0 x 355	130-140

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

220-250

Lincore® 15CrMn

КЛАССИФИКАЦИЯ

DIN 8555 E1-UM-400-G* **EN 14700** E Fe1 * самый близкий класс

ОБШЕЕ ОПИСАНИЕ

Электрод с рутилово-основным типом покрытия для сварки в любых пространственных положениях, производящий поддающуюся обработке мартенситную наплавку, если наплавленный металл не подвергался закалке

Обеспечивает устойчивость к износу при качении, скольжении и контакте металла по металлу Легкий повторный поджиг дуги и низкое разбрызгивание

Может использоваться для сварки с отставанием электрода, контактной сварки и сварки в сложных пространственных положениях

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

POД TOKA AC / DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr	Мо	
0,2	0,5	1,3	3,4	0,5	

СТРУКТУРА

В состоянии сразу после сварки микроструктура большей частью представляет собой мартенсит

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Средние значения твердости

1 слой 39-42 HRc (360-400 HB) 2 слоя 40-45 HRc (375-425 HB) 3 слоя 42-45 HRc (400-425 HB)

Наплавка на низкоуглеродистую сталь большой толщины

					_	
11247/	ΙДЫ	AVI II	ľΛ	1340	1845	47/1
12.14	15154	-	Lm.	TWO.	LPJA.	S/ALI
214		241	ш	IN.		

	Диаметр (мм) Длина (мм)	3,2 350	4,0 350	5,0 450	
ПЭ тубус	Штук в единице Вес нетто/ед. (kг)	66 2,5	43 2,5	22 2,5	

Идентификационное обозначение: WEARSHIELD MM40 Цвет торца электрода: красный

Wearshield* MM40: Bep. C-RU24-01/02/16

ПРИМЕНЕНИЕ

Wearshield MM 40 создает стойкое покрытие без трещин с твердостью 42-45 HRс в зависимости от концентрации материала и количества слоев. Благодаря устойчивости к умеренному истиранию этот электрод особенно хорошо подходит для применения в условиях скольжения, качения и контакта между металлическими деталями.

Типичное применение: Серьги и основание ковша Направляющие ролики Тракторные катки Колеса строительных кранов

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Во время наплавки электродом Wearshield MM40 независимо от диаметра электрода при использовании метода с поперечными колебаниями электрода ширина шва должна оставаться в пределах 12-20 мм. Для наплавки на кромках и в углах рекомендуется использовать узкие валики сварного шва.

В случаях высокой нагрузки и/или большой толщины материала во избежание образования трещин требуется предварительный подогрев до 150-250°С.

Наплавленный металл поддается обработке, поэтому его отпуск и нормализация обычно не требуются, но все же могут быть проведены для того, чтобы снизить твердость и повысить ударную вязкость материала. Для снижения твердости нужно провести нормализацию в течение нескольких часов при 760°С и медленное охлаждение с последующим отпуском при 520°С. После этого такую наплавку можно закалить в пламени или в печи.

Наплавка обычно ограничивается четырьмя слоями.

Производи-Время IIIm Кг электродов Размеры Тепловложение тельность горения дуги Bec/1000 электроаов на ка наплавки диам. х длина Tok (A) Pog moka um. (kz) на кг напл. наплавленного - на электрод при максимальном токе -[мм] металла металла 1/N (c)* E (кДж) H [kz/u] 3.2 x 350 90-130 DC+ 71 175 1.3 36.6 41 1.57 DC+ 4,0 x 350 140-180 83 312 1.5 56,6 28 1,61 1,50 5,0 x 450 170-220 DC+ 108 640 2.5 13 114.1

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Lincore® 40-0

DIN 8555 F2-UM-55-G* EN 14700 E Fe2 * самый близкий класс

Электрод с рутилово-основным типом покрытия для сварки в любых пространственных положениях, производящий не поддающиюся обработке (только шлифовке) мартенситнию наплавки

Обеспечивает устойчивость к износу при качении, скольжении и контакте металла по металлу

Легкий повторный поджиг дуги и низкое разбрызгивание

Может использоваться для сварки с отставанием электрода, контактной сварки и сварки в сложных пространственных положениях

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Мо	W
0,55	0,5	1,5	4,5	0,5	0,5

СТРУКТУРА

В состоянии сразу после сварки микроструктура большей частью представляет собой мартенсит с включениями карбидов.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

1 спой 45-55 HRc 2 слоя 52-57 HRc

Наплавка на низкоуглеродистую сталь большой толщины

ВИДЫ УПАКО	ВКИ				
	Диаметр (мм) Длина (мм)	3,2 350	4,0 350	5,0 450	
ПЭ тубус	Штук в единице Вес нетто/ед. (kг)	66 2,5	45 2,5	22 2,5	
Linc Pack	Штук в единице Вес нетто/ед. (kг)	26 1,0	18 1,0	-	

Идентификационное обозначение: WEARSHIELD MM

Цвет торца электрода: сиреневый

Wearshield MM: Bep. C-RU24-01/02/16

ПРИМЕНЕНИЕ

Wearshield MM создает стойкое покрытие без трещин с твердостью 55-57 Rc в зависимости от концентрации материала и количества слоев. Благодаря устойчивости к умеренному истиранию этот электрод особенно хорошо подходит для применения в условиях скольжения, качения и контакта между металлическими деталями.

Типичное применение: колеса строительных кранов и шахтных вагонеток зубчатые колеса и зубъя шестерен направляющие для вагонеток черпаки экскаваторов лезвия скребков передвижные платформы канатные блоки

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Во время наплавки электродом Wearshield MM независимо от диаметра электрода при использовании метода с поперечными колебаниями электрода ширина шва должна оставаться в пределах 12-20 мм. Для наплавки на кромках и в углах рекомендуется использовать узкие валики сварного шва.

В случаях высокой нагрузки и/или толщины материала во избежание образования трещин требуется предварительный подогрев до 200-350°С и температура перед наложением последующего слоя 400°С. После сварки изделие нужно чем-либо накрыть и постепенно остудить.

Наплавленный металл не поддается обработке обычными методами, однако его форму можно изменить шлифовкой. Чтобы сделать наплавленный металл более прочным и придать ему твердость 50 HRc, нужно провести тепловую обработку наплавленного металла при 425°С. Нормализация в течение нескольких часов при 760°С и медленное охлаждение позволят снизить твердость материала до примерно 30 HRc. Такая наплавка легко поддается обработке. Для повторной закалки материал в течение нескольких часов нужно нагреть до 950°С, что позволит растворить все карбиды и гомогенизировать структуру, затем закалить его в воде или масле (тонкие изделия можно охлаждать воздухом). После закаливания деталь нужно отпустить.

После нормализации также можно провести закалку пламенем, хотя при этом будет нельзя обеспечить максимальную твердость материала из-за невозможности гомогенизировать сталь в ходе короткого цикла нагрева.

Наплавка обычно ограничивается четырьмя слоями.

ДАННЫЕ ПО РАСХОДУ

Размеры диам. х длина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Tenловложение pog npu максималя	Производи- тельность наплавки ьном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл. металла	Кг электродов на кг наплавленного металла 1/N
			(c)*	Е (kДж)	H (kz/u)		мешалла	Melliajijia i/N
3,2 x 350 4,0 x 350 5,0 x 450	90-130 140-180 170-220	DC+ DC+ DC+	75 87 112	186 343 516	1,2 1,4 2,3	39,0 55,8 115,2	42 30 14	1,62 1,65 1,62

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Lincore® 55

Wearshield® T&D

КЛАССИФИКАЦИЯ

AWS A5.13 E Fe6* F-Nr

DIN 8555 E4-UM-60-SZ **EN 14700** E Fe4

* самый близкий класс

Электрод с основным покрытием для высокоскоростной наплавки материала, аналогичного инструментальной стали М-1

Наплавленный металл затвердевает на воздухе

Обеспечивает устойчивость к износу при контакте металла по металлу

Высокие характеристики дуги, легкое повторное зажигание дуги и низкий уровень разбрызгивания

Покрытие электрода позволяет проводить сварку с отставанием электрода или контактную сварку

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

POД TOKA AC/DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Мо	W	V
0,65	0,4	0,5	4,0	6,5	2,6	1,1

СТРУКТУРА

В состоянии сразу после сварки микроструктура большей частью представляет собой мартенсит с включениями карбидов.

После отпуска микроструктура представляет собой отпущенный мартенсит со вторичными карбидами

<u>МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)</u>

Средние значения твердости

После наплавки 58-62 HRc После отпуска при 540-600°C 63-65 HRc

Наплавка на низкоуглеродистую сталь большой толщины (12 мм)

виды упаковки								
	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350				
ПЭ тубус	Штук в единице Вес нетто/ед. (kг)	85 2,5	56 2,5	35 2,5				

Идентификационное обозначение: WEARSHIELD T&D

Цвет торца электрода: нет

Wearshield T&D: Bep. C-RU24-01/02/16

Wearshield® T&D

ПРИМЕНЕНИЕ

Wearshield T & D производит наплавку из стойкой инструментальной стали с высокой устойчивостью к образованию трещин и твердостью 58-62 HRc. После отпуска эта твердость может быть повышена до 63-65HRc (540-600°С). Этот электрод особенно хорошо подходит для применения в условиях сильного изнашивания металлических деталей друг о друга в сочетании с высокой температурой (до 540°С). Идеально подходит для наплавки на изношенные стальные штампы, режущие инструменты или для применения на износостойких поверхностях углеродистых и низколегированных марок стали.

Типичное применение: штампы для объемной штамповки лезвия ножниц резаки режущие инструменты

дополнительная информация

Во время наплавки электродом Wearshield T & D независимо от диаметра электрода при использовании метода с поперечными колебаниями электрода ширина шва должна оставаться в пределах 12-25 мм. Для наплавки на кромках и в углах рекомендуется использовать узкие валики сварного шва.

Во избежание растрескивания необходимо провести предварительный подогрев и обеспечить температуру перед наложением последующего слоя 325°C или выше (до 540°C). Перед сваркой важно обеспечить, чтобы материал был в достаточной степени "выдержан".

После сварки деталь нужно чем-либо накрыть и постепенно остудить до комнатной температуры. Чтобы отпустить мартенсит и придать материалу большую ударную вязкость, после охлаждения нужно провести послесварочную тепловую обработку наплавки. Отпуск при 540-600°С, как правило, обеспечивает оптимальное сочетание твердости и ударной вязкости. Наплавленный металл не поддается обработке обычными методами, однако его форму можно изменить шлифовкой. Нормализация в течение нескольких часов при 850°С и медленное охлаждение позволят снизить твердость материала до примерно 30 НВС. Такая наплавка легко поддается обработке. Для повторной закалки материал в течение нескольких часов нужно нагреть до 1200°С для

растворения всех карбидов и гомогенизации стали, затем охладить на воздухе и отпустить (540-600°С).

Количество проходов наплавки обычно ограничивается четырьмя слоями.

Wearshield T & D не noggaemcя газовой резке. Для резки и создания отверстий в наплавке можно воспользоваться плазменной дугой или воздушно-дуговой резке угольным электродом. Для предотвращения образования трещин вдоль линии разреза может оказаться необходимым предварительный подогрев до температуры, сравнимой с температурой подогрева для наплавки.

ΠΑΗΗЫΕ ΠΟ ΡΔΓΧΟΠΥ

Размеры	
диам. х длина	
(мм)	Tok (A)
2,5 x 350	80-100
3,2 x 350	110-130
4,0 x 350	130-160

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Lincore® T&D

Wearshield® MI (e)

КЛАССИФИКАЦИЯ

AWS A5.13 E Fe6
DIN 8555 E6-UM-60-GPS
EN 14700 E Fe6

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа, образующий мартенситовую наплавку со значительным содержанием аустенита

Сварка в любых пространственных положениях, кроме вертикальной на спуск

Высокие характеристики дуги, легкое повторное зажигание дуги и низкий уровень разбрызгивания Для эксплуатации в условиях высоких ударных нагрузок и контакта металла с металлом

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr
0,5	0,4	1,8	9,0

СТРУКТУРА

В состоянии после сварки микроструктура представляет собой смешанную структуру мартенсита и аустенита.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

1 слой 45-55 HRc 2 слоя 50-58 HRc

Наплавка на низкоуглеродистую сталь большой толщины

Послесварочная тепловая обработка: 4 ч./480°С / 52HRc

ВИДЫ УПАКОВКИ

	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 450	5,0 450	
ПЭ тубус	Штук в единице Вес нетто/ед. (kz)	117 2,5	69 2,5	38 2,5	25 2,5	

Идентификационное обозначение: WEARSHIELD MI (E)

Цвет торца электрода: сиреневый

Wearshield MI (E): Bep. C-RU24-01/02/16

Wearshield® MI (e)

ПРИМЕНЕНИЕ

Wearshield MI предназначен для наплавки стойкого мартенситного/аустенитного материала с твердостью 45-58 HRc. Этот электрод можно использовать для облицовки широкого диапазона углеродистых, углеродисто-марганцевых и легированных марок стали. Мартенситная/аустенитная наплавка подходит для работы в условиях сильных ударов, изнашивания металлических деталей друг о друга и умеренного истирания, например, известняком. Возможно образование усадочных трещин в наплавленном слое.

Типичное применение: режущие кромки ковша экскаватора строительное оборудование землеройное оборудование камнедробилки молотковые дробилки шнек винтового транспортера зубья канавокопателей сельскохозяйственное оборудование

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Для предотвращения усадочных трещин, отслаивания и дробления материала рекомендуется обеспечить предварительный подогрев и температуру перед наложением следующего слоя 200°С.

Наплавленный металл не noggaemcя обработке обычными методами, однако его форму можно изменить шлифовкой.

Hannaвka Wearshield MI часто образует усадочные трещины и, как следствие, обычно ограничивается двумя слоями во избежание отслаивания и растрескивания материала.

Wearshield MI не noggaemcя газовой резке. Для резки и создания отверстий в наплавке можно воспользоваться плазменной резкой или воздушно-дуговой резкой угольным электродом.

ΠΑΗΗЫΕ ΠΟ ΡΔΓΧΟΠΥ

Размеры		Производи тельность наплавки	
guaм. х длина (мм)	Tok (A)	H (kz/u)	
2,5 x 350	60-70	0,76	
3,2 x 350	70-120	1,1	
4,0 x 350	110-150	1,45	
5,0 x 450	150-200	2,0	

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Проволока сплошного сечения LNM 420 FM и порошковая проволока Lincore 420

Wearshield® ABR

КЛАССИФИКАЦИЯ

DIN 8555 : E10-UM-50-GPZ

EN 14700 : E Fe6

ОБЩЕЕ ОПИСАНИЕ

Электрод с графитовым покрытием, предназначенный для наплавки из основного аустенита и аустенитно-эвтектической смеси.

Wearshield ABR – это самый универсальный продукт линейки Wearshield

Хорошая устойчивость к истиранию и ударам, а также хорошие характеристики горячей ковки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

POД TOKA ac/dc+/-

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

СТРУКТУРА

В состоянии сразу после сварки микроструктура материала представляет собой основной аустенит и эвтектическую смесь аустенита и карбидов

MEXAHUYECKUE XAPAKTEPUCTUKU HARITABRIEHHOLO WETAUUV (%)

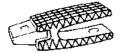
Средние значения твердости

1 слой 24-53 HRc 2 слоя 28-53 HRc 3 слоя 28-55 HRc

Наплавка на низкоуглеродистую сталь большой толщины

ВИДЫ УПАКОВ	КИ				
	Диаметр (мм) Длина (мм)	3,2 355	4,0 355	4,8 355	
ПЭ тубус	Штук в единице Вес нетто/ед. (kг)	85 2,5	54 2,5	38 2,5	

Идентификационное обозначение: WEARSHIELD ABR


Цвет торца электрода: нет


Wearshield* ABR: 8ep. C-RU23-01/02/16

Wearshield® ABR

ПРИМЕНЕНИЕ

Wearshield ABR предназначен для устойчивой к истиранию и ударам наплавки с твердостью 28-55HRc в зависимости от состава основного металла, концентрации и числа слоев. Сочетание стойкости к истиранию и сильным ударам с хорошими качествами горячей ковки делает Wearshield ABR хорошо подходящим для транспортировки абразивных материалов с большой переменной нагрузкой. Wearshield ABR также подходит для применения в условиях трения между металлическими деталями.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

При наплавке электродом Wearshield ABR нужно использовать короткую дугу. Независимо от диаметра электрода при использовании метода с поперечными колебаниями электрода ширина шва должна оставаться в пределах 12-20 мм. Для наплавки на кромках и в углах рекомендуется использовать узкие валики сварного шва.

Нержавеющая и марганцевая стали не требуют предварительного подогрева, однако в случае марганцевой стали необходимо ограничить температуру перед наложением следующего слоя до 260°С. Для низколегированных и углеродистых сталей обычно бывает достаточным предварительный подогрев до 200°С, однако это зависит от толицины и состава материала. Для того, чтобы обеспечить оптимальную стойкость к истиранию, температура перед наложением следующего слоя должна быть ограничена 320°С.

Наплавленный металл не поддается обработке обычными методами, однако его форму можно изменить шлифовкой. Для того, чтобы сделать наплавку пригодной к обработке твердосплавными режущими инструментами, деталь нужно нагреть на один час до 750°С и затем остудить на воздухе до комнатной температуры. Для того, чтобы максимально упростить последующую обработку, изделие нужно нагреть на один час до 875-900°С, охладить в печи до 650°С со скоростью остывания не более 10°С в час и затем остудить в печи или на воздухе до комнатной температуры. Устойчивость к истиранию можно восстановить посредством нагрева детали до 800°С с последующими закалкой и отписком при 200°С.

Наплавка обычно ограничивается двумя слоями.

Если условия эксплуатации требуют большей толщины наплавки, нужно добавить промежуточный слой аустенитного материала, например, Wearshield 15CrMn, и снять напряжение с каждого слоя.

Чтобы обеспечить максимальную стойкость к растрескиванию, нужно наплавить один или несколько слоев Wearshield 15CrMn.

Wearshield ABR не имеет эквивалента в виде порошковой проволоки.

ΠΔΗΗЫΕ ΠΟ ΡΔΓΧΟΠΥ

Размеры	
диам. х длина	
(мм)	Tok (A)
3,2 x 355	40 - 150
4,0 x 355	75-200
4,8 x 355	110-250

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Ближайшим продуктом можно назвать Lincore® 50, однако состав его наплавки значительно отличается от Wearshield ABR.

Wearshield® ME (e)

F10-UM-60-GR7 **DIN 8555**

EN 14700 E Fe14

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием большой толщины, предназначен для наплавки эвтектической смеси карбидов хрома и аустенита с ограниченным содержанием первичных карбидов

Производительность наплавки 170%

Обеспечивает устойчивость к абразивному износу при контакте металла с землей

Покрытие электрода позволяет вести сварку с небольшим отставанием электрода или контактную сварку

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА AC / DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Cr	Si
3,0	33,0	1,0

СТРУКТУРА

В состоянии после сварки микроструктура представляет собой практически эвтектическую смесь карбидов хрома и аустенита с ограниченным содержанием основных карбидов

Средние значения твердости

55 HRc 1 слой 60 HRc 2 слоя

Наплавка на низкоуглеродистую сталь большой толщины

BI	Щ	51)	УП	AΚ	OR	ки

	Диаметр (мм)	3,2	4,0	5,0
	Длина (мм)	450	450	450
ПЭ тубус	Штук в единице	37	23	15
	Вес нетто/ед. (kг)	2,5	2,5	2,5

Идентификационное обозначение: WEARSHIELD ME (E) Цвет торца электрода: сиреневый

Wearshield ME (E): Bep. C-RU25-01/02/16

Wearshield® ME (e)

ПРИМЕНЕНИЕ

Wearshield ME произодит стойкую к истиранию наплавку с твердостью 55-60 HRc. Wearshield ME обеспечивает устойчивость k истиранию и ударным нагрузкам при температуре эксплуатации до 600°С.

Типичное применение: клеши аля слитков лезвия скребков ролики прокатного стана спиральная нарезка червяка скаты для цгледобычи лемехи плугов, лезвия скребков и лапы культиватора шкивы и звенья цепи

РИДАМОФНИ ВАНАЛЕТИНГОПОД

При наплавке электродом Wearshield ME ширина сварного шва должна быть ограничена 20 мм, так как широкие колебания обычно приводят к ивеличению расстояния межди трешинами, что может вызвать растрескивание срази нескольких наплавленных слоев.

Для наплавки на кромках, в углах и наплавки в целом рекомендуется использовать узкие валики наплавленного шва.

Wearshield ME обычно вызывает усадочные трещины. Исключением являются случаи нанесения единственного слоя на тонкий основной материал. При использовании валиков сварного шва обычно поличается добиться равномерного расстояния между трещинами около 12-25 мм.

Нержавеющая и марганцевая стали не требиют преоварительного подогрева, однако в сличае марганцевой стали необходимо ограничить температуру перед наложением следующего слоя до 260°С. Для низколегированных и иглеродистых сталей обычно бывает достаточным предварительный подогрев до 200°С, однако это зависит от толщины и состава основного материала.

Наплавленный металл не noggaemcя обработке обычными методами, однако его форми можно изменить шлифовкой. Чтобы избежать растрескивания, наплавка обычно ограничивается двумя-тремя слоями.

Чтобы максимально сократить риск расслаивания, нужно выполнять узкие валики, которые позволят создать усадочные трещины через небольшие промежутки.

Микроструктура получившегося наплавленного металла зависит от концентрации и состава основного материала. Наплавка углеродистой и низколегированной стали при низком разбавлении позволяет создать микроструктуру, которая представляет собой практически эвтектическую смесь карбидов хрома и аустенита с ограниченными карбидами. Наплавка при высоком разбавлении создает микроструктуру основного аустенита и эвтектической смеси, которые позволяют обеспечить большую ударную вязкость и меньшее сопротивление истиранию.

Чтобы обеспечить максимальную устойчивость к растрескиванию углеродистых и низколегированных марок стали, nepeg использованием Wearshield ME нужно нанести слой Wearshield MM 40 или Arosta 307-160.

ДАННЫЕ ПО РАСХОДУ

Производительность наплавки Размеры диам. х длина (MM) Tok (A) Pog moka H (kz/u) 3.2 x 450 100-140 DC+ 1.15 4.0 x 450 130-190 DC+ 1.70 5.0 x 450 160-260 2.25

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Wearshield ME не имеет эквивалента в виде порошковой проволоки. Ближайшим к нему продуктом можно назвать Lincore® 60-0, однако состав его наплавки значительно отличается от Wearshield ME.

Wearshield® 60 (e)

КЛАССИФИКАЦИЯ

DIN 8555 E10-UM-60-GR

EN 14700 E Fe15

ОБЩЕЕ ОПИСАНИЕ

Электрод с покрытием основного типа для наплавки покрытия из основного карбида с производительностью 200%

Покрытие электрода обеспечивает хороший контроль и видимость дуги и в то же время позволяет использовать короткую дугу

Предназначен для условий сильного абразивного износа

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +/-

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Cr	Si
5,0	35	4

СТРУКТУРА

В состоянии после сварки микроструктура материала представляет собой основные карбиды хрома в аустените — эвтектическую матрици карбида.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%

Средние значения твердости

1 слой 57-60 HRc 2 слоя 60-62 HRc

Наплавка на низкоуглеродистую сталь большой толщины

ВИДЫ УПАКО	ВИДЫ УПАКОВКИ									
	Диаметр (мм)	3,2	3,2	4,0	4,0					
	Длина (мм)	350	450	350	450					
ПЭ тубус	Штук в единице	48	37	32	23					
	Вес нетто/ед. (kz)	2,5	2,5	2,5	2,5					

Идентификационное обозначение: WEARSHIELD 60 (E) Цвет торца электрода: сиреневый

Wearshield*60 (e) Bep. C-RU25-01/02/16

Wearshield® 60 (e)

ПРИМЕНЕНИЕ

Wearshield 60 предназначен для наплавки покрытия из основного карбида с твердостью 60-62 HRc. Микроструктура основного карбида делает Wearshield 60 идеальным выбором для применения в условиях чрезвычайно высокого истирания

Типичное применение: накатные ролики, пластины и зажимы шнеки и мотки винтового транспортера режущие кромки ковша экскаватора оборудование для транспортировки кирпичей и кокса детали фрезера для разбуривания цементного камня

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

При наплавке электродом Wearshield 60 покрытие выполняется валиками. Метод наплавки с поперечными колебаниями электрода не рекомендуется, так как широкие колебания обычно приводят к увеличению расстояния между усадочными трещинами, что может вызвать растрескивание покрытия.

Покрытие в состоянии после наплавки легко образует усадочные трещины.

Нержавеющая и марганцевая стали не требуют предварительного подогрева, однако в случае марганцевой стали необходимо ограничить температуру перед наложением следующего слоя до 260°С.

Наплавленный металл не поддается последующей обработке.

Наплавка обычно ограничивается двумя слоями.

Если условия эксплуатации требуют более двух слоев наплавки, до Wearshield 60 нужно нанести Arosta 307-160, Wearshield BU30 или Wearshield Mangjet (марганцевую сталь). Также для предотвращения образования усадочных трещин можно провести предварительный подогрев до 650°С.

ДАННЫЕ ПО РАСХОДУ

Размеры диам. х длина (мм)	Tok (A)	Pog moka	Производительность наплавки Н (kz/ч)	
3,2 x 450	110-150	DC+	1,75	
4 0 x 450	140-180	DC+	22	

СОПУТСТВУЮЩИЕ ПРОПУКТЬ

Lincore® 60-0 u Lincore® 60-S с флюсом 801 или 802

Wearshield® 70

КЛАССИФИКАЦИЯ

DIN 8555 E10-UM-65-GRZ

EN 14700 E Fe16

ΠΕΙΙΙΕΕ ΠΠИΓΔΗΜΕ

Высоколегированный электрод с покрытием из основного графита для наплавки покрытия из карбида высокого качества

Предназначен для условий высокого напряжения, сильного абразивного износа при повышенной температуре Эффективность 240%.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Si	Cr	Мо	Nb	W	
4,2	2,7	18	8,5	9,0	7,0	

СТРУКТУРА

Микроструктура большей частью представляет собой основные карбиды хрома с карбидами молибдена, ниобия, вольфрама и ванадия в аустенитно-карбидной эвтетической матрице.

MEXAHUYECKUE XAPAKTEPUCTUKU HARITABRIEHHOLO WETAUUV (%)

Средние значения твердости

1 слой 62-67, обычно 65 HRc

Наплавка на низкоуглеродистую сталь большой толщины

ВИДЫ УПАКО	ВИДЫ УПАКОВКИ							
	Диаметр (мм)	3,2	4,0	5,0				
	Длина (мм)	350	350	350				
ПЭ тубус	Штук в единице	28	18	12				
	Вес нетто/ед (kz)	2.5	2.5	2.5				

Идентификационное обозначение: WEARSHIELD 70

Цвет торца электрода: сиреневый

Wearshield*70 Bep. C-RU24-01/02/16

Wearshield®70

ПРИМЕНЕНИЕ

Wearshield 70 предназначен для наплавки карбидного покрытия высокого качества с твердостью 62-70 HRc. Карбидная микроструктура Wearshield 70 идеально подходит для применения в условиях измельчения в шаровой мельнице (при дроблении абразивных частиц), значительного истирания и истирания при высоких температурах (до 760°C)

Типичное применение: колошниковые конусы (зона нагрузки) бункеры и сита агломерационные установки детали фрезера для разбуривания цементного камня

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

При наплавке электродом Wearshield 70 рекомендуется использовать продольные наплавленные валики, хотя также приемлем метод сварки с поперечными колебаниями электрода шириной до 50 мм. Предпочтительной является сварка короткой дугой, вертикальная сварка сверху вниз не рекомендуется.

В состоянии после наплавки легко образует усадочные трещины, причем интервал между трещинами остается небольшим даже при низкой скорости перемещения.

Нержавеющая и марганцевая стали не требуют предварительного подогрева, однако в случае марганцевой стали необходимо ограничить температуру перед наложением следующего слоя до 260°С.

Наплавленный металл не noggaemcя последующей обработке или ковке Наплавка обычно ограничивается двумя слоями. Оптимальная стойкость к растрескиванию достигается применением аустенитной основы. В условиях эксплуатации при температуре менее 260°C рекомендуется применение аустенитной марганцевой основы.

В условиях эксплуатации при температуре более 260°С нужно использовать аустенитную основу из нержавеющей стали (т. е. Arosta 307-160) Wearshield 70 сохраняет характеристики стандартных электродов с содержанием основного карбида (например, Wearshield 60) в условиях низкого напряжения и истирания при высокой температуре.

				00

Размеры диам. х длина (мм)	Tok (A)	Pog moka	Время горения дуги Тепловложение тельност на электрод при максимальном токе -				Шт. электродов на кг напл.	Кг электродов на кг наплавленного
			(c)*	Е (kДж)	H (kz/u)		металла	металла 1/N
3,2 x 350	120 - 160	AC	156	699	1,28	67	18	1,21
4,0 x 350	180 - 220	AC	172	1011	1,50	100	14	1,40
5,0 x 350	230 - 300	AC	194	1630	2,06	155	9	1,39

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Wearshield 70 не имеет эквивалента в виде порошковой проволоки. Ближайшим к нему продуктом можно назвать Lincore® 65-0, однако состав его наплавки значительно отличается от Wearshield 70.

Wearshield® 420

КЛАССИФИКАЦИЯ

DIN 8555 E6-UM-55-RZ*

EN 14700 E Fe8

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием большой толщины, предназначенный для нанесения мартенситного покрытия, аналогичного нержавеющей стали AISI 420

Обеспечивает устойчивость к абразивному износу в условиях высокой коррозии

Покрытие электрода позволяет проводить сварку с отставанием электрода или контактную сварку, а также при необходимости — в сложных пространственных положениях

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Si	Mn	Cr	Mo	V	
0,5	0,4	0,3	12,4	0,4	1,3	

СТРУКТУРА

Феррит и мартенсит

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

55 HRc (560HB)

ВИДЫ УПАКО	ВКИ				
	Диаметр (мм) Длина (мм)	3,2 350	4,0 350	5,0 450	
ПЭ тубус	Штук в единице Вес нетто/ед. (kг)	51 2,5	36 2,5	22 2,5	

Идентификационное обозначение: WEARSHIELD 420

Цвет торца электрода: коричневый

Wearshield*420 Bep. C-RU24-01/02/16

Wearshield[®] 420

ПРИМЕНЕНИЕ

Электроды Wearshield 420 предназначены для наплавки, стойкой к истиранию в условиях высокой коррозии, трения и сильных ударов. Этот электрод может использоваться для работ с углеродистой, низколегированной и мартенситной сталью.

Типичное применение: песковые насосы оборудование для выемки грунта лопасти гнезда клапанов паровых или жидкостных труб

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Перед нанесением нового материала нужно удалить весь ранее нанесенный материал защитного твердого слоя, так как такие зоны подвержены повышению хрупкости и образованию трещин. До применения Wearshield 420 можно локально отремонтировать отдельные зоны с повреждениями, например, трещинами и глубокими выемками с помощью Wearshield BU30 или Wearshield 15CrMn.

Если наплавка производится на сильно напряженный или мартенситный нержавеющий основной металл, потребуется предварительный подогрев.

В зависимости от состава материала может понадобиться предварительный подогрев и температура перед наложением следующего слоя $200\text{-}300^{\circ}\text{C}$.

В условиях низкого растворения микроструктура аналогична мартенситной нержавеющей стали AISI 420. Эта структура обеспечивает хорошую стойкость к истиранию в условиях высокой коррозии и сильных ударов. При более значительном растворении при облицовке низкоуглеродистой или низколегированной стали микроструктура сохраняет свои свойства мартенситной нержавеющей стали. Однако пониженное содержание хрома может отрицательно сказаться на стойкости наплавки к коррозии.

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пр	остранств	енные положения свај	pku
(мм)	PA/1G	PC/2F	PF/3G на подъем	PE/4G
3,2	130A	130A	130A	130A
4,0	160A	160A	160A	150A
5,0	220A		200A	

ДАННЫЕ ПО РАСХОДУ

диам.	меры х длина им)	Tok (A)	Pog moka	Время горения дуги - на элект	Tenловложение pog npu максималь	Производи- тельность наплавки эном токе -	Bec / 1000 wm. (kz)	. электродов на кг напл. напл	Кг электродов на кг наплавленного металла 1/N
				(c)*	Е (kДж)	H (kz/4)		менналла	Memania i/N
3,2 >	x 350	90 - 130	DC+	88	217	1,2	45,6	33	1,51
4,0 >	x 350	120 - 170	DC+	114	544	1,4	70,2	23	1,59
5,0 >	x 450	170 - 270	DC+	193	1187	1,4	109,8	14	1,49

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Lincore® 420.

AWS A5.15 FNi-CI ISO 1071 E C Ni-Cl

ОБШЕЕ ОПИСАНИЕ

Никелевый электрод для ремонтной сварки ламинарного чугуна, ковкого чугуна и чугуна со сталью Предназначен для нанесения мягкого ковкого покрытия

Твердость наплавки ~ 175 НВ

Предпочтительна сварка на прямой полярности, обеспечивающая большую глубину проплавления, гладкую поверхность покрытия и хорошее сплавление с основным металлом

Возможность сварки при переменном токе и минимальная погонная энергия, что является немаловажным фактором при заполняющей сварке

Оптимальный выбор для многослойной сварки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

PA/1G

AC / DC + / -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Fe	N
0,7	2,0	97

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Твердость НВ10
Требования: AWS A5.15		262-414	276-448	3-6	135-218
ISO 1071		200	250	3	
Средние значения	ПС	270	445	8	175

ВИДЫ УПАКО	ВКИ					
	Диаметр (мм) Длина (мм)	2,5 300	3,2 350	4,0 400		
ПЭ тубус	Штук в единице Вес нетто/ед. (kг)	146 2,5	76 2,5	44 2,5		
Linc Pack	Штук в единице Вес нетто/ед. (kг)	58 1,0	30 1,0	-		
Идентификационно	е обозначение: REPTEC CAST 1 Ц	Вет торца эл	ектрода: че	рный	 	RepTec Cast 1: Bep. C-RU24-01/02/16

GG-30

GG-35

СВАРИВАЕМЫЕ МАТЕРИАЛЫ DIN 1692 DIN 1693 Классы стали DIN1691 Для сварки и ремонта GG-10 GTS-35-10 GGG-40 GG-15 GTS-45-06 GGG-50 GG-20 GTS-55-4 GGG-60 GG-25 GTW-35-04

GTW-40-05

GTW-45-07 GTW-S-38-12

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры диам. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	Кг электродов на кг
(мм)		•	- на элект	pog npu максималь	ном moke -	um. (kz)	на kz напл. металла	наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/4)			
2,5 x 300	50-100	DC-	176	268	0,24	19,1	84	1,61
3,2 x 350	70-130	DC-	145	303	0,48	32,6	52	1,52
4,0 x 400	90-150	DC-	262	647	0,55	56,7	25	1,41

^{*}Остаток электрода 35 мм

оптимальн	ЫЕ РЕЖИМЬ	ы СВАРКИ ЗА	полняющи	х проходов				
Диаметр Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G			
2,5	70A	70A	70A	70A	70A			
3,2	100A	100A	100A	100A	100A			
4,0	120A	120A	120A	110A	110A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Остаточное напряжение можно уменьшить посредством проковки каждого слоя Холодная сварка, температура перед наложением следующего слоя (Ti<100°C) Предварительный подогрев тяжелых деталей (макс. до 300°C)

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

LNM NiTi LNT NiTi

КЛАССИФИКАЦИЯ

AWS A5.15 ENiFe-CI **ISO 1071** E C NiFe-CI 1

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием рутилово-основного типа и никель-железным сердечником для холодной сварки чугуна, ковкого чугуна и соединений между чугуном и сталью

Предназначен для создания качественных обрабатываемых швов, например, в соединениях большой толщины Для того, чтобы свести тепловложение в изделие к минимуму, рекомендуется сварка током DC+

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Fe	Ni
0.6	40	бал.

<u>МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)</u>

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Твердость НВ10	
Требования: AWS A5.5		296-434	400-579	6-18	165-218	
ISO 1071		250	350	6		
Средние значения	ПС	300	460	10	175	

виды упаковки									
	Диаметр (мм) Длина (мм)	2,5 300	3,2 300	4,0 350					
ПЭ тубус	Штук в единице Вес нетто/ед. (kг)	155 2,5	95 2,5	54 2,5					

Идентификационное обозначение: REPTEC CAST 3

Цвет торца электрода: черный

RepTec Cast 3: 8ep. C-RU23-01/02/16

СВАРИВАЕМЫЕ	СВАРИВАЕМЫЕ МАТЕРИАЛЫ							
Классы стали	DIN1691	DIN 1692	DIN 1693					
Для сварки и ре	эмонта							
	GG-10	GTS-35	GGG-40					
	GG-15	GTS-45	GGG-50					
	GG-20	GTS-55	GGG-60					
	GG-25	GTW-35	GGG-70					
	GG-30	GTW-40	GGG-80					
	GG-35	GTW-45						
	GG-40	GTW-S-38						

ДАННЫЕ ПО РАСХОДУ										
Размеры quaм. х длина	Tok (A)	Pog moka	Время горения дуги	Тепловложение	Производи- тельность наплавки	Bec / 1000	Шт. электродов	Кг электродов на кг		
(мм)		,	- на элект	pog npu максималь	ьном moke -	шт. (kz)	на kг напл. металла	наплавленного металла 1/N		
			(c)*	Е (кДж)	H (kz/4)					
2,5 x 300	50-70	AC	58	106	0,76	15,9	82	1,3		
3,2 x 300	70-90	AC	69	161	1,24	30,8	42	1,3		
4,0 x 350	100-120	AC	75	234	1,78	46,2	27	1,2		

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ								
Диаметр		Простран	іственные п	оложения сварки				
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G			
2,5	60A	60A	60A	60A	70A			
3,2	80A	80A	80A	75A	80A			
4,0	110A	110A	110A	105A	110A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуется сварка с применением коротких валиков

Проковка (молотом с круглым бойком) непосредственно после сварки позволит устранить усадочное напряжение Перлитовый чугун часто требует предварительного подогрева до 200°С

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

LNM NiFe

AWS A5.15 FNiFe-CI ISO 1071 E C NiFe-CI1

ОБЩЕЕ ОПИСАНИЕ

Электрод для ремонтной сварки чугуна, ковкого чугуна и соединений чугуна со сталью

Никель-железная наплавка легко поддается машинной обработке

Рекомендиется для пластичного чигина

Твердость наплавки ~ 180 НВ

Высокая допустимая токовая нагрузка благодаря биметаллическому сердечнику

Пригоден для сварки на переменном и постоянном токе прямой полярности

Оптимальные результаты при сварке на прямой полярности

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Fe	Ni
0,7	45	бал.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Твердость НВ10
Требования: AWS A5.5		296-434	400-579	6-18	165-218
ISO 1071		250	350	6	
Средние значения	ПС	300	460	10	180

виды ликовки								
	Диаметр (мм) Длина (мм)	2,5 300	3,2 350	4,0 400				
ПЭ тубус	Штук в единице Вес нетто/ед. (kг)	154 2,5	82 2,5	47 2,5				
Linc Pack	Штук в единице Вес нетто/ед. (kг)	62 1,0	33 1,0	-				

Идентификационное обозначение: REPTEC CAST 31

Цвет торца электрода: черный

RepTec Cast 31: Bep. C-RU24-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали DIN1691	DIN 1692	DIN 1693	
Для сварки и ремонта			
GG-10	GTS-35-10	GGG-40	
GG-15	GTS-45-06	GGG-50	
GG-20	GTS-55-4	GGG-60	
GG-25	GTW-35-04		
GG-30	GTW-40-05		
GG-35	GTW-45-07		
	GTW-S-38-12		

ДАННЫЕ ПО РАСХОДУ

Размеры диам. х длина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Tenловложение pog npu максималь	Производи- тельность наплавки ьном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
			(c)*	Е (kДж)	H (kz/u)		металла	металла 1/N
2,5 x 300	70-100	DC-	124	211	0,32	19,1	91	1,72
3,2 x 350	90-150	DC-	123	328	0,62	29,4	47	1,37
4,0 x 400	100-180	DC	168	714	0,74	55,7	30	1,45

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр		Пространственные положения сварки						
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G			
2,5	80A	80A	80A	80A	80A			
3,2	110A	110A	110A	110A	110A			
4,0	150A	160A	160A	150A	150A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Остаточное напряжение можно уменьшить посредством проковки каждого слоя Холодная сварка, температура перед наложением следующего слоя (Ті<100°С) Предварительный подогрев тяжелых деталей (макс. до 300°С)

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

LNM NiFe

ПРОВОЛОКА DЛЯ CBAPKИ В CPEDE ЗАЩИТНЫХ ГАЗОВ (MIG/MAG)

повые настройки	297
Проволока для сварки угл	теродистой стали
LNM 25	
UltraMag®	299
UltraMag® G4Si1	300
SupraMIG®	301
SupraMIG® SupraMIG® CF	302
SupraMig® HD	303
SupraMIG Ultra®	304
SupraMIG Ultra® CF	305
SupraMig Ultra® HD	306
Проволока для сварки низ	
LNM 28	
LNM MoNi	
LNM MoNiVa	
LNM MoNiCr	
LNM Ni1	
LNM Ni2.5	312
LNM 12	313
LNM 19	
LNM 20	315
Проволока для сварки нер	ржавеющей стали
LNM 304LSi	
LNM 304L	
LNM 347Si	
LNM 316LSi	
LNM 318Si	
LNM 4439Mn	
LNM 4455	
LNM 4362	
LNM 4462	
LNM 4500	
LNM 2507	
LNM 309LSi	
LNM 307	
LNM 304H	
LNM 309H	
I NM 310	331

Проволока для сварки никел	тевых сплавов
.NM NiCro 31/27	
_NM NiCro 60/20	334
_NM NiCro 70/19	335
NM NiTi	
NM NiFe	
Проволока для сварки медн	ых сплавов
NM CuAl8	
NM CuAl8Ni6	. 339
_NM CuNi30	
NM CuSn	
_NM CuSi3	
Троволока для сварки алюм	иниевых сплавов
SuperGlaze® MIG 1070	.343
SuperGlaze® MIG 1100	
SuperGlaze® MIG 2319	
SuperGlaze® MIG 4043	
SuperGlaze® MIG 4047	
SuperGlaze® MIG 5087	
SuperGlaze® MIG 5183	
SuperGlaze® MIG 5356	
SuperGlaze® MIG 5356 TM	
SuperGlaze® MIG 5556	
SuperGlaze® MIG 5556A	
SuperGlaze® MIG 5754	
Juper Glaze Mila 3/34	
Троволока для наплавки	
_NM 420FM	355
_NM 4M	356

CHOOSE THE RIGHT WELDING WIRE FOR YOUR APPLICATION

CBAPKA MIG/MAG

LNM 25 SupraMig[®] SupraMig[®] CF SupraMig® HD SupraMig Ultra® SupraMig Ultra® HD UltraMag® UltraMag® SG3

Диаметр, полярность, защитный газ	CTWD [®] (мм)	Скорость подачи проволоки (м/мин.)	Сварочное напряжение (В)	Сварочный mok (A)	Производитель- ность наплавки (кг/ч)
0,6 мм, DC+					
Перенос металла с kopomkuмu замыканиями, 100% CO ₂	9-12	2,5 6,4	17 19	35 80	0,4 0,9
0,8 мм, DC+					
Перенос металла с короткими замыканиями, 100% CO ₂	9-12	1,9 3,8 7,6	17 18 22	35 70 130	0,4 0,8 1,6
1,0 мм, DC+					
Перенос металла с короткими замыканиями, 100% CO ₂	9-12	2,5 3,8 6,4	18 19 22	80 120 175	0,7 1,1 1,8
Струйный перенос металла, 90% Ar/10% CO ²	12-19	9,5 12,7 15,2	23 29 30	195 230 275	2,7 3,6 4,4
1,2 мм, DC+					
Перенос металла с короткими замыканиями, 100% CO ₂ ^[2]	12-19	3,2 3,8 5,1	19 20 21	145 165 200	1,5 1,8 2,5
Струйный перенос металла, 80% Ar/20% CO ²	12-19	8,9 12,1 12,7	27 30 30	285 335 340	4,2 5,7 6,0
1,4 мм, DC+					
Струйный перенос металла, 80% Ar/20% CO ²	12-19	7,6 8,1 12,3	30 30 32	300 320 430	4,8 5,2 7,8
1,6 мм, DC+					
Струйный перенос металла, 80% Ar/20% CO ²	12-25	5,3 6,0 7,4	25 27 28	325 350 430	4,8 5,4 6,7

[©] CTWD (расстояние от контактного наконечника до рабочей поверхности). Вычтите 6,4 мм, чтобы получить вылет электрода.

Данные процедуры предполагаются для метода переноса металла с короткими замыканиями с применением 100% СО₂. При использовании газовой смеси 80% аргон — 20% СО₃ сварочное напряжение следует снизить на 1-2 вольта

AWS A5.18 A-Nr Mat-Nr 1,5112

EN ISO 14341-A G 42 4 M 2Si F-Nr 6 9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки углеродистой стали в ходе общестроительных работ

Высокая ударная вязкость

Стабильная дуга и хорошая подаваемость

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

Смешанный газ Ar+ >15-25% CO, **C1** Активный газ 100% СО,

PA/1G

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	TÜV	CE	
+	+	+	+	+	+	+	

химический состав проволоки (%)

С	Mn	Si	
0.08	11	0.6	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -40°C
Средние значения	M21	ПС	490	544	28	149

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общ. назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH 36.
Литая сталь	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс. давл.	LIN IUUZU Z	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420
	EN 10025 часть 4	S275M, S275ML, S355M, S355ML, S420M, S420ML

Диаметр (мм)	0,8	1,0	1,2	
Kaccema B300, 15 kz	Χ	Х	Χ	
Бочка Accutrak® 250 kг			X	

По запросу возможна поставка в других видах упаковки

LNM 25: 8ep. C-RU25-01/02/16

UltraMag[®]

КЛАССИФИКАЦИЯ

AWS A5.18 ER70S-6 A-Nr 1 Mat-Nr 1,5125

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для автоматической и полиавтоматической сварки

Хорошая подаваемость, стабильное качество сварки

Очень высокие сварочно-технологические характеристики, стабильная дуга и низкий уровень разбрызгивания Высокая производительность

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

 M21
 Смешанный газ Ar+ >15-25% CO₂

 C1
 Akmuвный газ 100% CO₂

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS BV DNV GL LR TÜV CE

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si
0.078	14	0.85

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

			Предел	Предел	Отн.	Ударная вязі	кость по Шарпи (Д	ж)
	Защитный		текучести	прочности	удлинение			
	газ	Состояние	(МПа)	(МПа)	(%)	-30°C	-40°C	
Средние значения	M21	ПС	502	574	28		102	
	C1	ПС	486	570	29	71		

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общ. назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH36
Литая сталь	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс. давл.		P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420
	EN 10025 uacmb 4	S275M S275MI S255M S255MI S420M S420MI S460

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2	1,6
Kaccema S200, 5 kz	Χ		Χ	
Kaccema B300, 15 kz			Χ	Χ
Kaccema BS300, 15 kz		Χ	Χ	Χ
Kaccema S300, 15 kz			Χ	X
Бочка Accutrak® 250 kг		Χ	Χ	
Бочка Accutrak® 500 kг		Χ	Χ	Χ
По запросу возможна постав	3ka 8 gpy	Jsux Bug	gax yna	koßku

Ultramag* :8ep. C-RU26-01/02/16

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

UltraMag® G4Si1

AWS A5.18 A-Nr Mat-Nr

EN ISO 14341-A G 46 5 M 4Si1 / G 46 3 C 4Si1 F-Nr б

9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для автоматической и полиавтоматической сварки

Хорошая подаваемость, стабильное качество сварки

Очень высокие сварочно-технологические характеристики, стабильная дуга и низкий уровень разбрызгивания Высокая производительность

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

PA/1G

Смешанный газ Ar+ >15-25% CO. Активный газ 100% СО.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	CE	ΤÜV
4	4	4		4		

химический состав проволоки (%)

С	Mn	Si
0,08	1,70	0,85

<u>МЕХАНИЧЕСКИЕ ХАРАКТЕ</u>РИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	ояние Предел Предел текучести (МПа) прочности (Предел		Ударная вязкость по Шарпи (Дж)	
				прочностти (міта)	уулинение (76)	-40°C	-50°C
Средние значения	M21	ПС	490	590	27		90
	۲1	ПС	460	560	25	70	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общ. назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH36
Литая сталь	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс. давл.	EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420, S460
	EN 10025 часть 4	S275M, S275ML, S355M, S355ML, S420M, S420ML, S460, P460, S460ML

Диаметр (мм)	0,8	1,0	1,2	1,6	
Kaccema B300, 15 kz	Χ	Х	Χ	Χ	
Kaccema BS300, 15 kz	Χ	X	X	X	
Kaccema S300, 15 kz	X	Χ	Χ	Χ	
Бочка Accutrak® 250 kг	Χ	Χ	Χ		
Fouka Δccutrak® 500 ka	Y	Y	Y	Υ	

Ultramag® G4Si1:8ep. C-RU26-01/02/16

По запросу возможна поставка в других видах упаковки Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На caŭme www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

SupraMig®

КЛАССИФИКАЦИЯ

AWS A5.18 ER70S-6 A-Nr 1 Mat-Nr 1,5125

ΠΕΙΙΙΕΕ ΠΠИΓΔΗΜΕ

Проволока сплошного сечения для сварки конструкционной стали Хорошая подаваемость и стабильное качество сварки

Не требует изменения параметров сварки Жесткая и стабильная дуга с очень низким разбрызгиванием Ровный профиль и хороший внешний вид шва

Идеальный выбор для роботизированной и автоматической сварки Доступна в бочках Ассиtrak®

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

m M21 Смешанный газ Ar+ >15-25% $\rm CO_2$ m C1 Akmu8ный газ 100% $\rm CO_2$

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

химический состав проволоки (%)

C Mn Si

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел Предел		Отн.	Ударная вязкость по Шарпи (Дж)		
	283	Состояние	текучести (МПа)	прочности (МПа)	удлинение (%)	-30°C	-40°C	
Средние	M21	ПС	502	574	28		102	
значения	C1	ПС	486	570	29	71		

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общ. назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH36
Литая сталь	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс. давл.	EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420
	FN 10025 yacmb 4	S275M, S275ML, S355M, S355ML, S420M, S420ML, S460

ВИЛЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2	1,6
Kaccema B300, 15 kz	Χ	Χ		Χ
Kaccema S300, 15 kz	Χ	Χ	Χ	Χ
Бочка Accutrak® 250 kг	Χ	Χ	Χ	Χ
Бочка Accutrak® 500 kг		Χ	Χ	Χ

По запросу возможна поставка в других видах упаковки

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincoinelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Supramig* :8ep. C-RU26-01/02/16

SupraMig® CF

КЛАССИФИКАЦИЯ

AWS A5.18 ER70S-6 A-Nr 1 Mat-Nr 1,5125 EN ISO 14341-A G 46 4 M 3Si1 / G 42 3 C 3Si1 F-Nr 6

ОБЩЕЕ ОПИСАНИЕ

Неомедненная проволока для сварки конструкционной стали Хорошая подаваемость и стабильное качество сварки

Не требует изменения параметров сварки

Жесткая и стабильная дуга с очень низким разбрызгиванием

Ровный профиль и хороший внешний вид шва

Идеальный выбор для роботизированной и автоматической сварки Доступна в бочках Accutrak*

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME) ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

9606 FM 1

M21 Смешанный газ Ar+ >15-25% CO₂ **C1** Активный газ 100% CO,

одобрен	ния серти	ФИКАЦИОН	ІНЫХ АГЕН	ІТСТВ				
ABS	BV	DNV	GL	LR	ΤÜV	DB	CE	
+	+	+	+	+	+	+	+	

химический состав проволоки (%)

С	Mn	Si
0,08	1,40	0,85

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел	Отн.	Ударная вяз	кость по Шар	nu (Дж)
	za3	Состояние	текучести (МПа)	прочности (МПа)	удлинение (%)	-30°C	-40°C	
Средние	M21	ПС	502	574	28		102	
значения	C1	ПС	486	570	29	71		

СВАРИВАЕМЫЕ МАТЕРИАЛЫ Классы стали Стандарт Tun Конструкционная сталь общ. назн. EN 10025 S185, S235, S275, S355 Листы судостроительной стали ASTM A131 Mapku A, B, D, om AH32 go DH36 Литая сталь EN 10213-2 GP240R Трубная сталь EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240NB, L290NB, L360NB, L360OB, L240MB, L290MB, L360MB, L415MB, L415NB API 5LX X42, X46, X52, X60 FN 10216-1 P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N Сталь для бойлеров и камер выс. давл. EN 10028-2 P235GH, P265GH, P295GH, P355GH Сталь с мелкозернистой структурой EN 10025 yacmb 3 S275, S355, S420

			EN IU	U25 4d(111b 4	52/5M, 52/5ML, 5355M, 5355ML, 542UM, 542UML, 546U
ВИДЫ УПАКОВКИ					
Диаметр (мм)	0,8	1,0	1,2	1,6	

Kaccema B300, 15 kz Χ Χ X Χ Χ Kaccema BS300, 15 kz Kaccema S300, 15 kz Χ Χ Бочка Accutrak® 250 kг Χ Χ Χ Бочка Accutrak® 500 kг Χ Χ Χ

Supramig* CF : 8ep. C-RU01-01/02/16

SupraMig® HD

AWS A5.18 FR70S-6 A-Nr Mat-Nr

EN ISO 14341-A G 46 4 M 3Si1 / G 42 3 C 3Si1 F-Nr 6

9606 FM 1

Проволока сплошного сечения для сварки конструкционной стали Хорошая подаваемость и стабильное качество сварки Самостоятельное удаление шлаковых включений Жесткая и стабильная дуга с низким разбрызгиванием

Большая глубина проплавления и повышенный усталостный ресурс материала Идеальный выбор для высокопроизводительной сварки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Смешанный газ Ar+ >15-25% СО, C1 Активный газ 100% СО,

ОДОБРЕН	ия серти	ФИКАЦИОН	НЫХ АГЕН	ІТСТВ				
ABS	BV	DNV	GL	LR	ΤÜV	CE	DB	

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ [%]

C	Mn	Si
0,08	1,40	0,85

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел	Отн.	Ударная вя	ıзкость no Шарпи (Дж)	
	2a3	Состояние	текучести (МПа)	прочности (МПа)	удлинение (%)	-30°C	-40°C	
Средние	M21	ПС	502	574	28		102	
значения	C1	ПС	486	570	29	71		

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общ. назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH36
Литая сталь	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс. давл.	EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420
	EN 10025 часть 4	S275M, S275ML, S355M, S355ML, S420M, S420ML, S460

Диаметр (мм)	0,8	1,0	1,2	1,6
Kaccema B300, 15 kz	Χ	Χ	Х	Х
Kaccema BS300, 15 kz	Χ	Χ	Χ	Χ
Kaccema S300, 15 kz	X	Χ	Χ	Χ
Бочка Accutrak® 250 kг	Χ	Χ	Χ	
Fouka Accutrak® 500 ka	Y	Y	Y	Y

По запросу возможна поставка в других видах упаковки

SupraMig Ultra®

КЛАССИФИКАЦИЯ

AWS A5.18 ER70S-6 A-Nr 1 Mat-Nr 1,5130

EN ISO 14341-A G 50 5 M 4Si1 / G 46 3 C 4Si1 **F-Nr**

9606 FM 1

б

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения с повышенным содержанием марганца для полуавтоматической и роботизированной сварки Хорошая подаваемость и стабильное качество сварки

Жесткая и стабильная дуга с очень низким разбрызгиванием

Достипна в бочках Accutrak®

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

M21 Смешанный газ Ar+ >15-25% СО₂
 C1 Активный газ 100% СО,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	ΤÜV	CE
+	+	+	+	+	+	+

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si
0,08	1,70	0,85

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел	Отн.	Ударная вя	язкость по Ц	∐apnu (Дж)
	eas Cocmos	Состояние		прочности (МПа)	удлинение (%)	-20°C	-40°C	-50°C
Средние	M21	ПС	500	650	26	80	80	70
значения	C1	ПС	490	620	30	60	50	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общ. назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH36
Литая сталь	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс. давл.	LIN IUUZU Z	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420, S460
	EN 10025 часть 4	S275M, S275ML, S355M, S355ML, S420M, S420ML, S460, P460, S460ML

DIAGLIVEARODIU

Диаметр (мм)	0,8	1,0	
Kaccema B300, 15 kz	Χ	Χ	
Kaccema BS300, 15 kz		Χ	
Kaccema S300, 15 kz		Χ	
Бочка Accutrak® 250 kг	Χ	Χ	
Бочка Accutrak® 500 kг		Χ	

Supramig* Ultra: 8ep. C-RU26-01/02/16

SupraMig Ultra®CF

AWS A5.18 FR70S-6 A-Nr Mat-Nr

EN ISO 14341-A G 50 5 M 4Si1 / G 46 3 C 4Si1 F-Nr 6 9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Неомедненная проволока сплошного сечения с повышенным содержанием марганца для полуавтоматической и роботизированной сварки

Хорошая подаваемость и стабильное качество сварки

Жесткая и стабильная дига с очень низким разбрызгиванием Доступна в бочках Accutrak®

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Смешанный газ Ar+ >15-25% СО, **C1** Активный газ 100% СО,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	TÜV	CE
+	+	+	+	+	+	+

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si
0.08	1,70	0,85

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный	Защитный Состояния	Состояние Предел Предел			Отн.	Ударная вязкость no Шарnu (Дж)		k)
	2a3	Состояние	текучести (МПа)	прочности (МПа)	удлинение (%)	-20°C	-40°C		
Средние	M21	ПС	500	650	26	80	80		
значения	C1	ПС	490	620	30	60	50		

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общ. назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH36
Литая сталь	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс. давл.	EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420, S460
	EN 10025 часть 4	S275M, S275ML, S355M, S355ML, S420M, S420ML, S460, P460, S460ML

Диаметр (мм)	0,8	1,0
Kaccema B300, 15 kz	Χ	Χ
Kaccema BS300, 15 kz		Χ
Kaccema S300, 15 kz		Χ
Бочка Accutrak® 250 kг	X	Χ
Fouka Accutrak® 500 kz		X

По запросу возможна поставка в других видах упаковки

последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Supramig* Ultra CF: Bep. C-RU01-01/02/16

SupraMig Ultra® HD

КЛАССИФИКАЦИЯ

AWS A5.18 ER70S-6 A-Nr 1 Mat-Nr 1,5130

EN ISO 14341-A G 50 5 M 4Si1 / G 46 3 C 4Si1 **F-Nr** 6

9606 FM 1

ОБШЕЕ ОПИСАНИЕ

Проволока сплошного сечения с повышенным содержанием марганца для полуавтоматической и роботизированной сварки Хорошая подаваемость и стабильное качество сварки Правильный профиль сварного шва Жесткая и стабильная дуга с очень низким разбрызгиванием Идеальный выбор для высокопроизводительной сварки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M21 Смешанный газ Ar+ >15-25% СО₂ **C1** Akmu8ный газ 100% СО₃

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

химический состав проволоки (%)

C Mn Si 0,08 1,70 0,85

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный	Состояние	Предел	Предел	Отн.	Ударная вязкость по Шарпи (Дж)		
	2a3	Состионние	текучести (МПа)	прочности (МПа)	удлинение (%)	-20°C	-40°C	
Средние	M21	ПС	500	650	26	80	80	
значения	C1	ПС	490	620	30	60	50	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общ. назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH36
'	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс. давл.	EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420, S460
	FN 10025 yacmb 4	\$275M \$275MI \$355M \$355MI \$420M \$420MI \$460 \$460 \$460MI

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,2	1,4	1,6
Kaccema B300, 15 kz	Χ		Χ
Kaccema BS300, 15 kz	Χ		
Kaccema S300, 15 kz	Χ	Χ	X
Бочка Accutrak® 250 kг	Χ	Χ	X
Бочка Accutrak® 500 kг	X	Χ	Χ

По запросу возможна поставка в других видах упаковки

Supramig* Ultra HD: 8ep. C-RU02-01/02/16

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER80S-G
 A-Nr
 10

 EN ISO 16834-A
 G Z Mn3 Ni1 Cu*
 F-Nr
 6

 * самый близкий класс
 9606 FM
 2

ОБШЕЕ ОПИСАНИЕ

Проволока сплошного сечения, созданная специально для сварки устойчивых к атмосферному воздействию сталей Имеет небольшое содержание меди для предотвращения окисления наплавленного металла

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M21 Смешанный газ Ar+ >15-25% CO₂ **C1** Akmu8ный газ 100% CO₃

химический состав проволоки (%)

C	Mn	Si	Ni	Cu
0,1	1,4	0,75	0,8	0,3

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]										
	Защитный		Предел mekyчести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)				
	sas	Состояние	(МПа)	(МПа)	(%)	-20°C	-40°C			
Средние значения	M21	ПС	570	620	26	90	70			

СВАРИВАЕМЫЕ МАТЕРИАЛЫ Классы стали Стандарт Tun Устойчивая к атмосферному воздействию сталь EN 10155 \$ 235 J 0 W \$ 235 J 2 W \$ 355 J 0 W \$ 355 J 2 W \$ 355 K 2 G TI W

ВИДЫ УПАКОВКИ		
Диаметр (мм)	1,0	1,2
Kaccema B300, 15 kz	Х	Χ

По запросу возможна поставка в других видах упаковки

LNM 28: Bep. C-RU23-01/02/16

LNM MoNi

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER100S-G
 A-Nr
 12

 EN ISO 16834-A
 G 62 4 M Mn3NiCrMo
 F-Nr
 6

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки высокопрочных сталей с пределом текучести до 620 МПа Высокая ударная вязкость при −40 °C

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАШИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

M21 Смешанный газ Ar+ >15-25% СО₂

химический состав проволоки (%)

С	Mn	Si	Ni	Cr	Mo	Cu
0,10	1,65	0,75	0,55	0,60	0,30	0,08

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел текучести	Предел прочности (МПа)	Отн. удлинение	Ударная вязкость по Шарпи (Дж)		
	газ	Состояние	(MПа)		[%]	-20°C	-40°C	-60°C
Средние значения	M21	ПС	635	770	19	100	90	70

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Трубная сталь	API-5LX	X65, X70, X80
	EN 10208-2	L480, L550
Сталь с мелкозернистой структурой	EN 10025 часть 6	S460, S500, S550, S620 S690
		S620GI1, S600MC, TstE620, Weldox 500, Hardox

вилы упаковки

5			
Диаметр (мм)	1,0	1	1,2
Kaccema B300, 15 kz	Х		X

По запросу возможна поставка в других видах упаковки

LNM MoNi Bep. C-RU24-01/02/16

LNM MoNiVa

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER110S-G
 A-Nr
 12

 EN ISO 16834-A
 G 69 4 M Mn3Ni1CrM
 F-Nr
 6

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки высокопрочных сталей с пределом текучести до 690 МПа Высокая ударная вязкость при −40 °C

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАШИТНЫЕ ГАЗЫ (ПО ISO 14175)

M21 Смешанный газ Ar+ >15-25% СО₂

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	DB	TUV	CE	
+	+	+	+	

химический состав проволоки (%)

С	Mn	Si	Ni	Cr	Мо	V	Cu
0,08	1,7	0,44	1,35	0,23	0,3	0,08	0,25

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Зашитный		Предел Предел текичести прочност	Предел прочности	Отн. I удлинение	Ударная вязкость по Шарпи (Дж)	
	2a3	Состояние	(МПа)	(МПа)	[%]	-40°C	
Средние значения	M21	ПС	710	790	20	70	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Трубная сталь	API-5LX	X65, X70, X80
	EN 10208-2	L480, L550
Сталь с мелкозернистой	EN 10025 часть 6	S460, S500, S550, S620 S690
cmpykmypoŭ		S620GI1, S600MC, TstE620, Weldox 500, Hardox

DIAGLEVEARODIA

Диаметр (мм)	0,8	1,0	1,2	
Kaccoma R200 15 ka	Υ	Y	Y	

По запросу возможна поставка в других видах упаковки

LNM MoNiVa Bep. C-RU27-21/04/16

LNM MoNiCr

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER120S-G
 A-Nr
 12

 EN ISO 16834-A
 G 89 4 M Mn4Ni2CrMo
 F-Nr
 6

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки высокопрочных сталей с пределом текучести до 890 МПа Также может использоваться для сварки стали марки S960 (без точного соответствия характеристикам прочности) Высокая ударная вязкость при низких температурах вплоть до -60°С

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

M21 Смешанный газ Ar+ >15-25% СО₂

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

C	Mn	Si	Ni	Cr	Mo
0,09	1,8	0,80	2,20	0,30	0,55

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Зашитный		1	Предел прочности	•	Ударная вязкость по Шарпи (Дж)		
	2a3	Состояние	(МПа)	(МПа)	(%)	-40°C	-60°C	
Средние значения	M21	ПС	>890	950	>15	70	>50	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт		Tun
Сталь с мелкозернистой структурой	EN 10025 часть 6	S890	
	S960 (без точного coom		

риды и писычи	
Диаметр (мм)	1,2

Kaccema B300, 15 kz X

По запросу возможна поставка в других видах упаковки

LNM MoNiCr : 8ep. C-RU06-01/02/16

LNM Ni1

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER80S-Ni1
 A-Nr
 10

 EN ISO 14341-A
 G 46 5 M 3Ni1
 F-Nr
 6

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки мелкозернистых и низколегированных сталей с содержанием никеля

Высокая ударная вязкость при низких температурах (-60°C)

Часто используется для работ на офшорных конструкциях

Стабильная дуга и хорошая подаваемость

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M21 Смешанный газ Ar+ >15-25% CO₃

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DB TÜV + +

химический состав проволоки (%)

С	Mn	Si	Ni
0,09	1,2	0,6	0,9

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -60°С	
Средние значения	M21	ПС	480	580	30	60	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun	
Конструкционная сталь общего назначения	EN 10025	S275, S355	
Листы судостроительной стали	ASTM A131	ASTM A131	
Литая сталь	EN 10213-2	GP240R	
Трубная сталь	EN 10208-1	L290 GA, L360GA	
	EN 10208-2	L290, L360, L415	
	API 5LX	X42, X46, X52, X60, X65	
	EN 10216-1	P275T1	
	EN 10217-1	P275 T2, P355 N	
Сталь с мелкозернистой структурой	EN 10025 часть 3/4	S275, S355, S420, S460	
	EN 10028	P355NL-1, P460NL-1	

ВИДЫ УПАКОВКИ

Drigor / II/ II/O DI II/			
Диаметр (мм)	1,0	1,2	
Kaccema S200, 5 kz	Х		
Kaccema B300, 15 kz	Х	Χ	

По запросу возможна поставка в других видах упаковки

LNM Ni1 :8ep. C-RU27-01/02/16

LNM Ni_{2.5}

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER80S-Ni2
 A-Nr
 10

 EN ISO 14341-A
 G 46 6 M 2Ni2
 F-Nr
 6

 9606 FM
 1/2

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки мелкозернистых и низколегированных сталей с содержанием никеля Высокая ударная вязкость при низких температурах (-60°С в состоянии после сварки и -90°С после снятия напряжения при 580°С в течение 15 часов).

Часто используется для работ на офшорных конструкциях

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M21 Смешанный газ Ar+ >15-25% CO.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

химический состав проволоки (%)

С	Mn	Si	Ni
0,1	1,1	0,55	2,4

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Зашитный			Предел Предел текичести прочности		Ударная вязкость по Шарпи (Дж)
	2a3	Состояние	(МПа)	(МПа)	удлинение (%)	-60°C
Средние значения	M21	ПС	490	580	24	85

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun	
Конструкционная сталь общего назначения	EN 10025	S355	
Трубная сталь	API-5LX	X52, X56, X60, X65	
	EN 10208-2	L360, L415, L445	
Сталь с мелкозернистой структурой	EN 10025 часть 3/4	S355, S420, S460	
Низкотемпературная сталь	EN 10028-4	11 MnNi 5-3, 13 MnNi 6-3, 15 NiMn 6	
		(12 Ni 14 G 1, G 2)	
	EN 10222-3	13 MnNi 6-3, 15 NiMn 6	

ВИЛЫ УПДКОВКИ

Диаметр (мм)	1,0	1,2
Kaccema B300, 15 kz	X	Χ

По запросу возможна поставка в других видах упаковки

LNM Ni2.5: 8ep. C-RU25-01/02/16

AWS A5.28 FR70S-A1 A-Nr

EN ISO 14341-A G 46 3 M 2Mo F-Nr 6 9606 FM 1/3

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки жаропрочных сталей с содержанием молибдена 0,5% и мелкозернистых сталей для эксплуатации в условиях низких температур в состоянии после сварки в quanaзоне рабочих температур от -30°C до +500°C

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Смешанный газ Ar+ >15-25% СО **C1** Активный газ 100% СО.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

C	Mn	Si	Mo
0,1	1,12	0,6	0,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел mekyчести	Предел прочности	Отн. цалинение	ударная вязкость no Шарпи (Дж)	
	283	Состояние	(МПа)	(M∏a)	[%]	+20°C	-20°C
Средние значения	M21	ПС	503	606	24	130	74

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun		
Высокотемпературная сталь	EN 10028-2		P295 G H, P355 G H, 16 Mo 2	
EN 10222-2	17 Mo 3, 14 Mo 6			
Сталь с мелкозернистой структурой	EN 10025 часть 3		S275, S355, S420, S460	
FN 10025 yacmb 4	S275, S355, S420, S46	50		

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-1 требцется предварительный подогрев соединения

При необходимости рекомендуется провести снятие напряжения при 580-650°C

Диаметр (мм)	0,8	1,0	1,2
Kaccema B300. 15 kz	Х	Х	X

По запросу возможна поставка в других видах упаковки

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNM 12 :8ep. C-RU26-01/02/16

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER80S-B2*
 A-Nr
 3
 Mat-Nr
 1,7339

 ISO 21952-A
 G CrMo1Si
 F-Nr
 6

 * самый близкий класс
 9606 FM
 3

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки жаропрочных и устойчивых в диффузионному водороду в наплавленном металле сталей Cr-Mo (1,25Cr - 0,5Mo)

Максимальная температура эксплуатации 550°C

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

3ΑΙΙΙΝΤΗЫΕ ΓΔ3Ы (ΠΩ ISO 14175

 M21
 Смешанный газ Ar+ >15-25% СО₂

 C1
 Активный газ 100% СО₂

 M13
 Смешанный газ Ar+ >5-25% СО₂

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Mo
0,1	1,0	0,5	1,2	0,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) +20°С
Средние значения	M21	Послесварочная тепловая обработка 700°С/1 ч	530	635	23	160

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun	
Высокотемпературная сталь	EN 10028-2	13 CrMo4-5	
EN 10083-1	25 CrMo 4		
EN 10222-2	14 CrMo 4-5		
Инструментальная сталь	DIN 17210	16 MnCr 5	

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-1 mpeбyemcя предварительный подогрев соединения при 200-250°C После сварки mpeбyemcя mepмическая обработка при 660-700°C

 Диаметр (мм)
 1,0
 1,2

 Кассета В300, 15 kг
 X
 X

По запросу возможна поставка в других видах упаковки

LNM 19 Bep. C-RU26-01/02/16

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

AWS A5.28 ER90S-B3* A-Nr Mat-Nr ISO 21952-A G CrMo2Si F-Nr б * самый близкий класс 9606 FM 3

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки жаропрочных и устойчивых к диффузионному водороду сталей Сг-Мо (2,25Сг - 1Мо) Температура эксплуатации до 600°С

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Смешанный газ Ar+ >15-25% СО, M21 **C1** Активный газ 100% СО, M13 Смешанный газ Аг+ >0-3% СО,

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ [%]

С	C Mn		Cr	Mo
0.08	0.9	0.6	2.5	1.0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Защитный			Предел текучести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	283	Состояние	(MПа)	(МПа)	[%]	+20°C	
Средние значения	M21	Послесварочная тепловая	560	680	20	100	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun	
Тепло- и водородостойкие стали	EN 10028-2		10CrMo 9-10
EN 10222-2	12CrMo 9-10lnm 304l		

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-1 перед проведением сварки требуется предварительный подогрев до 200-250°C После сварки требуется тепловая обработка при 690-740°C

Диаметр (мм)	1,0	1,2
Kaccema B300, 15 kz	Х	Χ

По запросу возможна поставка в других видах упаковки

LNM 20 Bep. C-RU26-01/02/16

LNM 304LSi

AWS A5.9 ER308LSi A-Nr 8 Mat-Nr 1,4316 ISO 14343-A G 19 9 L Si F-Nr б 9606 FM 5

Проволока сплошного сечения со сверхнизким содержанием углерода для сварки аустенитных сталей CrNi Повышенное содержания кремния для улучшения смачивания

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M12 Смешанный газ Аг+ 0,5-5% СО, M13 Смешанный газ Ar+ 0,5-3% 0,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	TÜV
4	4		4	4	

химический состав проволоки (%)

C	Mn	Si	Cr	Ni	Мо
0,02	1,9	0,8	20	10	0,1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный	i	Предел	Предел прочности	Отн. удлинение	Ударная Вязкость no Шарпи (Дж)	
	2a3	Состояние	текучести (МПа)	(M∏a)	[%]	-20°C	-196°C
Средние значения	M12	ПС	394	568	40	85	41

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое сод	јержание углерода (С	< 0,03%)			
_	X2CrNi19-11		1,4306	(TP)304 L	S30403
				CF-3	J92500
	X2CrNiN18-10		1,4311	(TP)304LN	S30453
				302, 304	S30400
Среднее содержа	ние углерода (C > 0,03	3%]			
	X4CrNi18-10		1,4301	(TP)304	S30409
		GX5CrNi19 10	1,4308	CF-8	J92600
Со стабилизацие	eŭ Ti, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		GX5 CrNiNb 19 10	1,4552	CF-8C	J92710

Диаметр (мм)	0,8	1,0	1,2
Kaccema S200, 5 kz	Χ	Χ	Χ
Kaccema BS300, 15 kz	Χ	Χ	Χ
Бочка Accutrak® 250 kг			Χ

LNM 304LSi: 8ep. C-RU24-01/02/16

По запросу возможна поставка в других видах упаковки Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На caŭme www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте достипны спецификации безопасности.

LNM 304L

КЛАССИФИКАЦИЯ

 AWS A5.9
 ER308L
 A-Nr
 8
 Mat-Nr
 1,4316

 ISO 14343-A
 G 19 9 L
 F-Nr
 6

 9606 FM
 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения со сверхнизким содержанием углерода для сварки аустенитных сталей CrNi Высокая устойчивость к межкристаллитной коррозии и окисляющим средам

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M12	Смешанный газ Ar+ 0,5-5% CO,
M13	Смешанный газ Аг+ 0.5-3% О

ХИМИЛЕСКИЙ СИСТАВ ЦБИВИЛИКИ [%]

С	Mn	Si	Cr	Ni	Мо
0.01	1.6	0.4	20	10	0.3

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный Предел			Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	283	Состояние	текучести (МПа)	(МПа)	[%]	+20°C	-196°C
Средние значения	M12	ПС	390	590	35	120	50

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

CDAFIDALIVIDIL					
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
				A240/A312/A351	
Очень низкое сод	ержание углерода (С <	: 0,03%]			
	X2CrNi19-11		1,4306	(TP)304 L	S30403
				CF-3	J92500
	X2CrNiN18-10		1,4311	(TP)304LN	S30453
				302, 304	S30400
Среднее содержа	ние углерода (C > 0,03°	%)			
	X4CrNi18-10		1,4301	(TP)304	S30409
		GX5CrNi19 10	1,4308	CF-8	J92600
Со стабилизацие	eŭ Ti, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		GX5 CrNiNh 19 10	1.4552	CF-8C	192710

BNUPLAUVKUBKI

 Диаметр (мм)
 1,0
 1,2

 Кассета BS300, 15 kг
 X
 X

По запросу возможна поставка в других видах упаковки

LNM 304L: Bep. C-RU24-01/02/16

LNM 347Si

КЛАССИФИКАЦИЯ

AWS A5.9 ER347Si **A-Nr** 8 **Mat-Nr** 1,4551

ISO 14343-A G 19 9 NbSi **F-Nr** 6 **9606 FM** 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки нержавеющих сталей CrNi со стабилизацией титаном или ниобием Высокая устойчивость к межкристаллитной коррозии и окисляющим средам

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

 M12
 Смешанный газ Ar+ 0,5-5% СО2

 M13
 Смешанный газ Ar+ 0,5-3% О2

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TÜV DB

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Мо	Nb
0.05	1.4	0.7	19.2	9.9	0.1	0.6

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная в по Шар	
	283	Состояние	текучести (МПа)	(МПа)	[%]	+20°C	-196°C
Средние значения	M12	ПС	460	650	35	100	40

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Vanceu emagu	FN 10000 1/ 2	EN 10212 4	Mat No	ACTM/ACI	UNC
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
				A240/A312/A351	
Со стабилизацие	ŭ Ti, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
				(TP)347h	S34709
		GX5 CrNiNb 19-10	1,4552	CF-8C	J92710
Без стабилиза	ции				
				302	
	X4CrNi18-10		1,4301	(TP)304	S30400
	X2CrNi19-11		1,4306	(TP)304L	S30403
		GX5 CrNi 19-10	1,4308	CF-8	J92600
			1,4312		
				(TP)304H	S30409

DIAUFI AUVAODAI

Диаметр (мм)	0,8	1,0	1,2
Kaccema BS300, 15 kz	Χ	Χ	Х

По запросу возможна поставка в других видах упаковки

LNM 347Si :8ep. C-RU23-01/02/16

LNM 316LSi

AWS A5.9 FR316I Si A-Nr Mat-Nr 1.4430 ISO 14343-A G 19 12 3 LSi F-Nr б 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения со сверхнизким содержанием углерода для сварки нержавеющих сталей CrNiMo Также см. LNM 316L с более высоким содержанием кремния для улучшения смачивания

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M12 Смешанный газ Аг+ 0,5-5% СО, M13 Смешанный газ Ar+ 0,5-3% 0,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV ABS DNV GL

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

С	Mn	Si	Cr	Ni	Mo
0.01	1.8	0.8	18.5	12.2	2.5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Зашитный		Предел	Предел прочности	Отн. иалинение		рная вязкос Шарпи (Дж	
	2a3	Состояние	текучести (МПа)	(МПа)	(%)	+20°C	-120°C	-196°C
Средние значения	M12	ПС	452	580	30	150	70	44

Классы стали EN 10088-1/-2 EN 10213-4 Mat. Nr ASTM/ACI UNS A240/A312/A351 Очень низкое содержание углерода (С < 0,03%) (TP)316L X2CrNiMo17-12-2 1.4404 S31603 CF-3M J92800 X2CrNiMo18-14-3 (TP)316L 1.4435 S31603 X2CrNiMoN17-11-2 1.4406 (TP)316LN S31653 X2CrNiMoN17-13-3 1,4429 Среднее содержание углерода (С > 0,03%) X4CrNiMo17-12-2 1.4401 (TP)316 S31600 X4CrNiMo17-13-3 1,4436 GX5CrNiMo19-11 1.4408 CF 8M 192900 Co стабилизацией Ti. Nb

1,4571

1,4580

1.4550

1,4552

316 Ti

316 Cb

(TP)347

CF-8C

Диаметр (мм)	0,8	1,0	1,2	По запросу возможна поставка в других видах упаковки
Kaccema S200. 5 kz	Х	Χ		

Kaccema BS300, 15 kz Χ Χ

X6CrNiMoTi17-12-2

X6CrNiMoNb17-12-2

X6CrNiNh18-10

Насколько нам известно, все сведения в этих таблицах были верны на момент nyбликации. На caŭme www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

GX5 CrNiNh 19-10

LNM 316LSi; Bep. C-RU24-01/02/16

S31635

S31640

\$34700

J92710

LNM 318Si

КЛАССИФИКАЦИЯ

AWS A5.9 ER318* A-Nr 8 Mat-Nr 1,4576 ISO 14343-A G 19 12 3 NbSi F-Nr 6 * самый близкий класс 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки сталей CrNiMo со стабилизацией титаном или ниобием Высокая истойчивость к межкристаллитной и общей коррозии

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

 M12
 Смешанный газ Ar+ 0,5-5% CO₂

 M13
 Смешанный газ Ar+ 0,5-3% O₃

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Мо	Nb
0,05	1,4	0,7	18,6	11,7	2,5	0,7

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) +20°С
Средние значения	M12	ПС	410	630	35	100

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

СВАРИВАЕМЫЕ МАТЕРИАЛЫ							
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS		
				A240/A312/A351			
Очень низкое сод	ержание углерода (C < 0,03	%]					
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603		
				CF-3M	J92800		
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603		
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653		
	X2CrNiMoN17-13-3		1,4429				
Среднее содержа	ние углерода (C > 0,03%)						
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600		
	X4CrNiMo17-13-3		1,4436				
		G-X5CrNiMo19-11	1,4408	CF 8M	J92900		
Со стабилизацие	ŭ Ti, Nb						
	X6CrNiMoTi17-12-2		1,4571	316Ti	S31635		
	X6CrNiMoNb17-12-2		1,4580	316 Cb	S31640		
	X6CrNiNb18-10		1,4550	(TP)347	S34700		
		G-X5CrNiNb 19-10	1,4552	Cf-8C	J92710		

ВИЛЫ УПАКОВКІ

Диаметр (мм) 1,0 1,2

Kaccema BS300, 15 kz X X

По запросу возможна поставка в других видах упаковки

LNM 318Si: Bep. C-RU23-01/02/16

LNM 4439Mn

A-Nr 9* Mat-Nr 1,4453 ISO 14343-A G 18 16 5 N L* F-Nr 6* * самый близкий класс 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки нержавеющей стали марок AISI 317L, 317LN и их аналогов Пригодна для сварки стали 316L в тех случаях, когда важно повышенное содержание молибдена Высокая устойчивость к питтинговой, межкристаллитной и механической коррозии Полностью аустенитный наплавленный металл

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Смешанный газ Аг+ 0,5-5% СО, M12 M13 Смешанный газ Ar+ 0,5-3% О.

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Mo	N
0,01	5,2	0,4	19	17	4,0	0,15

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Зашитный		Предел	Предел прочности	Отн. иалинение		ная вязкость Шарпи (Дж)	
	2a3	Состояние	mekyчести (МПа)	(МПа)	[%]	+20°C	-196°C	
Средние значения	M12	ПС	400	600	30	70	32	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ								
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS			
Полностью ауст	енитные коррозиестой	íkue стали CrNiMo						
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653			
	X2CrNiMoN17-13-3		1,4429	(TP)316LN	S31653			
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603			
	X2CrNiMo18-15-4		1,4438	317L	S31725			
	X2CrNiMoN17-13-5		1,4439	317LN	S31726			
	G-X2CrNiMoN17-13-4	G-X2CrNiMo17-13-4	1,4446					
	G-X6CrNiMo17-13	G-X6CrNiMo17-13	1,4448					

Диаметр (мм) 1,2 Kaccema BS300, 15 kz Χ

По запросу возможна поставка в других видах упаковки

последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNM 4439Mn; Bep. C-RU24-01/02/16

AWS A5.9 ER316LMn A-Nr Mat-Nr 1,4455

ISO 14343-A G 20 16 3 Mn L F-Nr 6* 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки полностью аустенитных нержавеющих сталей CrNiMnMo и низкотемпературных сталей Не подвержена образованию горячих трещин

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Смешанный газ Ar+ 0.5-5% CO M13 Смешанный газ Ar+ 0,5-3% 0

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Мо	N
0,015	7	0,4	20	16	3,0	0,15

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный		Предел	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
	2a3	Состояние	текучести (МПа)	(МПа)	(%)	-196°C
Средние значения	M12	ПС	400	600	30	50

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS		
Нержавеющие сп	Сы стали EN 10088-1/-2 EN 10213-4 Mat. Nr ASTM/ACI UNS аВеющие стали Стой и Стой ос совержанием N 1,4311 (TP)304LN \$30453 EN 10088-1/-2 X2CrNiMoN17-11-2 1,4406 (TP)316LN \$31653 X2CrNiMoN17-13-3 1,4429 317LN \$31726 енитные немагнитные стали X2CrNiMoN22-15 1,3951 1,3951 1,3952 X2CrNiMo18-14-3 1,3953 X2CrNiMo18-15 1,3953 X8CrMnNi8-8 1,3965 1,3965 отвемпературная сталь G-X6CrNi8-10 1,6902 1,6902 G-X5CrNiNb18-10 1,6905 1,6905 EN 10028-4 12 Ni 14 1,5637						
	EN 10088-1/-2	X2CrNiN18-10	1,4311	(TP)304LN	S30453		
		X2CrNiMoN17-11-2	1,4406	(TP)316LN	S31653		
		X2CrNiMoN17-13-3	1,4429				
		X2CrNiMoN17-13-5	1,4439	317LN	S31726		
Аустенитные не	емагнитные стали		1,4311 (TP)304LN S30453 1,4406 (TP)316LN S31653 1,4429 1,4439 317LN S31726 1,3951 1,3952 1,3953 1,3965 1,6902 1,6905				
	SEW 390	X2CrNiMoN22-15	1,3951				
		X2CrNiMoN18-14-3	1,3952				
		X2CrNiMo18-15	1,3953				
		X8CrMnNi18-8	1,3965				
Низкотемперат	урная сталь						
	SEW 685	G-X6CrNi18-10	1,6902				
		G-X5CrNiNb18-10	1,6905				
	EN 10028-4	12 Ni 14	1,5637				
		X12Ni5	1,5680				

Диаметр (мм)	1,0	1,2	
Kaccoma RS300 15 ka	Υ	Υ	

По запросу возможна поставка в других видах упаковки

LNM 4455: Bep. C-RU22-01/02/16

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

КЛАССИФИКАЦИЯ

A-Nr 9* **Mat-Nr** 1,436.

He имеет coomветствий стандартам EN и AWS

F-Nr 6* 9606 FM 5

UPILIEE UUNCAHNE

Проволока сплошного сечения для сварки низколегированных дуплексных нержавеющих сталей Коррозионная стойкость в большинстве сличаев соответствиет стали 316L

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

 M12
 Смешанный газ Ar+ 0,5-5% CO₂

 M13
 Смешанный газ Ar+ 0,5-3% O₂

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Мо	N
0.01	1.4	0.6	23	7	0.3	0.14

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная (по Шар	
	газ	Состояние	текучести (МПа)	(МПа)	[%]	+20°C	-20°C
Средние значения	M12	ПС	525	710	25	170	150

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	UNS
Дуплексная нержавеющая сталь		X2CrNiMoN21-5-1	1,4162 S32101
	X2CrNiN23-4	1.4362	\$32304

ΒΝΩΡΙ ΛΩΦΚΟΒΚΙ

Диаметр (мм)	1,2			
Kaccema BS300, 15 kz	X			

По запросу возможна поставка в других видах упаковки

LNM 4362 : Bep. C-RU05-01/02/16

КЛАССИФИКАЦИЯ

AWS A5.9 ER2209 **A-Nr** 8 **Mat-Nr** 1,4462 **ISO 14343-A** G 22 9 3 N L **F-Nr** 6

9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки дуплексных нержавеющих сталей Высокая устойчивость к общей, питтинговой и механической коррозии

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

 M12
 Смешанный газ Ar+ 0,5-5% CO₂

 M13
 Смешанный газ Ar+ 0,5-3% O₃

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

BV	GL	ΤÜV
2209	44625	+

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Mo	N
0.01	1.3	0.5	23	8.5	3.0	0.15

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел	Предел прочности	Отн. иалинение	Ударная вязкость по Шарпи (Дж)	
	газ	Состояние	текучести (МПа)	(МПа)	[%]	+20°C	-46°C
Спелние значения	M12	ПС	621	803	29	110	40

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	UNS	
Дуплексная нерж	кавеющая сталь			
	X2CrNiMoN22-5-3	1,4462	S31803	
		1,4417	S31500	
	X2CrNiN23-4	1,4362	S32304	
	X3CrNiMoN27-5-2	1,4460	S31200	
	X2CrNiMoN21-5-1	1.4162	S32101	

Стыки из отличающихся соединений, например, между углеродистой и низколегированной сталью и дуплексной нержавеюшей сталью

ВИЛЫ УПАКОВКИ

По запросу возможна поставка в других видах упаковки

LNM 4462; Bep. C-RU25-12/05/16

AWS A5.9 FR385 A-Nr Mat-Nr ISO 14343-A G 20 25 5 Cu L F-Nr 6

Проволока сплошного сечения для сварки полностью аустенитных сталей типа 20%Сг / 25%Ni / 4,5%Mo / 1,5%Cu Высокая коррозионная устойчивость к серной и фосфорной кислоте

9606 FM 5

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Смешанный газ Аг+ 0,5-5% СО, M13 Смешанный газ Ar+ 0,5-3% 0,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Мо	Cu
0,01	1,7	0,3	20	25	4,4	1,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	283	Состояние	mekyчести (МПа)	(МПа)	[%]	+20°C	
Средние значения	M12	ПС	350	610	35	100	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr						
Полностью аустенитные сплавы NiCrMoCu и CrNiMoCu									
		G-X7NiCrMoCuNb25-20	1,4500						
	X5NiCrMoCuTi20-18		1,4506						
		G-X2NiCrMoCuN20-18	1,4531						
		G-X2NiCrMoCuN25-20	1,4536						
	X1NiCrMoCuN25-20-5		1,4539						
		G-X7CrNiMoCuNb18-18	1,4585						
	X5NiCrMoCuNb22-18		1,4586						

Диаметр (мм)	1,2
Kaccema BS300, 15 kz	Х

По запросу возможна поставка в других видах упаковки

LNM 4500 Bep. C-RU23-01/02/16

КЛАССИФИКАЦИЯ

 AWS A5.9
 ER2594
 A-Nr
 8

 ISO 14343-A
 G 25 9 4 N L
 F-Nr
 6

 9606 FM
 5

ОБЩЕЕ ОПИСАНИЕ

Используется при необходимости в высокой устойчивости к общей, механической и питтинговой коррозии Применяется для сварки аустенитно-ферритных нержавеющих сплавов типа 25%Сг 7%Ni 4%Mo с низким содержанием углерода

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

 M12
 Смешанный газ Ar+ 0,5-5% CO₂

 M13
 Смешанный газ Ar+ 0,5-3% 0,

химический состав проволоки (%)

C	Mn	Si	Cr	Ni	Мо	Cu	Nb	Р	S	٧	W	N
0,03	2,5	1,0	24,0-27,0	8,0-10,5	2,5-4,5	0,05	0,03	0,03	0,02	0,1	1,0	0,20-0,30

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -40°С
Средние значения	M12	ПС	650	850	23	55

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали ASTM UNS

Супердуплексная сталь 25%Сг

A182 F53, F55

BS EN 10088-2 X2CrNiMoN25-7-4 (1,4410)

SAF 2507(Sandvik/Avesta)

Uranus 47N(CLI)

Литая сталь

A890 Gr5A, 6A

ACI CE3MN

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Офшорные нефтегазовые конструкции, химическая и нефтехимическая обрабатывающая промышленность, трубопроводы, коллекторы, бумажная промышленность и т. q.

Предварительный подогрев обычно не требуется. Рекомендуется соблюдать температуру перед наложением следующего слоя (не выше 150°). Допустимое тепловложение составляет 1,0-2,0 кДж/мм в зависимости от толщины материала, но большинство кодексов ограничивает максимальный порог до 1,5 от 1,75 кДж/мм.

ВИЛЫ УПДКОВКИ

По запросу возможна поставка в других видах упаковки

LNM 2507: 8ep. C-RU01-01/02/16

S32750, S32760

J93404

LNM 309LSi

AWS A5.9	ER309LSi	A-Nr	8	Mat-Nr	1,4332
ISO 14343-A	G 23 12 LSi	F-Nr	6		
		0606 FM	5		

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки соединений между нержавеющей и углеродистой сталью Имеет повышенное содержание кремния для иличшения смачивания

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Смешанный газ Аг+ 0.5-5% СО M13 Смешанный газ Аг+ 0,5-3% О

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DB	DNV	GL	LR	TÜV
-	4					

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Мо
0,02	1,8	0,8	23,3	13,8	0,14

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная вязкость no Шарпи (Дж)		
	283	Состояние	текучести (МПа)	(M∏a)	[%]	-20°C	+20°C	
Средние значения	я М12	ПС	436	582	37	80	87	

СВАРИВАЕМЫЕ МА	ТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	Mat. Nr	ASTM	UNS	
Коррозиестойкая пла	кированная сталь				
	X2CrNiN18-10	1,4311	(TP)304LN	S30453	
	X2CrNi19-11	1,4306	(TP)304L	S30403	
			CF-3	J92500	
	X4CrNi18-10	1,4301	(TP)304	S30400	

Разнородные соединения (между углеродистой и нержавеющей сталью) Наплавка на низкоуглеродистые и низколегированные стали

Диаметр (мм)	0,8	1,0	1,2	1,6
Kaccema BS300, 15 kz	Χ	Χ	X	Χ
Бочка Accutrak® 250 kг		Χ	Χ	

По запросу возможна поставка в других видах упаковки

LNM 309LSi: 8ep. C-RU22-01/02/16

КЛАССИФИКАЦИЯ

 AWS A5.9
 ER307*
 A-Nr
 8
 Mat-Nr
 1,437

 ISO 14343-A
 G 18 8 Mn
 F-Nr
 6

 * самый близкий класс
 9606 FM
 5

ОБШЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки аустенитных и ферритных нержавеющих трудносвариваемых сталей Часто используется в качестве промежуточного слоя при наплавке

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175

PA/1G

 M12
 Смешанный газ Ar+ 0,5-5% CO₂

 M13
 Смешанный газ Ar+ 0,5-3% O₂

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

химический состав проволоки (%)

C	Mn	Si	Cr	Ni	
0,07	7,1	0,8	18,6	8,0	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный			Предел	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)
	283	Состояние	текучести (МПа)	(МПа)	[%]	+20°C
Средние значения	M12	ПС	400	630	40	80

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Различные марки стали, например:

- броневые плиты;
- закаливаемые и трудносвариваемые марки стали;
- · немагнитные стали;
- самоипрочняющиеся аустенитные марганцевые стали;
- разнородные соединения (между сталями типа СМп и нержавеющими сталями);
- · системы выхлопа

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2
Kaccema BS300, 15 kz	Χ	Χ	Χ
Бочка Accutrak® 250 kг			X

По запросу возможна поставка в других видах упаковки

LNM 307 Bep. C-RU23-01/02/16

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNM 304H

AWS A5.9 ER308H A-Nr 8 Mat-Nr ISO 14343-A G 19 9 H F-Nr 6

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки аустенитных сталей CrNi

Особенно хорошо nogxogum для эксплуатации при высокой температуре (до 730°С)

9606 FM 5

Малая чувствительность к дисперсионному уплотнению интерметаллических фаз

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

Смешанный газ Аг+ 0,5-5% СО Смешанный газ Ar+ 0,5-3% 0, M13

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Мо
0.07	1.9	0.4	20	9.2	0.1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел	Предел	
	2a3	Состояние	текучести (МПа)	прочности (МПа)	Отн. удлинение (%)
Среание значения	M12	ПС	370	590	34

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
Среднее содержание углерода (С > 0,03%)				302
X4CrNi18-10		1,4301	(TP)304	S30400
			(TP)304H	S30409
	G-X5CrNi19-10	1,4308	CF 8	J92600
		1,4948		

Диаметр (мм)	1,0	1,2	
Kaccema BS300, 15 kz	Х	Χ	

По запросу возможна поставка в других видах упаковки

LNM 304H :8ep. C-RU23-01/02/16

LNM 309H

КЛАССИФИКАЦИЯ

AWS A5.9 ER309 A-Nr 8 Mat-Nr 1,482 F-Nr 6 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для эксплуатации в условиях высокой температуры, например, промышленных печах Высокая устойчивость к окислению при температуре до 1050°C

Высокое содержание углерода

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

 M12
 Смешанный газ Ar+ 0,5-5% CO₂

 M13
 Смешанный газ Ar+ 0,5-3% O₂

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Мо
0.08	1.8	0.4	23.6	13.2	0.1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Зашитный		Предел	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)
	2a3	Состояние	текучести (МПа)	(МПа)	(%)	+20°C
Средние значения	M12	ПС	400	640	35	110

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
		G-X30CrSi6	1,4710		
	X10CrAl7		1,4713	502	
	X10CrAl13		1,4724	410/414-TP405-CA15	
		G-X40CrSi13	1,4729		
		G-X40CrSi17	1,4740		
	X10CrAl18		1,4742	430-TP430-CB30	
	X10CrAl24		1,4762	TP443	
		G25CrNiSi18-9	1,4825		J92502
		G-X40CrNiSi22-9			
	X15CrNiSi20-12		1,4828	TP309	S30900
		G-X25CrNiSi20-14	1,4832		
	X12CrNiTi18-9		1,4878		

BNUPLAUVKUBKI

 Диаметр (мм)
 1,0
 1,2

 Kaccema BS300, 15 kz
 X
 X

По запросу возможна поставка в других видах упаковки

LNM 309H; Bep. C-RU22-01/02/16

КЛАССИФИКАЦИЯ

AWS A5.9	ER310	A-Nr	9	Mat-Nr	1,4812
ISO 14343-A	G 25 20	F-Nr	6		
		9606 FM	5		

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки жаростойких сталей с содержанием Cr и CrNi (25%Cr-20%Ni) Высокая устойчивость к окислению и расслаиванию при температуре до 1100°C

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

3 VIII NTHLIE FA3 LI (UU ISO 14176)

 M12
 Смешанный газ Ar+ 0,5-5% CO₂

 M13
 Смешанный газ Ar+ 0,5-3% O₃

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Мо
0.1	1.7	0.45	26	21	0.1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) +20°C
Средние значения	M12	ПС	355	610	35	110

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
	X10CrAl24		1,4762		
		G-X25CrNiSi18-9	1,4825		
		G-X40CrNiSi22-9	1,4826		
	X15CrNiSi20-12		1,4828		
		G-X25CrNiSi20-14	1,4832		
	X15CrNiSi25-20		1,4841	310S	S31008
				CK20	J94202
	X12CrNi25-21		1,4845		
		G-X40CrNiSi 25-20	1.4848	HK40	

ΒΝΠΡΙ ΛΠΨΚΟΒΚΛ

Диаметр (мм)	1,0	1,2
Kaccema BS300, 15 kz	Х	Х

По запросу возможна поставка в других видах упаковки

LNM 310; Bep. C-RU23-01/02/16

КЛАССИФИКАЦИЯ

 AWS A5.9
 ER312
 A-Nr
 8
 Mat-Nr
 1,4337

 ISO 14343-A
 G 29 9
 F-Nr
 6

 9606 FM
 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки жаростойких сталей с содержанием Cr и CrNi (25%Cr-20%Ni) Высокая устойчивость к окислению и расслаиванию при температуре до 1100°C

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАШИТНЫЕ ГАЗЫ (ПО ISO 14175

 M12
 Смешанный газ Ar+ 0,5-5% CO₂

 M13
 Смешанный газ Ar+ 0,5-3% 0,

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

C	Mn	Si	Cr	Ni
0,1	1,8	0,4	30,7	8,9

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный	_	Предел	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)
	2a3	Состояние	текучести (МПа)	(МПа)	(%)	+20°C
Средние значения	M12	ПС	355	610	35	110

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
	X10CrAl24		1,4762		
		G-X25CrNiSi18-9	1,4825		
		G-X40CrNiSi22-9	1,4826		
	X15CrNiSi20-12		1,4828		
		G-X25CrNiSi20-14	1,4832		
	X15CrNiSi25-20		1,4841	310S	S31008
				CK20	J94202
	X12CrNi25-21		1,4845		
		G-X40CrNiSi 25-20	1,4848	HK40	

BNUPI AUVKUBKIN

Диаметр (мм)	1,0	1,2
Kaccema BS300, 15 kz	Х	Х

По запросу возможна поставка в других видах упаковки

LNM 312: Bep. C-RU02-01/02/16

LNM NiCro 31/27

AWS A5.9 ER383 A-Nr Mat-Nr 1,4563 ISO 14343-A G 27 31 4 Cu L F-Nr б 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки сталей NiCrMo с добавлением Си

Очень высокая устойчивость к общей, питтинговой и механической коррозии в кислотных и щелочных средах

Особенно хорошо подходит для применения в условиях воздействия фосфорной и серной кислоты

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

Инертный газ Аг (100%) 13 Инертный газ Ar+ 0,5-95% Не

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Ni	Cr	Mo	Cu
0,01	1,6	1,0	31	27	3,5	1,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный	Состояние	Предел mekyчести (МПа)	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
	283			(МПа)	(%)	+20°C	-196°C
Средние значения	11	ПС	440	640	38	100	50

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/2	Mat. Nr	ASTM/ACI	UNS
Стали CrNiMo и N	liCrMo с добавлением меди			
	X1NiCrMoCu31-27-4	1,4563		N08028
	X1NiCrMoCu25-20-5	1,4539	Сплав 904L	N08904
	DIN 17744			
	NiCr 21 Mo	2,4858	Сплав 825	N08825
	NiCr 21 Mo 6Cu	2,6410	Сплав 825 h Мо	N08821
	X3NiCrCuMoTi27-23	1,4503		

Диаметр (мм)	1,2
Kaccema BS300, 15 kz	Х

По запросу возможна поставка в других видах упаковки

LNM NiCro 31/27: 8ep. C-RU23-01/02/16

LNM NiCro 60/20

AWS A5.14 ERNiCrMo-3 A-Nr Mat-Nr 2,4831

ISO 18274 S Ni 6625 (NiCr22Mo9Nb) F-Nr 43

9606 FM 6

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки никелевых сплавов

Чрезвычайно высокая устойчивость к различным формам коррозии

Высокое содержание хрома и молибдена

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

Инертный газ Аг (100%) 13 Инертный газ Ar+ 0,5-95% Не

химический состав проволоки (%)

_				_			_	
C	Mn	Si	Ni	Cr	Mo	Nb	Fe	
0,02	0,06	0.07	64	21.9	q	3.5	0.4	
0,02	0,00	0,07	0.	2.,5	_	3,3	٥, .	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный	ащитный газ Состояние	Предел текучести (МПа)	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
z	cas		птекучестти (міта)	(МПа)	(%)	+20°C	-196°C
Средние значения	l1	ПС	520	770	34	80	60

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Марки сплавов Ni	DIN/EN	Mat. Nr	ASTM/ACI	UNS				
Сплав 625 типа NiCrMo и другие марки жаростойкой стали NiCrMo для эксплуатации в условиях высокой коррозии								
	X1NiCrMoCuN25-20-6 1,4529 Cnna8 925 N08925							
	X1NiCrMoCu25-20-5	1,4539	Сплав 904L	N08904				
	X1CrNiMoCuN20-18-7	1,4547	Сплав 254	S31254				
	X2NiCrAlTi32-20	1,4558	Сплав 800L	N08800				
	G-X10NiCrNb32-20	1,4859						
	X10NiCrAlTi32-20	1,4876	Сплав 800/800Н	N08800/-10				
	NiCr22Mo6Cu	2,4618	Сплав G	N06007				
	NiCr22Mo7Cu	2,4619	Сплав G-3	N06985				
	NiCr21Mo6Cu	2,4641	Сплав 825hMo	N08821				
	NiCr20CuMo	2,4660	Сплав 20	N08020				
	NiCr15Fe	2,4816	В168-Сплав 600	N06600				
	NiCr22Mo9Nb	2,4856	В443-Сплав 625	N06625				
	NiCr21Mo	2,4858	В424-Сплав 825	N08825				
	NiCr20Ti	2,4951	Сплав 75	N06075				
	NiCr20TiAl	2,4952	Сплав 80А	N07080				
Низколегированная ст	таль							
	10Ni14 (3,5% Ni)	1,5637	ASTM A333 Copm 3	-				
	12Ni19, X12Ni5	1,5680	-	K41583				
Стали с 9-процентнь	им содержанием Ni для резе	ервуаров СПГ						
	X8Ni9	1,5662	A353/A353M	-				
	X8Ni9 / 8%Ni	1,5662	A553/A553M Tun I/II	- / K71340				

Диаметр (мм)	0,8	1,0	1,2
Kaccoma RS300 15 ka	Υ	×	Y

LNM NiCro 60/20: 8ep. C-RU23-01/02/16

LNM NiCro 70/19

AWS A5.14 FRNiCr-3 A-Nr Mat-Nr

ISO 18274 S Ni 6082 (NiCr20Mn3Nb) F-Nr 43 9606 FM 6

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки сплавов на основе никеля, разнородных соединений и плакировки Устойчивость к окислению и высокая ударная вязкость при низких температурах

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ASTM/ACI

UNS

Инертный газ Ar (100%) 13 Инертный газ Ar+ 0.5-95% Не

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Ni	Cr	Nb	Cu	Fe
0.03	3,1	0.08	72,5	20,5	2,6	0,01	8,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

BS3076

	Защитный		Предел	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
	2a3	Состояние	текучести (МПа)	(МПа)	[%]	+20°C	-196°C
Средние значения	11	ПС	390	640	35	150	50

Mat. Nr

DIN 17744/17465

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Марки сплавов Ni

···upita cibiacco iti	555070	D		7.57.1-117.161	0.15
		SEW 595		B366	
Сплавы на основе ник	еля с высоким содеря	канием хрома для эксплуатац	ии в условиях умер	енной и сильной коррози	ıu
	Na 14	NiCr15Fe	2,4816	В168-Сплав 600	N06600
		LC-NiCr15Fe	2,4817	Сплав 600L	N06600
		NiCr20Ti	2,4951	Сплав 75	
		NiCr20TiA1	2,4952	Сплав 80А	N07080
	Na 15	X10NiCrAlTi32-20	1,4876	Сплав 800/800Н	N0800/10
		NiCr23Fe	2,4851	Сплав 601(Н)	N06601
	Na 17	X12NiCrSi36-16	1,4864	330	N08330
		G-X40NiCrNb35-25	1,4852		
		G-X40NiCrSi35-25	1,4857	HP	

Соединения между нелегированными и низколегированными жаропрочными и нержавеющими сталями

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Необходимо ограничить тепловложение (HI<1,5 kДж/мм) и соблюдать температуру наложения следующего слоя (Ті<150°С)

Диаметр (мм) 1.0 1,2

Kaccema BS300, 15 kz Χ Χ

По запросу возможна поставка в других видах упаковки

LNM NiCro 70/19: 8ep. C-RU23-01/02/16

LNM NiTi

AWS A5.14 A-Nr Mat-Nr 2,4155 ISO 18274 S Ni 2061 (NiTi3) F-Nr 41

PE/4G

9606 FM 6

PB/2F

Проволока сплошного сечения для сварки чистого никеля и никелевых сплавов, а также соединения этих материалов с нелегированной/низколегированной сталью

Также nogxogum для наплавки на углеродистые стали

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME

PD/4F

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

11 Инертный газ Аг (100%) 13 Инертный газ Ar+ 0,5-95% Не

PF/3Gu

PC/2G ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

PA/1G

химический состав проволоки (%)

С	Mn	Si	Ni	Ti	Fe
0,02	0,4	0,2	бал.	3,1	0,06

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная вязкость no Шарпи (Дж)
	283	Состояние	текучести (МПа)	(M∏a)	[%]	+20°C
Средние значения	11	ПС	250	460	35	120

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классификац	ия DIN	Mat. Nr	ASTM/ACI	
Ni 99,6	2,4060			
Ni 99,8	2,4050			
Ni 99,6Si	2,4056			
Ni 99,4Fe	2,4062			
Ni 99,2	2,4066	Сплав 200		
LC-Ni 99	2,4068	Сплав 201		
LC-Ni 99,6	2,4061	Сплав 205		
NiMn 10	2,4108			
NiMn 5	2,4116			

Диаметр (мм) 1,2 Kaccema BS300, 15 kz Χ

По запросу возможна поставка в других видах упаковки

LNM NiTi: 8ep. C-RU23-01/02/16

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На caŭme www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNM NiFe

AWS A5.15 ENiFe-CI A-Nr Mat-Nr 2,4560

ISO 1071 S NiFe-CI F-Nr

9606 FM 6

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки стыковых соединений и наплавки на чугун

Подходит для сварки разнородных соединений между чугуном и сталью

Твердость около 200НВ

Оптимальные характеристики сварки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Аг (100%)

13 Инертный газ Ar+ 0,5-95% Не

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Ni	Cu	Fe
0,05	0,83	0,14	55	0,4	бал.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Твердость

2 слоя. ПС около 200 НВ

Диаметр (мм) 1,2 Kaccema BS300, 15 kz Χ

По запросу возможна поставка в других видах упаковки

LNM NiFe: 8ep. C-RU22-01/02/16

LNM CuAl8

AWS A5.7 ERCuAI-A1 A-Nr

EN 14640 S Cu 6100 (CuAl8) F-Nr Mat-Nr 2,0921

9606 FM

36

ОБШЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки медно-алюминиевых сплавов, например, алюминиевой бронзы Высокая устойчивость к коррозии и изнашиванию

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

PA/1G

Инертный газ Аг (100%) 13 Инертный газ Ar+ 0,5-95% Не

химический состав проволоки (%)

Cu	Αl	Mn
бал.	8	0,3

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

				Предел		Твердость
	Защитный		Предел	прочности	Отн.	
	2a3	Состояние	текучести (МПа)	(МПа)	удлинение (%)	HB
Средние значения	l1	ПС	185	430	30	95

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Сплавы меди	Стандарт	Tun	Mat. Nr
Медно-алюминиевые ковкие сплавы	DIN 17665	CuAl5As	2,0918
		CuAl8	2,0920
Медно-алюминиевые литые сплавы	DIN 1714	G-CuAl8Mn	2,0962

Диаметр (мм)	0,8	1,0	1,2	1,6	
Kaccema B300, 12 kz	Х	Χ	Χ	Χ	

По запросу возможна поставка в других видах упаковки

LNM CuAl8: 8ep. C-RU23-01/02/16

LNM CuAl8Ni6

EN ISO 24373

AWS A5.7

S Cu 6328 (CuAl9Ni5)

A-Nr F-Nr

Mat-Nr 2,0923

9606 FM

ОБШЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки литых и ковких сталей, а также сплавов никель-алюминий-бронза Высокая устойчивость к коррозии и изнашиванию (образованию пустот)

37

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%) 11 13 Инертный газ Ar+ 0,5-95% Не

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Cu	Al	Mn	Ni	Fe
бал.	9.0	2.5	5.0	4.0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

				Предел	Отн.	Твердость	
	Защитный		Предел	прочности	удлинение		
	283	Состояние	текучести (МПа)	(МПа)	(%)	HB	
Средние значения	l1	ПС	380	500	20	150	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Сплавы меди, например, с алюминием и сплавы медь-никель-алюминий с содержанием алюминия 7-9%

Типичное применение:

- корабельные конструкции и винты;
- клапаны для электростанций;
- предохранительные сетки;
- насосы для перекачки нефтепродуктов;
- картеры редукторов винтов;
- судовые двигательные установки;
- трубопроводы

Диаметр (мм) 1,6

Kaccema BS300, 12 kz

Χ По запросу возможна поставка в других видах упаковки

LNM CuAl8Ni6: 8ep. C-RU05-01/02/16

LNM CuNi30

КЛАССИФИКАЦИЯ

AWS A5.7 ERCuNi

EN 14640 S Cu 7158 (CuNi30)

A-Nr F-Nr Mat-Nr 2,0837

F-Nr 34 9606 FM -

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для сварки медно-никелевых сплавов с содержанием никеля 10-30%

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

I1 Инертный газ Ar (100%)

I3 Инертный газ Ar+ 0,5-95% He

химический состав проволоки (%)

Cu	Ni	Mn
бал.	31	0,8

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

				Предел	Отн.	Твердость
	Защитный		Предел	прочности	удлинение	
	2a3	Состояние	текучести (МПа)	(МПа)	(%)	НВ
Средние значения	11	ПС	220	380	30	70

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Сплавы меди	Стандарт	Tun		Mat. Nr	UNS
Медно-никелевые кованые сплавы					
DIN 17664	CuNi10Fe1Mn		2,0872	C 70600	
	CuNi30Mn1Fe		2,0882	C 71500	
	CuNi30Fe2Mn2		2,0883	C 71600	
Медно-никелевые литые сплавы					
DIN 17658	G-CuNi10		2,0815		
	G-CuNi30		2,0835		

ΒΝΠΡΙ ΛΠΨΚΟΒΚΛ

Диаметр (мм)	1,2
Kaccema BS300, 15 kz	V

По запросу возможна поставка в других видах упаковки

LNM CuNi30: 8ep. C-RU25-01/02/16

LNM CuSn

КЛАССИФИКАЦИЯ

AWS A5.7 ERCu

EN 14640

Cu 1898 (CuSn1)

A-Nr

Mat-Nr 2,1006

F-Nr 31 9606 FM -

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения для дуговой сварки меди в защитном газе

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

DA 44 C

I1 Инертный газ Ar (100%)
I3 Инертный газ Ar+ 0,5-95% Не

химический состав проволоки (%)

	Cu	Mn	Si	Sn	Ni
·	бал.	0.2	0.3	0.8	0.1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)								
	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Твердость НВ		
Средние значения	l1	ПС	100	220	60	35		

СВАРИВАЕМЫЕ МАТЕРИАЛЫ Сплавы меди Tun Mat. Nr Стандарт Медь DIN 1787 OF-Cu 2,0040 SE-Cu 2,0070 SW-Cu 2,0076 SF-Cu 2,0090 Ковкие низколегированные медные сплавы DIN 17666 CuFe2P 2,1310 CuSP 2,1498 CuTeP 2,1546

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,0	1,2
Kaccema B300, 12 kz	Χ	Х

LNM CuSn: 8ep. C-RU25-01/02/16

LNM CuSi3

КЛАССИФИКАЦИЯ

AWS A5.7 ERCuSi-A A-Nr - Mat-Nr 2,14

EN ISO 24373 S Cu 6560 (CuSi3Mn1) **F-Nr 9606 FM**

ОБШЕЕ ОПИСАНИЕ

Проволока сплошного сечения для дуговой сварки низколегированных медных сплавов

Устойчивость к высоким температирам и коррозии

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

I1 Инертный газ Ar (100%)
I3 Инертный газ Ar+ 0,5-95% Не

химический состав проволоки (%)

Cu	Sn	Mn	Si	Zn
бал.	0,1	1,0	3,0	0,1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Твердость	Ударная вязкость по Шарпи (Дж)
				(IVII IA)	[70]	HB	+20°C
Средние значения	l1	ПС	120	350	40	95	60

32

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Медь, низколегированные медные и медно-цинковые сплавы

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2	
Kaccema S200, 5 kz	Χ			
Kaccema BS300, 12 kz	Х	Χ	Χ	

По запросу возможна поставка в других видах упаковки

LNM CuSi3: Bep. C-RU03-01/02/16

A-Nr

ISO 18273 S AI 1070 (AI99.7)

F-Nr 21 3.0259 Mat-Nr

ОБЩЕЕ ОПИСАНИЕ

Высокая устойчивость к химической коррозии и высокое сопротивление растрескиванию

Хорошо подходит для сварки металлов на основе алюминия с небольшим содержанием других элементов сплава или без сплава в энергетической и химической отраслях

Как и все остальные сварочные проволоки серии 1xxx, Al 1070 — одна из самых мягких алюминиевых проволок MIG, поэтому нужно уделить особое внимание ее правильной подаче

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Расход газа

Инертный газ Аг (100%)

14,2 - 23,6 л/мин.

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

мин. 99,7 макс. 0,2 макс. 0,25 макс. 0,04 макс. 0,03 макс. 0,03 макс. 0,04 макс. 0,05 макс. 0,03 макс. 0,0003

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,03%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	20-30	65-80	29-35

Металлизация

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 647 - 658°C Плотность : okoлo 2700 kг/м³

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Соединение сплавов серии 1ххх между собой или с другими сплавами

Электротехнические работы, химическая отрасль,

Электрические шины Электрошкафы строительная и пищевая отрасли

Теплообменники

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2	1,6	2,4
Пласт. kaccema S100, 0.5 kz	Χ	Х	Х	Х	
Kaccema S300, 7.26 kz	Χ	X	Χ	Χ	Χ
Kaccema BS300, 7.0 kz	Χ	Χ	Χ	Χ	Χ
Дерев. kamywka 23-27 kz		Χ	Χ	Χ	Χ
AccuPak, 125 kz			Χ	X	
Дерев. kamywka, 159 kг		Χ	Χ	Χ	Χ
Дерев. kamywka, 227 kz		Χ	Χ	Χ	Χ

последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

Superglaze® MIG 1070: Bep. C-RU02-01/02/16

LINCOLN **ELECTRIC** THE WELDING EXPERTS

AWS 5.10 A-Nr ISO 18273 S AI 1100 (AI99.0Cu) F-Nr EN 573.3 EN AW-Al99.0Cu

ОБЩЕЕ ОПИСАНИЕ

Высокая устойчивость к химической коррозии и высокое сопротивление растрескиванию

Хорошо подходит для сварки металлов на основе алюминия с небольшим содержанием других элементов сплава или без сплава в энергетической и химической отраслях

Как и все остальные сварочные проволоки серии 1ххх, АІ 1100 — одна из самых мягких алюминиевых проволок МІG, поэтому нужно уделить особое внимание ее правильной подаче

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

Инертный газ Ar (100%) Расход газа 14,2 - 23,6 л/мин.

химический состав проволоки (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
мин. 99,0	Α	Α	0,05-0,20	макс. 0,05	0	0	макс. 0,10	0	макс. 0,0003	

Примечание: A = Si+Fe макс. 0,95

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	20-30	65-80	29-35

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 647 - 658°C Плотность : okoлo 2700 kг/м³

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Соединение сплавов серии 1ххх между собой или с другими

сплавами

Электрические шины

Электрошкафы

Теплообменники Металлизация

Электротехнические работы, химическая отрасль,

строительная и пищевая отрасли

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2	1,6	2,4	
Пласт. kaccema S100, 0.5 kг	Χ	Χ	Χ	Х		
Kaccema S300, 7.26 kz	Χ	Χ	Χ	Χ	X	
Kaccema BS300, 7.0 kz	Χ	Χ	Χ	Χ	X	
Дерев. kamywka 23-27 kг		Χ	Χ	Χ	X	
AccuPak, 125 kz			Χ	X		
Дерев. kamyшka, 159 kг		Χ	Χ	Χ	X	
Дерев, kamuwka, 227 kz		Х	Х	Χ	Х	

Superglaze® MIG 1100: 8ep. C-RU02-01/02/16

AWS 5.10 FR2319 A-Nr ISO 18273 S Al 2319 (AlCu6Mn7rTi) F-Nr 25 EN 573.3 EN AW-AlCu6Mn Mat-Nr

ОБЩЕЕ ОПИСАНИЕ

В основном использиется в сличаях, когда сварные соединения могит пройти термическию обработки для повышения прочности Обеспечивает большую прочность и вязкость, чем наполняющие сплавы серии 4ххх при сварке сплавов серии 2ххх

Обеспечивает высокую стойкость к коррозионному растрескиванию в условиях высокой температуры

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

Инертный газ Ar (100%) Расход газа 14.2 - 23.6 л/мин.

химический состав проволоки (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	макс. 0,2	макс. 0,3	5,8-6,8	0,2-0,4	макс. 0,02	-	макс. 0,1	0,1-0,2	макс. 0,0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	11	ПС	160-180	240-270	около 3

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 543 - 643°C Плотность : okoлo 2768 kг/м³

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Авиационная отрасль Космическая отрасль

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2	1,6
Kaccema S300, 7.26 kz	Χ	Χ	Χ	Χ
Kaccema BS300, 7.0 kz	Χ	Χ	Χ	Χ

По запросу возможна поставка в других видах упаковки

Superglaze® MIG 2319 Bep. C-RU01-01/02/16

КЛАССИФИКАЦИЯ

 AWS 5.10
 ER4043
 A-Nr

 ISO 18273
 S AI 4043A (AISi5)
 F-Nr
 23

 EN 673.3
 EN AW-AISi5
 Mat-Nr
 3.2245

ОБШЕЕ ОПИСАНИЕ

Предназначается для сварки пригодных для термической обработки сплавов, особенно сплавов серии 6ххх

Обладает более низкой температурой плавления и текучестью по сравнению со сплавами серии 5ххх

Низкая чувствительность к трещинам при сварке сплавов серии бххх

Хорошо подходит для эксплуатации в условиях постоянно повышенной температуры, т. е. выше 65℃

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

I1 Инертный газ Ar (100%) **Pacxog газа** 14,2 - 23,6 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS DB TÜV

химический состав проволоки (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	4,5-6,0	макс. 0,6	макс. 0,3	макс. 0,05	макс. 0,05	-	макс. 0,1	макс. 0,2	макс. 0,0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	20-40	120-165	3-18

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 573 - 625°С **Плотность** : около 2680 kz/м3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Сварка сплавов серии бХХХ и большинства литейных сплавов Автомобильные детали, например, кузова и приводные валы

Рамы велосипедов

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	0,9	1,0	1,2	1,6	2,4	По запросу возможна поставка в других видах ynakoвku
Пласт. kaccema S100, 0.5 kг	Χ		Χ	Χ	Χ		
Kaccema S300, 7.26 kz	X		Χ	X	Χ	Χ	
Kaccema BS300, 7.0 kz	Χ		Χ	Χ	X	Χ	
Дерев. kamyшka 23-27 kг			Χ	Χ	X	Χ	
Gem-Pak, 125 kz		Χ		X	Χ		
Дерев. kamyшka, 159 kг			Χ	Χ	X	Χ	
Дерев. kamyшka, 227 kг			Χ	X	Χ	Χ	Superglaze® MIG 4043: Bep. C-RU24-01/02/16

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте достипны спецификации безопасности.

AWS 5.10 FR4047 A-Nr ISO 18273 S AI 4047 (AISi12) F-Nr 23 FN AW-AlCu6Mn EN 573.3 3.2585 Mat-Nr

ОБЩЕЕ ОПИСАНИЕ

Более низкая температура плавления и более высокая текучесть по сравнению с проволоками серии 4043 Может использоваться вместо серии 4043 при необходимости в более высоком содержании кремния в наплавленном металле, меньшем образовании горячих трещин и большей прочности на срез при сварке таврового соединения Может использоваться в качестве припоя

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%) Pacxog 14,2 - 23,6 л/мин.

газа

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	11-13	макс. 0,8	макс. 0,30	макс. 0,15	0,10	0	макс. 0,20	0	макс. 0,0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	60-80	130-190	5-20

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

: 573 - 585°C Интервал плавления Плотность : okono 2680 k2/M3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Сварка сплавов серии 6XXX и большинства литейных сплавов Автомобильные детали, радиаторы и системы кондиционирования воздуха

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2	1,6	2,4	По запросу возможна поставка в других видах упаковки
Пласт. kaccema S100, 0.5 kг	Χ	Χ	Χ	Χ		
Kaccema S300, 7.26 kz	X	Χ	Χ	X	Χ	
Kaccema BS300, 7.0 kz	X	Χ	Χ	X	Χ	
Дерев. kamywka 23-27 kz		Χ	Χ	X	Χ	
Accupak, 136 kz			Χ	Х		
Дерев. kamywka, 159 kг		Χ	Χ	Х	Χ	
Neneß, kamuurka, 227 kz		X	Χ	Χ	Χ	Superglaze® MIG 5087: 8ep. C-RU03-01/02/16

КЛАССИФИКАЦИЯ

A-Nr

 ISO 18273
 S AI 5087 (AIMg4,5MnZr)
 F-Nr
 22

 EN 573,3
 EN AW-AIMg4,5MnZr
 Mat-Nr
 3,3546

ОБШЕЕ ОПИСАНИЕ

Создана для использования в тех случаях, когда требования к наплавленному металлу по пределу прочности совпадают с требованиями к магниевым сплавам

Предназначается для сплавов с содержанием магния до 5%

Содержание циркония обеспечивает мелкозернистию структуру металла шва

Низкая склонность к образованию усадочных трещин

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)Инертный газ Ar+ 0,5-95% Не

Расход газа 14,2 - 23,6 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

GL LR DB TÜV WIWeb

+* +* + + + + *(Верно для газов II и I3)

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Zr	Ве
бал.	макс. 0,25	макс. 0,4	макс. 0,05	0,7-1,1	4,5-5,2	0,05-0,25	макс. 0,25	макс. 0,15	0,10-0,20	макс. 0,0003

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	11	ПС	125-140	275-300	17-30

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 568 - 638°С **Плотность** : около 2660 kг/м³

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Строительство и ремонт морских сооружений Железнодорожная отрасль Криогенные резервуары Автомобильная отрасль

Судостроение и иные работы с высокопрочным конструкционным Автомобильные прицепы и офшорные сооружения

алюминием

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2	1,6	2,4	По запросу возможна поставка в других видах упаковки
Пласт. kaccema S100, 0.5 kг	Х	Χ	Χ	Χ		
Kaccema S300, 7.26 kz	X	Χ	Χ	X	Χ	
Kaccema BS300, 7.0 kz	X	Χ	Χ	X	Χ	
Дерев. kamywka 23-27 kг		Χ	Χ	X	Χ	
Accupak, 136 kz			Χ	X		
Дерев. kamywka, 159 kг		Χ	Χ	Χ	Χ	
Дерев. kamyшka, 227 kг		Χ	Χ	Χ	Χ	Superglaze® MIG 5087: 8ep. C-RU03-01/02/16

Hackoльko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

КЛАССИФИКАЦИЯ

 AWS 5.10
 ER5183
 A-Nr

 ISO 18273
 S AI 5183 (AIMg4,5Mn0,7(A))
 F-Nr
 22

 EN 573,3
 EN AW-AIMg4,5Mn
 Mat-Nr
 3,3548

ОБШЕЕ ОПИСАНИЕ

Создана для использования в тех случаях, когда требования к наплавленному металлу по пределу прочности совпадают с требованиями к магниевым сплавам

. Предназначается для сплавов 5083 u 5654

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

 I1
 Инертный газ Ar (100%)

 I3
 Инертный газ Ar+ 0,5-95% Не

Расход газа 14,2 - 23,6 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS GL LR DB TÜV DNV BV WIWeb

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	макс. 0,4	макс. 0,4	макс. 0,1	0,5-1,0	4,3-5,2	0,05-0,25	макс. 0,25	макс. 0,15	макс. 0,0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	11	ПС	125-165	270-290	16-25

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 568 - 638°C **Плотность** : около 2660 kz/м³

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Строительство и ремонт офшорных сооружений

Криогенные резервуары

Судостроение и иные работы с высокопрочным

конструкционным алюминием

Военная промышленность

Железнодорожная и автомобильная промышленность Автомобильные прицепы и офшорные сооружения

виды упаковки

виды упаковки						
Диаметр (мм)	0,8	1,0	1,2	1,6	2,4	По запросу возможна поставка в других видах ynakoвku
Пласт. kaccema S100, 0.5 kг	Х	Х	Х	Х		
Kaccema S300, 7.26 kz	Χ	Χ	Χ	Χ	Χ	
Kaccema BS300, 7.0 kz	Χ	Χ	Χ	Χ	Χ	
Дерев. kamywka 23-27 kz		Χ	Χ	Χ	Χ	
Accupak, 136 kz				X		
Дерев. kamywka, 159 kz		X	Х	Χ	Х	
Neneß kamuurka 227 ka		X	X	X	X	Superglaze® MIG 5183: 8ep. C-RU24-01/02/16

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте достипны спецификации безопасности.

AWS 5.10 FR5356 A-Nr ISO 18273 S AI 5356 (AIMg5Cr(A)) F-Nr 22 EN 573,3 EN AW-AIMg5 Mat-Nr 3,3556

ОБШЕЕ ОПИСАНИЕ

Сварочный материал общего назначения для сплавов 5ХХХ с пределом прочности наплавленного металла до 276 МПа После анодирования цвет шва совпадает с цветом основного металла

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Аг (100%) Инертный газ Ar+ 0,5-95% Не

Расход газа 14,2 - 23,6 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

LR DB ΤÜV DNV BV

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	макс. 0.25	макс. 0.4	макс. 0.1	0,05-0,2	4.5-5.5	0,05-0,20	макс. 0.1	0.06-0.2	макс. 0.0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	110-120	240-296	17-26

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 562 - 633°C Плотность : 0k0n0 2640 k2/M3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Металлоконструкции в судостроении Автомобильная отрасль и автотрейлеры Хозинвентарь, резервиары для хранения Формованные панели грузовых автомобилей Автомобильные бамперы и стойки

Железнодорожная отрасль

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	0,9	1,0	1,2	1,6	2,4	По запросу возможна поставка в других
Пласт. kaccema S100, 0.5 kг	Х		Χ	Χ	Χ		Bugax ynakoßku
Kaccema S300, 7.26 kz	Χ		Χ	Χ	Χ	Χ	
Kaccema BS300, 7.0 kz	Χ		Χ	Χ	Χ	Χ	
Дерев. kamyшка 23-27 kг			Χ	Χ	Χ	Χ	
Gem-Pak, 136 kz		Χ		Χ	Χ		
Дерев. kamywka, 159 kг			Χ	Χ	Χ	Χ	
Дерев. kamywka, 227 kz			Χ	Χ	X	Χ	

Superglaze® MIG 5356; Bep. C-RU24-01/02/16

SuperGlaze® MIG 5356 TM™

КЛАССИФИКАЦИЯ

 AWS 5.10
 ER5356
 A-Nr

 ISO 18273
 S AI 5356 (AIMg5Cr)
 F-Nr
 22

ОБЩЕЕ ОПИСАНИЕ

Хорошее смачивание — отличается хорошим профилем и внешним видом шва, крайне важными для угловых и стыковых соединений с разделкой кромок при изготовлении автотрейлеров

Улучшенный контроль сварочной ванны

Максимальная производительность и стабильность дуги

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

 I1
 Инертный газ Ar (100%)

 I3
 Инертный газ Ar+ 0,5-95% Не

Расход газа 14,2 - 23,6 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DB TÜV CWB

химический состав проволоки (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Ве	
бал.	макс. 0,25	макс. 0,4	макс. 0,1	0,05-0,2	4,5-5,5	0,05-0,20	макс. 0,1	0,06-0,2	макс. 0,0008	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	110-120	240-296	17-26

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 562 - 633°C **Плотность** : около 2640 kz/м³

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Высокоскоростная сварка стыковых соединений формованных автомобильных панелей

Многопроходная сварка угловых и нахлесточных соединений материалов серии 6ХХХ

Роботизированная угловая сварка бензобаков с минимальной потребностью с чистке после сварки

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,9	1,2	1,6	По запросу возможна поставка в других видах упаковки
Kaccema BS300, 7.0 kz	Χ	Χ	Χ	
Gem-Pak, 136 kz	Χ	Χ	Χ	

Superglaze® MIG 5356TM™: 8ep. C-RU02-01/02/16

AWS 5.10 FR5556 A-Nr ISO 18273 S AI 5556 (AIMg5Mn1Ti) F-Nr 22

ОБЩЕЕ ОПИСАНИЕ

Повышенное содержание магния и марганца.

Образует наплавленный металл с пределом прочности, аналогичным сплавам серии 5ххх, например, 5083 и 5684 Наплавленный металл устойчив к воздействию морской воды

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Аг (100%) Инертный газ Ar+ 0,5-95% Не

Расход газа 14,2 - 23,6 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	макс. 0,25	макс. 0,4	макс. 0,1	0,5-1,0	4,7-5,5	0,05-0,20	макс. 0,25	0,05-0,20	макс. 0,0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	125-145	275-295	17-25

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 562 - 633°C Плотность : okoлo 2660 kг/м³

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Металлоконструкции в судостроении Хозинвентарь, резервиары для хранения Железнодорожная отрасль

Формованные панели грузовых автомобилей Автомобильные бамперы и стойки

Автомобильная отрасль и автотрейлеры

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1.2	1.6	2,4	По запросу возможна поставка в других видах упаковки
		.,0	-,-	.,,	-, .	
Пласт. kaccema S100, 0.5 kг	Х	Х	Х	Х		
Kaccema S300, 7.26 kz	X	Χ	Χ	Χ	Χ	
Kaccema BS300, 7.0 kz	Χ	Χ	Χ	X	Χ	
Дерев. kamywka 23-27 kг		Χ	Χ	X	Χ	
Accupak, 136 kz			Χ	X		
Дерев. kamywka, 159 kг		Χ	Χ	Χ	Χ	Superglaze® MIG 5556: Bep. C-RU02-01/02/16
Дерев. kamywka, 227 kz		Χ	Χ	Χ	Χ	Supergraze Milo 5556, 6ep. C*R002*0102/16

Hackonьko нам известно, все сведения в этих таблицах были верны на момент публикации. На caŭme www.lincolnelectric.ru Вы сможете найти самцю последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

SuperGlaze® MIG 5556A

КЛАССИФИКАЦИЯ

 ISO 18273
 S AI 5556A (AIMg5Mn)
 A-Nr

 EN 573,3
 EN AW AIMg5Mn
 F-Nr
 22

ОБШЕЕ ОПИСАНИЕ

Проволока с высоким содержанием магния

Химический состав способен обеспечить более высокий предел прочности, чем сплав 5356

Хорошая вязкость и улучшенная стойкость к образованию трещин

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

I1 Инертный газ Ar (100%)I3 Инертный газ Ar+ 0,5-95% Не

Расход газа 14,2 - 23,6 л/мин.

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Ве	
бал.	макс. 0,25	макс. 0,4	макс. 0,1	0,6-1,0	5,0-5,5	0,05-0,20	макс. 0,2	0,05-0,20	макс. 0,0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	125-140	275-300	15-17

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 562 - 633°C **Плотность** : 0kg/ng 2660 kg/м³

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Авиационная и военная промышленность

ВИДЫ УПАКОВКИ

Диаметр (мм)	0,8	1,0	1,2	1,6	2,4
Пласт. kaccema S100, 0.5 kz	Х	Χ	Χ	Χ	
Kaccema S300, 7.26 kz	X	Χ	Χ	Χ	Χ
Kaccema BS300, 7.0 kz	Χ	Χ	Χ	X	Χ
Дерев. kamywka 23-27 kг		Χ	Χ	X	Χ
Accupak, 136 kz			Χ	Χ	
Дерев. kamywka, 159 kг		Χ	Χ	X	Χ
Дерев. kamyшka, 227 kг		Χ	Χ	Χ	Χ

По запросу возможна поставка в других видах упаковки

Superglaze® MIG 5556A: 8ep. C-RU02-01/02/16

A-Nr

ISO 18273 S AI 5754 (AIMg3) F-Nr 22 EN 573,3 EN AW AIMg3 Mat-Nr 3,3536

ОБЩЕЕ ОПИСАНИЕ

Проволока на основе алюминия с легированием марганцем для сварки сплавов с максимальным содержанием Мд 3,5% Высокая коррозионная устойчивость, после анодирования цвет наплавленного металла полностью соответствует основе Подходит для многих общестроительных задач

ПРОСТРАНСТВЕННЫ<u>Е ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME</u>

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Аг (100%) Инертный газ Ar+ 0,5-95% Не

Расход газа 14,2 - 23,6 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ [%]

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	Mn+Cu
бал.	макс. 0,4	макс. 0,4	макс. 0,1	макс. 0,5	2,6-3,6	макс. 0,3	макс. 0,20	макс. 0,15	макс. 0,0003	0,10-0,6

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	70-80	180-200	15-20

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 580 - 642°C Плотность : okono 2660 k2/м3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Общее строительство

Автомобильные бамперы и опорные стойки

БИЦЫ ЯПАКОВКИ						
Диаметр (мм)	0,8	1,0	1,2	1,6	2,4	
Пласт. кассета \$100, 0.5 кг	Х	Χ	Χ	Χ		—————————————————————————————————————
Kaccema S300, 7.26 kz	X	Χ	Χ	X	Χ	
Kaccema BS300, 7.0 kz	Χ	Χ	Χ	X	Χ	
Дерев. kamyшka 23-27 kг		Χ	Χ	Х	Χ	
Accupak, 136 kz			Χ	Χ		
Дерев. kamyшka, 159 kг		Χ	Χ	Х	Χ	
Дерев. kamyшka, 227 kг		Χ	X	Χ	X	

Superglaze® MIG 5754; Bep. C-RU02-01/02/16

LNM 420FM

EN 14700 S Fe8 Mat-Nr 1,4718

ОБШЕЕ ОПИСАНИЕ

Проволока сплошного сечения для нанесения износоустойчивого покрытия

Высокая устойчивость к коррозии, истиранию и ударам

Твердость около 55-60HRc

Оптимальные сварочно-технологические характеристики

Ферритная и мартенситная структура

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/1G

M21 : Смешанный газ Ar+ >15-25% CO.

химический состав проволоки (%)

С	Mn	Cr	S
0,5	0,4	9,0	3,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

2 слоя. ПС : около 60 НРС

Жаростойкость до 450°С

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Матрицы

Штампы

Детали сельскохозяйственного оборидования

Транспортировочные ролики

Песковые насосы

ВИДЫ УПАКОВКИ

Диаметр (мм) 1,0 1,2 Kaccema B300. 15 kz

По запросу возможна поставка в других видах упаковки

LNM 420FM: Bep. C-RU24-01/02/16

LNM 4M

КЛАССИФИКАЦИЯ

EN 14700 S Fe2

Mat-Nr 1,8405

ОБШЕЕ ОПИСАНИЕ

Проволока сплошного сечения для наплавки

Твердость около НВ 325-375

Оптимальные характеристики сварки

Мартенситная структура

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M21

: Смешанный газ Ar+ >15-25% СО₂

химический состав проволоки (%)

С	Mn	Si	Cr
0,7	1,9	0,5	1,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

2 слоя, ПС : okoлo 38 HRc

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Формовочные штампы

Штампы

Ударопрочные инстрименты

ВИЛЫ УПАКОВКИ

Диаметр (мм) 1,2

Kaccema B300. 15 kz

По запросу возможна поставка в других видах упаковки

LNM 4M: Bep. C-RU24-01/02/16

никелевых сплавов384

медных сплавов

алюминиевых сплавов

...... 398

..... 401 402 403

ПРУТКИ DЛЯ АРГОНОДУГОВОЙ СВАРКИ (TIG)

Прутки для сварки низкоуглеродистой стали	Прутки для сварки нике
LNT 25358	LNT NiCro 60/20
LNT 26 359	LNT NiCro 70/19
	LNT NiCroMo 59/23
Прутки для сварки низколегированных сталей	LNT NiCu 70/30
LNT 28360	LNT NiTi
LNT Ni1361	
LNT NiMo1362	Прутки для сварки медн
LNT Ni2.5 363	LNT CuNi30
LNT 12364	LNT CuSn6
LNT 19 365	LNT CuSi3
LNT 20 366	
LNT 502367	Прутки для сварки алюм
LNT 9Cr(P91)368	SuperGlaze® TIG 1070
	SuperGlaze® TIG 1100
Прутки для сварки нержавеющей стали	SuperGlaze® TIG 4043
LNT 304LSi369	SuperGlaze® TIG 4047
LNT 304L370	SuperGlaze® TIG 5183
LNT 347Si371	SuperGlaze® TIG 5183
LNT 316LSi372	SuperGlaze® TIG 5356
LNT 316L373	SuperGlaze® TIG 5554
LNT 318Si374	SuperGlaze® TIG 5754
LNT 4439Mn375	5apc.c.a_c 1.65/5/1
LNT 4500376	Автогенные проволоки
LNT 4462377	LNG I
LNT Zeron® 100X378	LNG II
LNT 309LHF379	LNG IV
LNT 309LSi	
LNT 309L381	
LNT 304H382	
LN1 30411302	

LNT 310 383

LNT 25

КЛАССИФИКАЦИЯ

AWS A5.18 ER70S-3 **A-Nr** 1 **Mat-Nr** 1,5112

EN ISO 636-A W 42 5 W2Si **F-Nr** 6 **9606 FM** 1

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки углеродистой стали в ходе строительных работ общего назначения Высокая ударная вязкость

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TÜV CE

ХИМИЛЕСКИЙ СИСТОВ ЦБИВИЛИКИ [%]

C	Mn	Si
0,08	1,1	0,6

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текучести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)		
	za3	Состояние	(МПа)	(M∏a)	[%]	-20°C	-50°C
Средние значения	l1	ПС	450	560	26	170	100

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общ. назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH 36.
Литая сталь	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс. давл.	LIN IUUZU Z	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420
	EN 10025 часть 4	S275M, S275ML, S355M, S355ML, S420M, S420ML

т випь	УПАКОВК	И	

Диаметр (мм)	1,6	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм
Π3 muhuc, 5 kz	X	X	X	X	

LNT 25: 8ep. C-RU25-01/02/16

LNT₂₆

КЛАССИФИКАЦИЯ

 AWS A5.18
 ER70S-6
 A-Nr
 1
 Mat-Nr
 1,5125

 EN ISO 636-A
 W 42 5 W3Si1
 F-Nr
 6

9606 FM 1

ΠΕΙΙΙΕΕ ΠΠИΓΔΗΜΕ

Пруток сплошного сечения для сварки углеродистой стали в ходе строительных работ общего назначения Хороший внешний вид шва

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TÜV CE

.....

C Mn Si

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный	Состояние	Предел Предел ие текучести прочности		Отн. удлинение	Ударная вязкость по Шарпи (Дж)		
	283		(МПа)	(МПа)	[%]	-20°C	-30°C	-50°C
Средние значения	l1	ПС	460	580	26	170	170	120

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Конструкционная сталь общего назн.	EN 10025	S185, S235, S275, S355
Листы судостроительной стали	ASTM A131	Mapku A, B, D, om AH32 go DH 36.
Литая сталь	EN 10213-2	GP240R
Трубная сталь	EN 10208-1	L210, L240, L290, L360
	EN 10208-2	L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB
	API 5LX	X42, X46, X52, X60
	EN 10216-1	P235T1, P235T2, P275T1
	EN 10217-1	P275T2, P355N
Сталь для бойлеров и камер выс.давл.	EN 10028-2	P235GH, P265GH, P295GH, P355GH
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420
	EN 10025 часть 4	S275M, S275ML, S355M, S355ML, S420M, S420ML

		овки

элдэг гилоэги						
Диаметр (мм)	1,6	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм	
ПЭ тубус, 5 kг	Χ	Χ	Χ	Χ		

иую 🗖

LINCOLN ELECTRIC
THE WELDING EXPERTS

LNT 26: Bep. C-RU25-01/02/16

TIG

LNT 28

кпассификания

AWS A5.28 ER80S-G

A-Nr 10 **F-Nr** 6

9606 FM 2

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки устойчивой к атмосферному воздействию стали Высокие механические характеристики наплавленного металла

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

CE

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Ni	Cu
0,1	1,4	0,75	0,8	0,3

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) -20°C	
Средние значения	l1	ПС	570	620	26	80	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun	
Устойчивая к	EN 10155	S 235 J O W	
атмосферному		S 235 J 2 W	
воздействию сталь		S 355 J 0 W	
-		S 355 J 2 W	
		S 355 K 2 G 1 W	

ВИЛЫ УПАКОВКИ

Диаметр (мм)	2,4	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 кг	Χ	

LNT 28: Bep. C-RU23-01/02/16

LNT Ni1

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER80S-Ni1
 A-Nr
 12

 EN ISO 636-A
 W 42 6 W3Ni1
 F-Nr
 6

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Приток сплошного сечения для сварки мелкозернистых и низколегированных никелевых сплавов

Высокая ударная вязкость при низких температурах до -60°C

Часто используется для работ на офшорных сооружениях

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

l1 Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

GL	TÜV	CE	DNV

химический состав проволоки (%)

С	Mn	Si	Ni
0,1	1,2	0,6	0,9

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный		Предел Предел текучести прочности		Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	za3	Состояние	(МПа)	(МПа)	[%]	-60°C
Средние значения	11	ПС	480	580	30	60

СВАРИВАЕМЫЕ МАТЕРИАЛЫ Классы стали	Cmauganm	Tue		
Nidecol cilidiu	Стандарт	Tun		
Конструкционная сталь общего назначен	ия EN 10025		S275, S355	
Листы судостроительной стали	ASTM A131		Mapku A, B, D, E, om AH32 go EH36	
Литая сталь	EN 10213-2		GP240R	
Трубная сталь	EN 10208-1		L290 GA, L360GA	
EN 10208-2	L290, L360, L41	5		
API 5LX	X42, X46, X52, X	(60, X65		
EN 10216-1	P275T1			
EN 10217-1	P275 T2, P355 N	٧		
Сталь с мелкозернистой структурой	EN 10025 yacm	ю 3	S275, S355, S420, S460	
EN 10025 часть 4	S275, S355, S42	0, S460		
EN 10028	P355NL-1, P460	NL-1		

ВИДЫ УПАКОВК*И*

Диаметр (мм)	1,6	2,0	2,4	3,0	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 кг	Χ	Χ	Χ	Χ	

LNT Ni1: 8ep. C-RU28-01/02/16

LNT NiMo1

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER100S-G
 A-Nr
 2

 ISO 16834-A
 W Mn3Ni1Mo
 F-Nr

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Легированный присадочный пруток для аргонодуговой сварки стали с высокой прочностью на разрыв Высокие механические характеристики наплавленного металла

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

химический состав проволоки (%)

C	Mn	Si	Ni	Mo	Ti
0,08	1,7	0,7	0,9	0,35	0,17

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	760	800	18

СВАРИВАЕМЫЕ МАТЕРИАЛЫ Классы стали Стандарт Tun Трубная сталь EN 10208-2 L480, L550 API 51 X X65, X70, X80

ALLOCA	X05, X70, X00	
Сталь с мелкозернистой структурой	EN 10025 часть 6	S460, S500, S550, S620

ВИДЫ УПАКОВКИ		
Диаметр (мм)	2,0	2,4
Π3 muhuc 5 k2		Y

LNT NiMo1 : Bep. C-RU03-01/02/16

LNT Ni_{2.5}

AWS A5.28 ER80S-Ni2 A-Nr EN ISO 636-A W2 Ni2 F-Nr 6 9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки мелкозернистых и низколегированных никелевых сплавов

Высокое значение ударной вязкости при низкой температуре (-60°C в состоянии после сварки и -90°С после снятия напряжения 15ч/580°С).

Часто используется для работ на офшорных сооружениях

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Аг (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV CE

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ [%]

С	Mn	Si	Ni	
0,1	1,1	0,55	2,4	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел текучести	Предел и прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж)	
			(МПа)			-62°C	-90°C
Средние значения	l1	ПС	525	605	28	280	133

Классы стали Стандарт Tun Конструкционная сталь общего назначения EN 10025 S355 Трубная сталь EN 10208-2 L360, L415, L445 API 5 LX X52, X56, X60, X65 Сталь с мелкозернистой структурой EN 10025 yacmb 3 S355, S420, S460 EN 10025 yacmb 4 S355, S420, S460 11 MaNi E 2 12 MaNi E 2 1E NiMa

Низкотемпературная сталь	EN 10028-4	11 MnNi 5-3, 13 MnNi 6-3, 15 NiMn 6
	(12 Ni 14 G 1, G 2)	

EN 10222-3 13 MnNi 6-3, 15 NiMn 6

Диаметр (мм)	2,4	3,0	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 кг	Χ	Χ	

LNT Ni2.5: Bep. C-RU26-01/02/16

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

AWS A5.28 ER70S-A1 A-Nr Mat-Nr 1,5424

ISO 21952-A W MoSi F-Nr б

9606 FM 1/3

ОБШЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки жаропрочной стали с содержанием Мо 0,5% и мелкозернистых марок стали, предназначенных для низкотемператирной эксплиатации в состоянии после сварки при рабочей температире от -20°C до +500°C

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Аг (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TÜV	DNV	GL	DB

химический состав проволоки (%)

С	Mn	Si	Мо
0.1	1.2	0.6	0.5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел mekyчести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	283	Состояние	(МПа)	(M∏a)	[%]	+20°C	-20°C
Средние значения	l1	ПС	635	670	22	170	110

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Высокотемпературная сталь	EN 10028-2	P295 G H, P355 G H, 16 Mo 2
EN 10222-2	17 Mo 3, 14 Mo 6	
Сталь с мелкозернистой структурой	EN 10025 часть 3	S275, S355, S420
EN 10025 часть 4	S275, S355, S420	

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-1 требуется предварительный подогрев сварного соединения При необходимости проводится снятие напряжения при 580-650°C

Диаметр (мм)	1,6	2,0	2,4	3,0	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 кг	Х	Χ	Χ	Χ	

LNT 12: 8ep. C-RU25-01/02/16

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На caŭme www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER80S-B2*
 A-Nr
 3
 Mat-Nr
 1,7339

 ISO 21952-A
 W CrMo1Si
 F-Nr
 6

* самый близкий класс **9606 FM** 3

ΠΕΙΙΙΕΕ ΠΠИΓΔΗΜΕ

Пруток сплошного сечения для сварки жаропрочных и устойчивых к диффузионному водороду сплавов Cr-Mo (1,25Cr - 0,5Mo) Рабочая температира до 550°C

3AIIINTHЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

химический состав проволоки (%)

С	Mn	Si	Cr	Mo
0,1	1,0	0,6	1,2	0,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) +20°С
Средние значения	11	Послесварочная тепловая	540	640	22	250
		обработка 700°С/1 ч				

СВАРИВАЕМЫЕ МАТЕРИАЛЫ				
Классы стали	Стандарт	Tun		
Высокотемпературная сталь	EN 10028-2		13 CrMo4-5	
EN 10083-1	25 CrMo 4			
EN 10222-2	14 CrMo 4-5			
Инструментальная сталь	DIN 17210		16 MnCr 5	

ВИДЫ УПАКОВКИ				
Диаметр (мм)	2,0	2,4	3,0	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 kг	Х	Х	Χ	

LNT 19: 8ep. C-RU26-01/02/16

КЛАССИФИКАЦИЯ

AWS A5.28 ER90S-B3* **A-Nr** 4 **Mat-Nr** 1,7384

ISO 21952-A W CrMo2Si **F-Nr** 6 * самый близкий класс **9606 FM** 4

ОБШЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки жаропрочных и устойчивых к диффузионному водороду сплавов Cr-Mo (2,25Cr - 1Mo) Рабочая температура до 600°C

ЗАШИТНЫЕ ГАЗЫ (ПО ISO 14175)

1 Инертный газ Ar (100%)

химический состав проволоки (%)

С	Mn	Si	Cr	Mo
0,08	1,0	0,6	2,5	1,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Ударная вязкость Предел Предел Отн. Защитный по Шарпи (Дж) Состояние текцчести прочности идлинение газ (MПа) (МПа) [%] +20°C 11 Послесварочная тепловая 560 640 22 140 Средние значения

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun		
Тепло- и водородостойкие стали	EN 10028-2		10CrMo 9-10	
EN 10222-2	12CrMo 9-10			

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-1 mpeбyemcя предварительный подогрев сварного соединения при 200-250°C Послесварочная тепловая обработка при 690-740°C

обработка 700°С/1 ч

DIAGLEVE ALCODULA

Диаметр (мм)	2,0	2,4	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 кг	X	Х	

LNT 20: Bep. C-RU26-01/02/16

КЛАССИФИКАЦИЯ

AWS A5.28 ER80S-B6 **A-Nr** 4 **Mat-Nr** 1,7373

 ISO 21952-A
 W CrMo5Si*
 F-Nr
 6

 * самый близкий класс
 9606 FM
 4

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки жаропрочных и устойчивых к диффузионному водороду сплавов с содержанием 5%Сг, 0.5%Мо

Рабочая температура до 550°C

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

химический состав проволоки (%)

С	Mn	Si	Cr	Mo
0,09	0,6	0,3	5,7	0,6

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) +20°С
Средние значения	11	Послесварочная тепловая	560	650	20	80

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun
Тепло- и водородостойкие стали	SEW 028	12CrMo 19-5 и аналогичные марки стали
ASTM A182	F5	
ASTM A213	T5	
ASTM A335	P5	
ASTM A336	F5	
ASTM A369	FP5	
ASTM A387	Copm 5	

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуется предварительный подогрев и температура перед наложением следующего слоя 200-300°C

Рекомендиется послесварочная тепловая обработка при 675-750°C (продолжительность зависит от толщины материала)

ВИДЫ УПАКОВКИ

Диаметр (мм)	2,4	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 кг	Χ	

LNT 502: Bep. C-RU26-01/02/16

LNT 9Cr(P91)

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER90S-B39
 A-Nr
 5

 ISO 21952-A
 W CrMo91
 F-Nr
 6

 9606 FM
 4

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки жаропрочных и устойчивых k диффузионному водороду сплавов с содержанием 9% Сг, 1% Мо

Рабочая температура до 650°C

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

II Инертный газ Ar (100%)

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)									
С	Mn	Si	Cr	Мо	Ni	Nb	٧	Cu	
0,11	0,8	0,25	8,9	1,0	0,5	0,06	0,2	0,06	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный		Предел mekuчести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	283	Состояние	(МПа)	(МПа)	[%]	-20°C
Средние значения	l1	CH 750°C/3 ч	500	700	18	70

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun	Стандарт	Tun
Тепло- и водородостойкие стали	EN 10222-2	стали X10CrMo V9-1		
	ASTM	A199 Copm T91	ASME	SA 182-F91
		A200 Copm T91		
		A213 Copm T91		SA 213-T91
		A335 Copm P91		SA 335-P91
		A336 Copm F91		SA 336-F91
				SA 369-FP91
				SA 387-Copm 91
				SA 387-Copm 91

1ДЫ				

Диаметр (мм)	2,0	2,4	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 kг	Χ	Χ	

LNT 9Cr(P91) : 8ep. C-RU26-12/05/16

7 I G

LNT 304LSi

классификация

AWS A5.9 ER308LSi **A-Nr** 8 **Mat-Nr** 1,4316 **ISO 14343-A** W 19 9 L Si **F-Nr** 6

ISO 14343-A W 19 9 L Si **F-Nr** 6 **9606 FM** 5

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения со сверхнизким содержанием углерода для сварки аустенитных сплавов CrNi Повышенное содержание кремния улучшает смачиваемость

ЗАШИТНЫЕ ГАЗЫ (ПО ISO 14175)

l1 Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DNV TÜV CE DB

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Mo
0,02	2,0	0,8	20	10	0,1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел текучести (МПа)	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	газ	Состояние		(МПа)	[%]	+20°C	-196°C
Средние значения	l1	ПС	467	622	37	147	67

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS	
				A240/A312/A351		
Очень низкое сод	ержание углерода (С <	0,03%)				
	X2CrNi19-11		1,4306	(TP)304 L	S30403	
				CF-3	J92500	
	X2CrNiN18-10		1,4311	(TP)304LN	S30453	
				302, 304	S30400	
Среднее содержа	ние углерода (C > 0,039	%]				
	X4CrNi18-10		1,4301	(TP)304	S30409	
		G-X5CrNi19-10	1,4308	CF-8	J92600	
Со стабилизацие	ŭ Ti, Nb					
	X6CrNiTi18-10		1,4541	(TP)321	S32100	
				(TP)321H	S32109	
	X6 CrNiNb18-10		1,4550	(TP)347	S34700	
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710	

ВИДЫ УПАКОВК

	Диаметр (мм)	10	1.2	1.6	2.0	24	3.2	Примечание: отрезка по длине = 1000 мм
•	Π3 muhuc 5 k2	Х	X	Х Х				Tipune tunuel ompegna ne oriane 1000 mil

LNT 304LSi; Bep. C-RU23-01/02/16

LNT 304L

КЛАССИФИКАЦИЯ

AWS A5.9 ER308L **A-Nr** 8 **Mat-Nr** 1,431 **ISO 14343-A** W 19 9 L **F-Nr** 6

9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения с особо низким содержанием углерода для сварки аустенитных сплавов CrNi Высокая устойчивость к межкристаллической коррозии и окисляющим средам

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

11 Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

CE

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Mo
0,01	1,7	0,4	20	10	0,1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%

	Защитный	щитный Предел Предел прочности газ Состояние текучести (МПа) (МПа)	Отн. удлинение	Ударная вязкость по Шарпи (Дж)								
	2d3		(МПа)	[%]	+20°C	-196°C						
Средние значения	l1	ПС	472	692	34	120	91					

СВАРИВАЕМЫЕ МАТЕРИАЛЬ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
				A240/A312/A351	
Очень низкое сод	ержание углерода (С <	(0,03%)			
	X2CrNi19-11		1,4306	(TP)304 L	S30403
				CF-3	J92500
	X2CrNiN18-10		1,4311	(TP)304LN	S30453
				302, 304	S30400
Среднее содержа	ние углерода (C > 0,03°	%]			
	X4CrNi18-10		1,4301	(TP)304	S30409
		G-X5CrNi19-10	1,4308	CF-8	J92600
Со стабилизацие	ŭ Ti, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710

LNT 304L: 8ep. C-RU24-01/02/16

Примечание: отрезка по длине = 1000 мм

1,2

2,0

2,4 3,2

Диаметр (мм)

ПЭ тубус, 5 kг

1,4551

LNT 347Si

КЛАССИФИКАЦИЯ

AWS A5.9 ER347Si A-Nr 8 Mat-Nr ISO 14343-A W 19 9 NbSi F-Nr 6

9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки нержавеющих сплавов CrNi со стабилизацией Ті или Nb Высокая устойчивость к межкристаллической коррозии и окисляющим средам

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TÜV CE DB

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Mo	Nb
0,05	1,4	0,7	19,5	9,5	0,01	0,6

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
	283	Состояние			[%]	+20°C	-196°C
Средние значения	l1	ПС	400	650	35	80	45

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Со стабилизацие	ŭ Ti, Nb				
	X6CrNiTi18-10		1,4541	(TP)321	S32100
				(TP)321H	S32109
	X6CrNiNb18-10		1,4550	(TP)347	S34700
				(TP)347h	S34709
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710
Без стабилиза	ции				
				302	
	X4CrNi18-10		1,4301	(TP)304	S30400
	X2CrNi19-11		1,4306	(TP)304L	S30403
		G-X5CrNi19-10	1,4308	CF-8	J92600
			1,4312		
				(TP)304H	S30409

ВИЛЫ УПАКОВКІ

Диаметр (мм)	1,6	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм
73	V				
N3 mybyc, 5 kz	X	X	Α.	X	LANGE OF STREET

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNT 347Si: 8ep. C-RU24-01/02/16

LNT 316LSi

AWS A5.9 FR316I Si A-Nr Mat-Nr

ISO 14343-A W 19 12 3 LSi F-Nr 6 9606 FM 5

Пруток сплошного сечения с особо низким содержанием углерода для сварки нержавеющих сплавов CrNiMo См. makke LNT 316L, высокое содержание кремния улучшает способность к смачиванию

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%) 11

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

DNV ΤÜV DB CE ABS

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Мо
0,03	1,9	0,8	18,5	12,0	2,7

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	283	Состояние	mekyчести (МПа)	(МПа)	ِ (%)	+20°C	-196°C
Средние значения	l1	ПС	484	624	32	100	82

ВАРИВАЕМЫЕ					
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
				A240/A312/A351	
Очень низkoe cog	ержание углерода (С < 0),03%]			
	X2CrNiMo1712-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содержа	ние углерода (C > 0,03%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		G-X5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизацие	ŭ Ti, Nb				
	X6CrNiMoTi17-12-2		1,4571	316 Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316 Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700

Диаметр (мм)	1,0	1,2	1,6	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 кг	Χ	Χ	Χ	Χ	Χ	Χ	

G-X5CrNiNb19-10

LNT 316LSi: Bep. C-RU24-01/02/16

J92710

1.4552

CF-8C

LNT 316L

AWS A5.9 ER316L A-Nr 8 Mat-Nr 1,4430

ISO 14343-A W 19 12 3 L F-Nr 6 9606 FM 5

Пруток сплошного сечения с особо низким содержанием углерода для сварки аустенитных сплавов CrNiMo Высокая устойчивость к межкристаллической и общей коррозии

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Аг (100%)

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Мо
0,01	1,5	0,5	18,5	12	2,7

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел Предел		Отн. цалинение	Ударная вязкость по Шарпи (Дж)		
	283	Состояние	текучести (МПа)	прочности (МПа)	(%)	+20°C	-120°C	-196°C
Средние значения	11	ПС	400	620	35	100	80	40

IBABI	ІЫЕ МА	

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое сод	ержание углерода (С < 0,0	3%]			
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содержа	ние углерода (C > 0,03%)				
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		G-X5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизацие	ŭ Ti, Nb				
	X6CrNiMoTi17-12-2		1,4571	316 Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316 Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710

Диаметр (мм)	1,6	2,0	2,4	3,2
ПЭ тубус, 5 кг	Х	Χ	Χ	Χ

LNT 316L: Bep. C-RU25-01/02/16

LNT 318Si

КЛАССИФИКАЦИЯ

AWS A5.9 ER318* A-Nr 8 Mat-Nr 1,4576

ISO 14343-A W 19 12 3 NbSi **F-Nr** 6 * самый близкий класс **9606 FM** 5

ОБШЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки нержавеющих сплавов CrNiMo со стабилизацией Ті или Nb Высокая устойчивость к межкристаллической и общей коррозии

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Мо	Nb
0,05	1,4	0,7	18,7	11,7	2,5	0,7

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный			Предел прочности	Отн. цалинение	Ударная вязкость no Шарпи (Дж)	
	газ	Состояние	текучести (МПа)	. (МПа)	[%]	+20°C	-196°C
Средние значения	I1	ПС	420	680	35	70	45

(лассы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое сод	ержание углерода (С <	0,03%]			
	X2CrNiMo17-12-2		1,4404	(TP)316L	S31603
				CF-3M	J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содержа	ние углерода (C > 0,03%	6]			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		G-X5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизацие	ŭ Ti, Nb				
	X6CrNiMoTi17-12-2		1,4571	316 Ti	S31635
	X6CrNiMoNb17-12-2		1,4580	316 Cb	S31640
	X6CrNiNb18-10		1,4550	(TP)347	S34700
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710
ВИДЫ УПАКОВІ	ζИ				
	WI				
Диаметр (мм)	1,6 2,0	2,4 3,2			

LNT 318Si: Bep. C-RU24-01/02/16

ПЭ тубус, 5 кг

LNT 4439Mn

классификация

A-Nr 9* **Mat-Nr** 1,4453

ISO 14343-A W 18 16 5 N L* **F-Nr** - * самый близкий класс **9606 FM** 5

ΠΕΙΙΙΕΕ ΠΠИΓΔΗΜΕ

Пруток сплошного сечения для сварки AISI 317L, AISI 317LN и других эквивалентных марок нержавеющей стали Предназначается для сварки сплава 316L в тех случаях, когда требуется повышенное содержание молибдена Высокая устойчивость к питтинговой, межкристаллической и механической коррозии Полностью аустенитный сварочный металл

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Mo	N	
0,02	7	0,4	18	16	4,5	0,15	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная вязкость no Шарпи (Дж)
	газ	Состояние	текучести (МПа)	(МПа)	(%)	-196°C
Средние значения	11	ПС	440	650	35	80

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
Полностью ауст	пенитные коррозиестойки	ie стали CrNiMo			
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429	(TP)316LN	S31653
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMo18-15-4		1,4438	317L	S31725
	X2CrNiMoN17-13-5		1,4439	317LN	S31726
	G-X2CrNiMoN17-13-4	G-X2CrNiMo17-13-4	1,4446		
	G-X6CrNiMo17-13	G-X6CrNiMo17-13	1,4448		

ΒΝΠΡΙ ΛΠΨΚΟΒΚΛ

Диаметр (мм)	2,0	2,4
ПЭ тубус, 5 кг	Х	Χ

LNT 4439Mn: 8ep. C-RU23-01/02/16

классификация

 AWS A5.9
 ER385
 A-Nr
 9

 ISO 14343-A
 W 20 25 5 Cu L
 F-Nr
 6

 9606 FM
 5

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки полностью аустенитных сплавов типа 20%Cr / 25%Ni / 4,5%Mo / 1,5%Cu Высокая устойчивость к коррозии при контакте с серной или фосфорной кислотой

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜ۷

+

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Мо	Cu
0,01	1,7	0,4	20	25	4,5	1,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный		Предел	Предел прочности	Отн. идлинение	Ударная вязкость по Шарпи (Дж)	
	za3	Состояние	mekyчести (МПа)	(МПа)	[%]	-196°C
Средние значения	l1	ПС	380	560	35	80

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr					
Полностью аустенитные сплавы NiCrMoCu и CrNiMoCu								
		G-X7NiCrMoCuNb25-20	1,4500					
	X5NiCrMoCuTi20-18		1,4506					
		G-X2NiCrMoCuN20-18	1,4531					
		G-X2NiCrMoCuN25-20	1,4536					
	X1NiCrMoCuN25-20-5		1,4539					
		G-X7CrNiMoCuNb18-18	1,4585					
	X5NiCrMoCuNb22-18		1,4586					

ΒΝΩΡΙ ΛΩΦΚΟΒΚΝ

Диаметр (мм)	2,0	2,4
ПЭ тубус, 5 кг	Χ	Χ

LNT 4500; Bep. C-RU24-01/02/16

классификания

AWS A5.9 ER2209 **A-Nr** 8 **Mat-Nr ISO 14343-A** W 22 9 3 N L **F-Nr** 6

9606 FM 5

ОБШЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки дуплексной нержавеющей стали Высокая стойкость к общей, питтинговой и механической коррозии

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

химический состав проволоки (%)

C	Mn	Si	Cr	Ni	Мо	N
0.01	1.6	0.5	22.5	8.5	3.0	0,15

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)
	283	Состояние	mekyчести (МПа)	(МПа)	[%]	-60°C
Средние значения	l1	ПС	675	829	27	200

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	UNS	
Дуплексная нерж	авеющая сталь			
	X2CrNiMoN22-5-3	1,4462	S31803	
		1,4417	S31500	
	X2CrNiN23-4	1,4362	S32304	
	X3CrNiMoN27-5-2	1,4460	S31200	
	X2CrNiMoN21-5-1	1,4162	S32101	

Стыки из отличающихся соединений, например, между углеродистой и низколегированной сталью и дуплексной нержавеющей сталью

		IBKI	

Диаметр (мм)	1,6	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 5 кг	Χ	Χ	Χ	Χ	

LNT 4462: Bep. C-RU24-01/02/16

LNT Zeron® 100X

КЛАССИФИКАЦИЯ

AWS A5.9 ER2594 A-Nr 8 ISO 14343-A W 25 9 4 N L F-Nr 6 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки Zeron® 100 и других марок дуплексной нержавеющей стали Высокая устойчивость к питтинговой и щелевой коррозии под воздействием морской воды

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Mo	Cu	W	N	
0,02	0,6	0,23	25	9,3	3,6	0,6	0,6	0,22	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -50°С	
Средние значения	l1	ПС	655	934	42	100	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	UNS			
Обычная и супер	дуплексная нержавеюц	цая сталь				
	X2CrNiMoN25-7-4		1,4410			
	X4CrNiMoN27-5-2		1,4460			
	X2CrNiMoN22-5-3		1,4462	2205	S31803	
		GX6 CrNiMo 24-8-2	1,4463			
				CD-4MCu	S32550	
				Zeron [®] 100	S32760	

Супердуплексная нержавеющая сталь: примерный химический состав: сплав 24-27% Сг, 6-9% Ni, 3-4% Mo, 0.10-0.25% N с добавлением Си и/или W

вип	LIVE	A IZOD	1/1/	

Диаметр (мм)	1,6	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм
ПЭ тибис. 5 кг	Х	Х	Х	Х	

LNT Zeron° 100X; Bep. C-RU25-01/02/16

LNT 309LHF

кпассификания

 AWS A5.9
 ER309L
 A-Nr
 8
 Mat-Nr
 1,4332

 ISO 14343-A
 W 23 12 L
 F-Nr
 6
 6
 9606 FM
 5

ОБЩЕЕ ОПИСАНИЕ

Приток сплошного сечения для сварки соединений межди нержавеющей и иглеродистой сталью

Наплавленный металл не склоннен к повышению хрупкости

Минимальное содержание феррита 18FN в наплавленном металле

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

l1 Инертный газ Ar (100%)

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Мо
0,02	2,0	0,35	24	13	0,1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный	Состояние	Предел mekuчести(МПа)	Предел прочности (МПа)	Отн. 1 удлинение	Ударная вязкость no Шарпи (Дж)		
	2a3		ттекучестицита		[%]	+20°C	+40°C	
Средние значения	l1	ПС	488	608	33	167	171	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI	UNS
			A240/A312/A351	
Коррозиестойкая плаки	грованная сталь			
	X2CrNiN18-10	1,4311	(TP)304LN	S30453
	X2CrNi19-11	1,4306	(TP)304L	S30403
			CF-3	J92500
	X4CrNi18-10	1,4301	(TP)304	S30400

Разнородные соединения (между углеродистой и нержавеющей сталью)

Наплавка на низкоуглеродистые и низколегированные стали

ВИЛЫ УПАКОВКИ

Диаметр (мм)	1,6	2,0	
ПЭ тибис. 5 кг	Х	X	

LNT 309LHF Bep. C-RU25-01/02/16

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNT 309LSi

AWS A5.9 ER309LSi A-Nr 8 Mat-Nr 1,4332 6

ISO 14343-A W 23 12 LSi F-Nr

9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки соединений между нержавеющей и углеродистой сталью Повышенное содержание кремния улучшает способность к смачиванию

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

CE ΤÜV

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Mo
0,02	2,0	8,0	23,5	13	0,1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)
	2a3	Состояние	текучести (МПа)	(МПа)	[%]	-120°C
Средние значения	11	ПС	400	600	35	65

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI	UNS							
	X2CrNiN18-10	1,4311	(TP)304LN	S30453							
	X2CrNi19-11	1,4306	(TP)304L	S30403							
			CF-3	J92500							
	X4CrNi18-10	1,4301	(TP)304	S30400							

Разнородные соединения (между углеродистой и нержавеющей сталью) Наплавка на низкоуглеродистые и низколегированные стали

ВИДЫ УПАКОВКИ					
Диаметр (мм)	1,6	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм
ПЭ тибис. 5 кг	Х	Х	Х	Χ	

LNT 309LSi: 8ep. C-RU24-01/02/16

T 1 G

LNT 309L

классификания

 AWS A5.9
 ER309L
 A-Nr
 8
 Mat-Nr
 1,4332

 ISO 14343-A
 W 23 12 L
 F-Nr
 6

 9606 FM
 5

UPILIEE UDINCAHNE

Пруток сплошного сечения для сварки соединений между нержавеющей и углеродистой сталью

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

۲F

+

химический состав проволоки (%)

C	Mn	Si	Cr	Ni	Mo
0,01	1,65	0,5	24	13	0,1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел	Предел прочности	Отн. удлинение	
	газ	Состояние	текучести (МПа)	(M∏a)	[%]	
Средние значения	l1	ПС	390	600	35	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI	UNS
Коррозиестойка	я плакированная сталь			
	X2CrNiN18-10	1,4311	(TP)304LN	S30453
	X2CrNi19-11	1,4306	(TP)304L	S30403
		CF-3	J92500	
	X4CrNi18-10	1,4301	(TP)304	S30400

Разнородные соединения (между углеродистой и нержавеющей сталью) Наплавка на низкоуглеродистые и низколегированные стали

ВИДЫ УПАКОВКИ			
Диаметр (мм)	1,6	2,0	2,4
Π3 muñuc, 5 kz	X	X	X

LNT 309L: 8ep. C-RU04-01/02/16

LNT 304H

КЛАССИФИКАЦИЯ

 AWS A5.9
 ER308H
 A-Nr
 8
 Mat-Nr
 1,4948

 ISO 14343-A
 W 19 9 H
 F-Nr
 6

 9606 FM
 5

ОБШЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки аустенитной стали CrNi

Хорошо подходит для применения в условиях высокой температуры (до 730°C)

Малая чувствительность к дисперсионному уплотнению интерметаллических фаз

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

l1 Инертный газ Ar (100%)

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Мо	Mo
0,07	1,9	0,4	20	9,2	0,1	0,1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) +20°С
Средние значения	11	ПС	370	600	35	80

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
Среднее содержание углерода (С > 0,03%)				302
X4CrNi18-10		1,4301	(TP)304	S30400
			(TP)304H	S30409
	G-X5CrNi19-10	1,4308	CF 8	J92600
		1,4948		

ВИЛЫ УПАКОВКИ

Диаметр (мм)	2,0	2,4
ПЭ тубус, 5 кг	Χ	Χ

LNT 304H 8ep. C-RU23-01/02/16

КЛАССИФИКАЦИЯ

AWS A5.9	ER310	A-Nr	9	Mat-Nr	1,4812
ISO 14343-A	W 25 20	F-Nr	6		
		9606 FM	5		

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки жаростойких сплавов Cr- и CrNi (25%Cr-20%Ni) Высокая устойчивость к окислению при температуре до около 1100°C

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

химический состав проволоки (%)

C	Mn	Si	Cr	Ni	Mo
0,1	1,7	0,5	26	21	0,1

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) +20°С
Средние значения	l1	ПС	360	600	35	100

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI	UNS
	X10CrAl24		1,4762		
		G-X25CrNiSi18-9	1,4825		
		G-X40CrNiSi22-9	1,4826		
	X15CrNiSi20-12		1,4828		
		G-X25CrNiSi20-14	1,4832		
	X15CrNiSi25-20		1,4841	310S	S31008
				CK20	J94202
	X12CrNi25-21		1,4845		
		G-X40CrNiSi25-20	1,4848	HK40	

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,6	2,0	2,4
Π3 muhuc. 5 k2	X	Χ	Х

LNT 310 : Bep. C-RU23-01/02/16

LNT NiCro 60/20

КЛАССИФИКАЦИЯ

AWS A5.14 ERNiCrMo-3 **A-Nr** - **Mat-Nr** 2,4831

ISO 18274 S Ni 6625 (NiCr22Mo9Nb) **F-Nr** 43 **9606 FM** 6

ОБШЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки никелевых сплавов Высокая устойчивость к различным типам коррозии Высокое содержание хрома и молибдена

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)Инертный газ Ar+ 0,5-95% Не

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

_

химический состав проволоки (%)

С	Mn	Si	Ni	Cr	Mo	Nb	Fe	
0,03	0,1	0,1	бал.	22	9	3,5	0,4	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)		
	2a3	Состояние	mekyчести (МПа)	(МПа)	[%]	+20°C	-196°C	
Средние значения	11	ПС	520	800	35	130	100	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Марки сплавов Ni	DIN/EN	Mat. Nr	ASTM/ACI	UNS
Сплав 625 muna NiCrM	о и другие марки стали жар	ocmoŭkoŭ NiCrMo	для эксплуатации в условиях	высокой коррозии
	X1NiCrMoCuN25-20-6	1,4529	Сплав 925	N08925
	X1NiCrMoCu25-20-5	1,4539	Сплав 904L	N08904
	X1CrNiMoCuN20-18-7	1,4547	Сплав 254	S31254
	X2NiCrAlTi32-20	1,4558	Сплав 800L	N08800
	G-X10NiCrNb32-20	1,4859		
	X10NiCrAlTi32-20	1,4876	Сплав 800/800Н	N08800/-10
	NiCr22Mo6Cu	2,4618	Сплав G	N06007
	NiCr22Mo7Cu	2,4619	Сплав G-3	N06985
	NiCr21Mo6Cu	2,4641	Сплав 825hМо	N08821
	NiCr20CuMo	2,4660	Сплав 20	N08020
	NiCr15Fe	2,4816	В168-Сплав 600	N06600
	NiCr22Mo9Nb	2,4856	В443-Сплав 625	N06625
	NiCr21Mo	2,4858	В424-Сплав 825	N08825
	NiCr20Ti	2,4951	Сплав 75	N06075
	NiCr20TiAl	2,4952	Сплав 80А	N07080
Низколегированная сп	паль			
•	10Ni14 (3,5% Ni)	1,5637	ASTM A333 Copm 3	=
	12Ni19, X12Ni5	1,5680	- '	K41583
Стали с 9-процентны	ім содержанием Ni для резеј	овуаров СПГ		
•	X8Ni9	1,5662	A353/A353M	-
	X8Ni9 / 8%Ni	1,5662	A553/A553M Tun I/II	- / K71340
DIAGULIVE ALCODICIA				

ВИДЫ УПАКОВКІ

Диаметр (мм)	1,6	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм
M3 muhuc 3 E ka	Υ	ν	Y	Y	LNT NiCro 60/20: 8ep. C-RU23-01/02/16

LNT NiCro 70/19

кичссификания

AWS A5.14 ERNICr-3 A-Nr - Mat-Nr 2,4806

ISO 18274 S Ni 6082 (NiCr20Mn3Nb) F-Nr 4: 9606 FM 6

ОБШЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки сплавов на основе никеля, разнородных соединений и плакировки Высокая устойчивость к окислению и высокая ударная вязкость при низкой температуре

3ΔΙΙΙΝΤΗЫΕ ΓΔ3Ы (ΠΩ ISO 14175)

Инертный газ Ar (100%)Инертный газ Ar+ 0.5-95% Не

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

_

химический состав проволоки (%)

С	Mn	Si	Ni	Cr	Nb	Cu	Fe
0,03	3,0	0,2	бал.	20	2,5	0,1	1,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный Со газ	Состояние	Предел текичести (МПа)	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)			
			ттекучестти (міта)	(МПа)	[%]	+20°C	-196°C		
Средние значения	l1	ПС	400	680	40	150	120		

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

М	apku	і сплавс	θ Ni	BS3076			DIN 1	7744/	17465	N	∕lat. Nr		AST	1/ACI		UNS	
							SEW	595					B366				
			•		_	-	-				_	_	 		_		

Высоколегированная сталь на основе никеля с содержанием Сг для применения в условиях как низкой, так и высокой коррозии NiCr15Fe В168-Сплав 600 N06600 Na 14 2.4816 LC-NiCr15Fe Сплав 600L 2.4817 N06600 NiCr20Ti Cnnaß 75 2.4951 NiCr20TiA1 2,4952 Сплав 80А N07080 X10NiCrAITi32-20 Сплав 800/800Н NOSOO/10 Na 15 1.4876 NiCr23Fe 2.4851 Сплав 601(Н) N06601 Na 17 X12NiCrSi36-16 330 NUSSSU 1.4864 G-X40NiCrNb35-25 1.4852

Сварка соединений между нелегированной или низколегированной жаропрочной сталью и нержавеющей сталью

G-X40NiCrSi35-25

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуется ограничить тепловложение (HI<1.5 kДж/мм) и температуру перед наложением следующего слоя (Ti<150°C)

1.4857

ΗP

ВИЛЫ УПАКОВКИ

Диаметр (мм)	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм
ПЭ тибис. 2.5 кг	Х	X	X	

LNT NiCro 70/19: 8ep. C-RU24-01/02/16

Hackonoko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNT NiCroMo 59/23

КЛАССИФИКАЦИЯ

AWS A5.14 ERNiCrMo-13 **A-Nr** - **Mat-Nr** 2,4607

ISO 18274 S Ni 6059 (NiCr23Mo16) F-Nr 43 9606 FM 6

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки сплавов на основе никеля с высоким содержанием СгМо

Высокая устойчивость к питтинговой, механической и щелевой коррозии в условиях контакта с серной, фосфорной и хлористой кислотой

Хорошо подходит для сварки разнородных соединений

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

химический состав проволоки (%)

С	Mn	Si	Ni	Cr	Мо	Al	Fe
0,015	0,5	0,06	59	23	16	0,4	1,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) +20°С
Средние значения	11	ПС	400	700	25	90

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Марки сплавов Ni	DIN 17744	Mat. Nr	ASTM / ACI	UNS					
Сталь на основе никеля с высоким содержанием СгМо									
	NiCr23Mo16	2,4605		N06059					
	NiMo16Cr16Ti	2,4610	C-4	N06455					
	NiMo16Cr15Ti	2,4819	C-276	N10276					
	NiCr21Mo14W	2,4602	C-22	N06022					
	NiCr22Mo9Nb	2,4856	625	N06625					
Нержавеющая сталь о	с высоким содержанием Мо	для применения в	условиях высокой коррози	u					
	EN 10088-1/-2								
	X1NiCrMoCuN25-20-7	1,4529	904hMo	N08925					
	X1CrNiMoCuN20-18-7	1,4547		S31254					

1ДЫ			

Диаметр (мм)	1,6	2,0	2,4	Примечание: отрезка по длине = 1000 мм
ПЭ тибис. 2.5 кг	Х	X	X	

LNT NiCroMo 59/23: 8ep. C-RU23-01/02/16

LNT NiCu 70/30

КЛАССИФИКАЦИЯ

AWS A5.14 ERNiCu-7 **A-Nr** - **Mat-Nr** 2,4377

ISO 18274 S Ni 4060 (NiCu30MnTi) F-Nr 42

9606 FM 6

ΟΒΙΙΙΕΕ ΟΠИСАНИΕ

Пруток сплошного сечения для сварки монель- и NiCu-сплавов с низкоуглеродистыми и низколегированными сплавами Также может использоваться для сварки низкоуглеродистой и низколегированной стали со сплавами NiCu Высокая истойчивость к коррозии под воздействием морской воды

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

I1 Инертный газ Ar (100%)

Инертный газ Ar+ 0,5-95% Не

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

химический состав проволоки (%)

C Mp Si Ni Cu Eo Ti
C Mp Si Ni Cu Eo Ti
L Mn Si Ni Lu Fe li
0,06 3,5 0,5 65 30 1,1 2,0

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная в по Шарі	
	283	Состояние	mekyчести (МПа)	(МПа)	[%]	+20°C	-196°C
Средние значения	l1	ПС	350	560	40	160	140

СВАРИВАЕМЫЕ МАТЕРИАЛЫ										
Марки сплавов Ni BS3076	DIN 17743	Mat. Nr	ASTM/ACI	UNS						
NA 13	NiCu30Fe	2,4360	Monel 400	N04400						
	G-NiCu30Nb	2,4365								
NA 18	NiCu30Al	2,4375	Monel K500	N05500						

ВИДЫ УПАКОВКИ					
Диаметр (мм)	1,6	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 2.5 кг	X	X	X	Х	

LNT NiCu 70/30: 8ep. C-RU26-01/02/16

LNT NiTi

КЛАССИФИКАЦИЯ

AWS A5.14 ERNi1 A-Nr - Mat-Nr 2,415

ISO 18274 S Ni 2061 (NiTi3) F-Nr 41

9606 FM 6

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки чистого никеля и никелевых сплавов, а также соединения этих материалов с нелегированной/низколегированной сталью

Хорошо подходит для облицовки углеродистой стали

3ΔΙΙΙΝΤΗΜΕ ΓΔ3Μ (ΠΩ ISO 14175

I1 Инертный газ Ar (100%)

Инертный газ Ar+ 0,5-95% Не

химический состав проволоки (%)

С	Mn	Si	Ni	Ti	Fe
0,03	0,5	0,4	бал.	2,8	0,06

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	za3	Состояние	текучести (МПа)	(МПа)	[%]	+20°C	
Средние значения	l1	ПС	250	460	30	120	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классификация DIN		Mat. Nr	ASTM/ACI	
Ni 99,6	2,4060			
Ni 99,8	2,4050			
Ni 99,6Si	2,4056			
Ni 99,4Fe	2,4062			
Ni 99,2	2,4066	Сплав 200		
LC-Ni 99	2,4068	Сплав 201		
LC-Ni 99,6	2,4061	Сплав 205		
NiMn10	2,4108			
NiMn5	2,4116			

ВИДЫ УПАКОВКИ

Диаметр (мм)	2,0	2,4	Примечание: отрезка по длине = 1000 мм
ПЭ тубус, 2.5 kг	Χ	Χ	

LNT NiTi: 8ep. C-RU24-01/02/16

LNT CuNi30

AWS A5.7

A-Nr

Mat-Nr 2,0837

EN 14640

S Cu 7158 (CuNi30)

F-Nr 34 9606 FM

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки медно-никелевых сплавов с содержанием Ni 10-30%

Инертный газ Ar (100%)

13 Инертный газ Ar+ 0,5-95% Не

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

С	Mn	Ni	Si	Ti	Fe
бал.	0,75	30	0,05	0,35	0,5

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Твердость НВ	Ударная вязкость no Шарпи (Дж) +20°С
Средние значения	l1	ПС	250	400	30	70	100

CDADI	AD A EA	-	AATED	4.4.01
			MATEPI	

Сплавы меди	Стандарт	Tun	Mat. Nr	UNS	
Медно-никелев	ые кованые сплавь	I			
	DIN 17664	CuNi10Fe1Mn	2,0872	C 70600	
		CuNi30Mn1Fe	2,0882	C 71500	
		CuNi30Fe2Mn2	2,0883	C 71600	
Медно-никелев	ые литые сплавы				
	DIN 17658	G-CuNi10	2,0815		
		G-CuNi30	2,0835		

Диаметр (мм)	1,6	2,0	2,4
Π3 muhuc 25 k2	Χ	X	X

LNT CuNi30 Bep. C-RU24-01/02/16

LNT CuSn6

КЛАССИФИКАЦИЯ

AWS A5.7 ERCuSn-A

EN ISO 24373 S Cu 5180 (CuSn6P)

A-Nr F-Nr Mat-Nr 2,1022

9606 FM

33

ОБЩЕЕ ОПИСАНИЕ

Пруток сплошного сечения для сварки медно-оловянных сплавов

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Ar (100%)

Инертный газ Ar+ 0,5-95% Не

химический состав проволоки (%)

С	Sn	Р	
ĥап	6.0	N 2	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел текичести	Предел прочности	Отн. цалинение	Твердость	Ударная вязкость по Шарпи (Дж)
	2a3	Состояние	(МПа)	(МПа)	(%)	HB	+20°C
Средние значения	13	ПС	150	260	20	75	80

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Сплавы меди	Стандарт	Tun	Mat. Nr				
Медно-оловянн	Медно-оловянные деформируемые сплавы						
	DIN 17662	CuSn4	2,1016				
		CuSn6	2,1020				
		CuSn8	2,1030				
Медно-оловянные литые сплавы							
	DIN 1705	G-CuSn2ZnPb	2,1098				
		G-CuSn5ZnPb	2,1096				
		G-CuSn6ZnNi	2,1093				

BNUPL AUVKUBKN

Диаметр (мм)	2,0	2,4	3,2	
ПЭ тубус, 2.5 кг	Х	Х	Х	

LNT CuSn6: 8ep. RU 27-01/02/16

LNT CuSi3

AWS A5.7 ERCuSi-A A-Nr Mat-Nr 2,1461

EN ISO 24373 S Cu 6560 (CuSi3Mn1) F-Nr 32

9606 FM

ОБЩЕЕ ОПИСАНИЕ

Приток сплошного сечения для аргонодиговой сварки низколегированных медных сплавов Устойчивость к высокой температуре и коррозии

Инертный газ Ar (100%) 13 Инертный газ Ar+ 0,5-95% Не

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

C	Sn	Mn	Si	Zn	
бал.	0,1	1,0	3,0	0,1	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Твердость НВ	Ударная вязкость по Шарпи (Дж) +20°С
Средние значения	l1	ПС	120	350	40	95	60

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Низколегированные медные и медно-цинковые сплавы

RИ			

Диаметр (мм)	2,0	2,4
ПЭ тубус, 2.5 кг	Χ	Х

LNT CuSi3 Bep. C-RU24-01/02/16

КЛАССИФИКАЦИЯ

A-Nr

ISO 18273 S AI 1070 (AI99,7)

F-Nr 21 Mat-Nr 3.0259

ОБЩЕЕ ОПИСАНИЕ

Высокая устойчивость к химической коррозии и высокое сопротивление растрескиванию

Хорошо подходит для сварки металлов на основе алюминия с небольшим содержанием или без других элементов сплава в энергетической и химической отраслях

Как и все остальные материалы серии 1ххх для заполняющей сварки, Al 1070 — один из самых мягких алюминиевых присадочных прутков, поэтому его правильной подаче нужно уделять особое внимание

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

11 Инертный газ Ar (100%)

Расход газа 14,2 - 23,6 л/мин.

химический состав проволоки (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	V	Ti	Be
мин. 99,7	макс. 0,2	макс. 0,25	макс. 0,04	макс. 0,03	макс. 0,03	0	макс. 0,04	макс. 0,05	макс. 0,03	макс. 0,0003

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,03%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	20-30	65-80	29-35

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 647 - 658°С **Плотность** : около 2700 kг/м³

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Соединение сплавов 1ххх между собой или с другими сплавами

Электрические шины

Электрошкафы

Теплообменники

Металлизация

Электротехнические работы, химическая отрасль,

строительная и пищевая отрасли

виды упаковки

Диаметр (мм)	2,0	2,4	3,2	Примечание: отрезка по длине = 1000 мм

Superglaze® TIG 1070: 8ep. C-RU02-01/02/16

Картонная коробка, 5 кг

AWS 5.10 A-Nr ISO 18273 S AI 1100 (AI99.0Cu) F-Nr 21 EN 573.3 EN AW-Al99.0Cu Mat-Nr

ОБШЕЕ ОПИСАНИЕ

Высокая устойчивость к химической коррозии и высокое сопротивление растрескиванию

Хорошо подходит для сварки металлов на основе алюминия с небольшим содержанием или без других элементов сплава в энергетической и химической отраслях

Как и все остальные материалы серии 1ххх для заполняющей сварки, АІ 1100 — один из самых мягких алюминиевых присадочных притков, поэтоми его правильной подаче нижно иделять особое внимание

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Аг (100%) Расход газа 14.2 - 23.6 л/мин.

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
мин. 99,0	Α	А	0,05-0,20	макс. 0,05	0	0	макс. 0,10	0	макс. 0,0003	

Примечание: A = Si+Fe макс. 0,95

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	20-30	65-80	29-35

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 647 - 658°C Плотность : okoлo 2700 kг/м³

последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Соединение сплавов 1ххх между собой или с другими сплавами Теплообменники Электрические шины Металлизация

Электрошкафы Электротехнические работы, химическая отрасль,

строительная и пищевая отрасли

ВИЦРІ АЦУКОВКИ

Briggi / II/II(OBIN)						
Диаметр (мм)	1,6	2,0	2,4	3,2	4,0	Примечание: отрезка по длине = 1000 мм
Картонная коробка, 5 кг	Χ	Х	Х	Х	Х	

Superglaze® TIG 1100 Bep. C-RU01-01/02/16

LINCOLN **ELECTRIC** THE WELDING EXPERTS

393

КЛАССИФИКАЦИЯ

 AWS 5.10
 R4043
 A-Nr

 ISO 18273
 S AI 4043A (AISi5)
 F-Nr
 23

 EN 573,3
 EN AW-AISi5
 Mat-Nr
 3,2245

ОБЩЕЕ ОПИСАНИЕ

Предназначается для сварки пригодных к тепловой обработке сплавов, особенно сплавов серии 6ххх

Более низкая температура плавления и текучесть по сравнению со сплавами серии 5ххх

Низкая сколнность к трещинообразованию при сварке сплавов серии 6ххх

Хорошо подходит для эксплуатации в условиях постоянно повышенной температуры, т. е. выше 652С

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

I1 Инертный газ Ar (100%) Расход газа : 14,2 - 23,6 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS DB TÜV

<u>ХИМ</u>ИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	4,5-6,0	макс. 0,6	0,05-0,020	макс. 0,05	0	-	макс. 0,1	0	макс. 0,0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	20-40	120-165	3-18

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 573 - 625°C Плотность : около 2680 kz/м3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Сварка сплавов 6XXX и большинства литейных сплавов Автомобильные детали, например, кузова и приводные валы

Рамы велосипедов

виды упаковки

Диаметр (мм)	1,6	2,0	2,4	3,2	4,0	4,8	Примечание: отрезка по длине = 1000 мм
Картонная коробка. 5 кг	X	X	X	X	Х	X	

Superglaze* TIG 4043: 8ep. C-RU22-01/02/16

AWS 5.10 R4047 A-Nr ISO 18273 S AI 4047 (AISi12) F-Nr 23 EN 573.3 EN AW-AISi12 3.2585 Mat-Nr

ОБЩЕЕ ОПИСАНИЕ

Более низкая температура плавления и более высокая текучесть по сравнению с проволоками серии 4043 Может использоваться вместо 4043 в тех случаях, когда от наплавленного металла требуется более высокое содержание кремния, меньшее образование горячих трещин и большая прочность на срез при угловой сварке Может использоваться в качестве припоя

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

Инертный газ Аг (100%) Расход газа : 14,2 - 23,6 л/мин.

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	11-13	макс. 0,8	макс. 0,30	макс. 0,15	0,10	0	макс. 0,20	0	макс. 0,0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА

Защитный		Состояние	Предел	Предел	Отн.
газ Состояние			mekyчести (МПа)	прочности (МПа)	удлинение (%)
Средние значения	l1	ПС	60-80	130-190	5-20

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 573 - 585°C Плотность : okono 2680 k2/m3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Сварка сплавов 6XXX и большинства литейных сплавов

Автомобильные детали, радиаторы и системы кондиционирования воздуха

		BKN

Диаметр (мм)	2,0	2,4	3,2	4,0	Примечание: ompe3ka no длине = 1000 мм
Картонная коробка. 5 кг	Х	Х	Х	Χ	

Superglaze® TIG 4047: 8ep. C-RU22-01/02/16

КЛАССИФИКАЦИЯ

A-Nr

ISO 18273 S AI 5087 (AIMg4,5MnZr)

F-Nr 22 Mat-Nr 3.3546

ОБШЕЕ ОПИСАНИЕ

Создан для использования в тех случаях, когда прочность на разрыв наплавленного металла должна равняться прочности высоколегированных магниевых сплавов

Предназначается для сварки основных металлов с максимальным содержанием Мд 5%

Содержание циркония обеспечивает мелкозернистую структуру металла шва

Низкая склонность к образованию усадочных трещин на закрепленных изделиях

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

11 : Инертный газ Ar (100%)13 : Инертный газ Ar+ 0,5-95% Не

Расход газа : 8 - 15 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

GL	LK	DR	100	vvivveo	
+*	+*	+	+	+	(SI u II Ancas anh nungal*

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Zr	Be
бал.	макс. 0,25	макс. 0,4	макс. 0,05	0,7-1,1	4,5-5,2	0,05-0,25	макс. 0,25	макс. 0,15	0,10-0,20	макс. 0,0003

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	125-140	275-300	17-30

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 568 - 638°C Плотность : около 2660 kг/м3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Строительство и ремонт морских сооружений Железнодорожная отрасль Криогенные резервиары Автомобильная отрасль

Судостроение и иные работы с высокопрочным конструкционным алюминием Автомобильные прицепы и офшорные сооружения

BNUPI AUVKUBKN

Диаметр (мм)	1,6	2,0	2,4	3,2	4,0	4,8
Картонная коробка. 5 kz	Х	Х	Х	Х	Х	Х

Superglaze® TIG 5087: 8ep. C-RU02-01/02/15

КЛАССИФИКАЦИЯ

 AWS 5.10
 R5183
 A-Nr

 ISO 18273
 S AI 5183 (AIMg4,5Mn0,7(A))
 F-Nr
 22

 EN 573,3
 EN AW-AIMg4,5Mn
 Mat-Nr
 3,3548

ОБШЕЕ ОПИСАНИЕ

Создан для использования в тех случаях, когда прочность на разрыв наплавленного металла должна равняться прочности магниевых сплавов

Предназначается для основных материалов 5083 и 5654

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

11 : Инертный газ Ar (100%)13 : Инертный газ Ar+ 0,5-95% Не

Расход газа : 8 - 15 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

WIWeb	BV	DNV	ΤÜV	DB	LR	GL	ABS
+	+	+	+	+	+	+	+

химический состав проволоки (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
han	Make 0.4	Makr ∩ 4	Make 01	0.5-1.0	13-52	0.05-0.25	Make 0.25	Make 015	Make 0.0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	125-165	270-290	16-25

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 568 - 638°С Плотность : около 2660 kг/м3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Строительство и ремонт морских сооружений Военная промышленность

Криогенные резервуары Железнодорожная и автомобильная промышленность

Судостроение и иные работы с высокопрочным конструкционным Автомобильные прицепы и офшорные сооружения

алюминием

ΒΝΠΡΙ ΛΠΨΚυΒΚΙ

Диаметр (мм)	1,6	2,0	2,4	3,2	4,0
Картонная коробка. 5 кг	Х	Х	Х	Х	Х

Superglaze*TIG 5183: 8ep. C-RU23-01/02/16

КЛАССИФИКАЦИЯ

 AWS 5.10
 R5356
 A-Nr

 ISO 18273
 S AI 5356 (AIMg5Cr(AI))
 F-Nr
 22

 EN 573,3
 EN AW-AIMg5
 Mat-Nr
 3,3556

ОБШЕЕ ОПИСАНИЕ

Заполняющий сплав основного назначения для сварки сплавов серии 5XXX, когда не требуется прочность на разрыв 276 МПа После анодирования цвет наплавленного металла полностью соответствует цвету основы

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

11 : Инертный газ Ar (100%) 13 : Инертный газ Ar+ 0.5-95% Не

Расход газа : 8 - 15 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	GL	LR	DB	TÜV	DNV	BV

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	макс. 0,25	макс. 0,4	макс. 0,1	0,05-0,2	4,5-5,5	0,05-0,20	макс. 0,1	0,06-0,2	макс. 0,0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	11	ПС	110-120	240-296	17-26

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 562 - 633°С Плотность : около 2640 kг/м3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Металлоконструкции в судостроении Хозинвентарь, резервуары для хранения Железнодорожная отрасль Автомобильная отрасль и автотрейлеры Формованные панели грузовых автомобилей Автомобильные бамперы и стойки

ВИЛЫ УПАКОВКИ

Диаметр (мм)	1,6	2,0	2,4	3,2	4,0	5,0	Примечание: отрезка по длине = 1000 мм
Каптонная колобка. 5 кг	Χ	Χ	Χ	Χ	Χ	X	

Superglaze® TIG 5356 Bep. C-RU22-01/02/16

AWS 5.10 R5554 A-Nr ISO 18273 AI 5554 F-Nr Mat-Nr

ОБШЕЕ ОПИСАНИЕ

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

: Инертный газ Аг (100%) 13 : Инертный газ Аг+ 0,5-95% Не

: 8 - 15 л/мин. Расход газа

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be	
бал.	макс. 0.25	макс. 0.4	макс. 0.1	0.5-1.0	4.7-5.5	0.05-0.20	макс. 0.25	0.05-0.20	макс. 0.0003	

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА

	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	125-145	275-295	17-25

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 562 - 633°C Плотность : около 2660 кг/м3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Металлоконструкции в судостроении Автомобильная отрасль и автотрейлеры Хозинвентарь, резервуары для хранения Железнодорожная отрасль

Формованные панели грузовых автомобилей Автомобильные бамперы и стойки

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,6	2,0	2,4
Картонная коробка, 5 кг	Χ	Χ	Х

Superglaze® TIG 5554 Bep. C-RU01-01/02/16

КПАССИФИКАНИЯ

 AWS 5.10
 AI 5754
 A-Nr

 ISO 18273
 S AI 5754 (AIMg3)
 F-Nr
 22

 Mat-Nr
 3.3536

ОБШЕЕ ОПИСАНИЕ

Сплав алюминия с магнием, предназначенный для сварки сплавов с максимальным содержанием Мд 3.5%

Отличается высокой стойкостью k коррозии. После анодирования цвет наплавленного металла полностью соответствует цвету основы

Хорошо подходит для широкого ряда задач в области строительства

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

11 : Инертный газ Ar (100%)13 : Инертный газ Ar+ 0,5-95% Не

Расход газа : 8 - 15 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

4

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Be
бал.	макс. 0,4	макс. 0,4	макс. 0,1	макс. 0,5	2,6-3,6	макс. 0,3	макс. 0,20	макс. 0,15	макс. 0,0003

Примечание: общее содержание не указанных здесь элементов не должно превышать 0,15%

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА

	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)
Средние значения	l1	ПС	70-80	180-200	15-20

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интервал плавления : 580 - 642°С Плотность : около 2660 kг/м3

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Строительные работы общего назначения Автомобильные бамперы и стойки

ВИЛЫ УПАКОВКИ

Диаметр (мм)	1,6	2,0	2,4	3,2	4,0	Примечание: ompeзka no gлине = 1000 мм
Картонная коробка, 5 кг	X	Χ	Χ	Х	Χ	

Superglaze® TIG 5754: 8ep. C-RU01-01/02/16

LNGI

КПАССИФИКАНИЯ

AWS 5.2 R45* **A-Nr** 1 **Mat-Nr** 1,0324

EN 12536 0 I **F-Nr** 6 * самый близкий класс **Mat-Nr** -

ΠΕΙΙΙΕΕ ΠΠИΓΔΗΜΕ

Присадочные прутки для кислородноацетиленовой газовой сварки строительной стали общего назначения

Хорошо подходит для сварки низкоуглеродистой стали

Макс. расчетная температура 350°С

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Р	S	Cr	Ni	Мо
0,07	0,5	0,1	0,01	0,01	0,04	0,03	0,01

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) +20°С
Cuonnicas annuana	ПС	280	300	16	50

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Tun	
Трубная сталь	om L210 go L290	

Конструкционная сталь общего назначения от \$185 go \$275

ВИДЫ УПАКОВКИ

етр (мм)	2,0	3,0
онная коробка, 5 кг	Х	Х

LNG I: 8ep. C-RU23-01/02/16

LNGII

классификация

AWS 5.2 R60* **A-Nr** 1 **Mat-Nr** 1,0349

EN 12536 О II **F-Nr** 6
* самый близкий класс **Mat-Nr** -

UPILIEE UUNCAHNE

Присадочные прутки для кислородноацетиленовой газовой сварки строительной стали общего назначения

Хорошо подходит для сварки низкоуглеродистой стали

Макс. расчетная температура 350°С

Более высокие механические характеристики по сравнению с LNG I

химический состав проволоки (%)

С	Mn	Si	Р	S
0,10	1,1	0,15	0,01	0,01

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Предел Предел Отн. Ударная вязкость Состояние текучести (МПа) прочности удлинение по Шарпи (Дж) (МПа) (%) +20°C	Cocmo
ΠC 320 430 17 60	Средние значения ПО

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Tun	
Трубная сталь	om L210 go L290	

Конструкционная сталь общего назначения

om S185 go S275

виды упаковки

Диаметр (мм)	1,6	2,0	2,5	3,0	4,0
Картонная коробка, 5 кг	Χ	Х	Х	Χ	X

LNG II: 8ep. C-RU23-01/02/16

LNGIV

КЛАССИФИКАНИЯ

AWS 5.2 R65* **A-Nr** 2 **Mat-Nr** 1,5425

EN 12536 0 IV **F-Nr** 6 * самый близкий класс **Mat-Nr** -

ΠΕΙΙΙΕΕ ΠΠИΓΔΗΜΕ

Присадочные прутки с содержанием Мо 0,5% для кислородноацетиленовой газовой сварки мелкозернистой и жаропрочной стали Макс. рабочая температира 500°С

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Р	S	Mo
0,09	1,0	0,19	0,01	0,01	0,50

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
	Состояние	текучести (МПа)	(МПа)	(%)	+20°C	
Средние значения	ПС	380	500	22	60	

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Классы стали	Стандарт	Tun		
Трубная сталь	EN 10208-2		om L210 go L290	

Конструкционная сталь общего назначения om S185 go S275

Сталь для бойлеров и камер высокого давления Р295, Р355, 16Мо3

ВИДЫ УПАКОВКИ

Диаметр (мм)	2,0	2,5	3,0	4,0
Kanmouuag konofika 5 ka	Χ	X	X	X

LNG IV: 8ep. C-RU23-01/02/16

ПОРОШКОВАЯ ПРОВОЛОКА

OUTERSHIELD

Металлопорошковая проволок
для сварки углеродистых и
низколегированных сталей
Outershield® MC700 406
Outershield® MC710-H408
Outershield® MC710C-H 410
Outershield® MC715-H412
Outershield® MC715-Ni1-H 414
Outershield® MC420N-H 416
Outershield® MC460VD-H 418
Рутилово-основная проволока
- giriario de de la dilari il podorio ka

i gilianooo ochoonan lipoooni	
для нелегированных сталей	
Outershield® 70-H	420
Outershield® 71E-H	422
Outershield® 71M-H	424
Outershield® 71MS-H	426
Outershield® T55-H	428
Рутиловая газозащитная	
проволока для низколегиров	ан-
The content and the transfer of	

проволока для низколегирс	ован-
ной стали	
Outershield® 81Ni1-H	430
Outershield® 81Ni1-HSR	432
Outershield® 81NiC-H	434
Outershield® 81K2-H	436
Outershield® 81K2-HSR	438
Outershield® 91Ni1-HSR	440
Outershield® 91K2-HSR	442
Outershield® 101Ni1-HSR	444
Outershield® 690-H	
Outershield® 690-HSR	

INNERSHIELD (самозащитная)

NR®-152	462
NR®-203 NiC	464
NR®-203Ni1	466
NR®-211-MP	468
NR®-232	470
NR®-233	472
NR®-207-H	474
NR®-208-H	476
NR®-305	478
NR®-311	480
NR®-400	482
NS®-3M	484
	NR®-203 NiC NR®-203Ni1 NR®-211-MP NR®-232 NR®-233 NR®-207-H NR®-208-H NR®-305 NR®-311. NR®-4400

COR-A-ROSTA (газозащитн	ая,
для нержавеющей стали)	
Cor-A-Rosta® 304L	486
Cor-A-Rosta® P304L	488
Cor-A-Rosta® 347	490
Cor-A-Rosta® 316L	492
Cor-A-Rosta® P316L	494
Cor-A-Rosta® 309L	496
Cor-A-Rosta® P309L	498
Cor-A-Rosta® 309MoL	500
Cor-A-Rosta® P309MoL	502
Cor-A-Rosta® 4462	504
Cor-A-Rosta® P4462	

Lincore® 33 508 Lincore® 40-0 510	
	3
11	
Lincore® 50 512	
Lincore® 55 514	
Lincore® 60-0 516	
Lincore® T&D 518	
Lincore® 15CrMn 520)
Lincore® 420 522	
Lincore® M 524	

Outershield® 71MS-H (CO₂)

with outstanding mechanical properties at

$\Gamma \Delta W$

Outershield® MC700

КЛАССИФИКАЦИЯ

 AWS A5.18
 E70C-6M H8
 A-Nr
 1

 EN ISO 17632-A
 T 46 2 M M 2 H10
 F-Nr
 6

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Высокоэффективная газозащитная металлопорошковая проволока для сварки во всех пространственных положениях

Технологична в использовании благодаря высоким сварочным характеристикам

Очень низкое образование шлака, практически полное отсутствие разбрызгивания, хорошая подаваемость проволоки

Постоянно высокое качество продукции и точный контроль легирования

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Расход газа : 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный газ	C	Mn	Si	Р	S	HDM
M21	0,05	1,35	0,6	0,015	0,023	5 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Зашитный		Предел mekyчести	Предел прочности	Отн. удлинение	Ударная в по Шарі	
	283	Состояние	(МПа)	(МПа)	(%)	-20°C	-30°C
Требования: AWS A5.18 EN ISO 17632-A			мин. 400 мин. 460	мин. 480 530-680	мин. 22 мин. 20	мин. 47	мин. 27
Средние значения	M21	ПС	475	560	24	75	45

ВИДЫ УПАКОВКИ

Диаметр (мм) 1,2 Кассета B300, 15 kг X

Outershield' MC700: 8ep. C-RU05-01/02/16

Outershield® MC700

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH36

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB,

L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 yacmb 3 S275, S355, S420

EN 10025 часть 4 S275M, S275ML, S355M, S355ML, S420M, S420ML

Диаметр (мм)	Tun gyzu	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Kz проволоки/ kz наплавленного металла
1,2	Короткая дуга	15	230	100	15	1,1	1,10
			320	120	16	1,4	1,10
			400	150	17	1,9	1,10
1,2	Широкая дуга	20	635	180	28-30	2,7	1,10
			940	275	31-34	4,8	1,10
			1420	340	35-38	6,8	1,10

ОПТИМАЛЬНІ	ЫЕ РЕЖИМЬ	І СВАРКИ ЗАП	олняющих	проходов в защи	ГНОМ ГАЗЕ А	Ar + (>15-25J% CO ₂
Диаметр		Простра	нственные п	оложения сварки		
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	
1,2	230-280A	230-380A	230-300A	130-170A	140-175A	
	26-36B	26-36B	26-30B	15-17B	16-17B	

Outershield® MC710-H

КЛАССИФИКАЦИЯ

 AWS A5.18
 E70C-6M H4
 A-Nr
 1

 EN ISO 17632-A
 T 46 3 M M 2 H5 (Ø1,2 u 1,6 MM)
 F-Nr
 6

 T 46 2 M M 2 H5 (Ø2,0 u 2.4 MM)
 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Высокоэффективная газозащитная металлопорошковая проволока для сварки во всех пространственных положениях Технологична в использовании благодаря высоким сварочным характеристикам

Очень низкое образование шлака, практически полное отсутствие разбрызгивания, хорошая подаваемость проволоки

Хорошо подходит для сварки металла с окалиной, хорошая устойчивость к порообразованию

Высокие показатели ударной вязкости наплавленного металла при низких температурах (мин. 47 Дж по Шарпи при -30°C)

Низкое содержание диффизионного водорода в наплавленном металле (HDM <5 мл/100 г)

Постоянно высокое качество продукции и точный контроль легирования

ПРОСТРАНСТВЕННЫ<u>Е ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)</u>

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxog газа : 15-25 л/мин.

одобрения сег	РТИФИКАІ	ДИОННЫХ АГ	ЕНТСТВ						
Защитный газ	ABS	BV	DB	DNV	GL	LR	RINA	RMRS	ΤÜV
M21	3YSAH5	SA3YMH5	+	IIIYMS(H5)	3YH5S	3YSH5	3YS	3YSH5	+

химический со	НЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
Защитный газ	С	Mn	Si	Р	S	HDM				
M21	0,05	1,35	0,6	0,015	0,023	3 мл/100 гр.				

МЕХАНИЧЕСКИЕ ХАРА	Защитный	и НАПЛАВЛЕ! Состояние	ННОГО МЕТАЛ Предел текичести	1ЛА (%) Предел прочности	Отн. цалинение		Ударная вязкость по Шарпи (Дж)			
	2a3		(МПа)	(МПа)	[%]	-20°C	-29°C/-30°C	-40°C		
Требования: AWS A5.18 EN ISO 17632-A (1,2-1,6)			мин. 400 мин. 460	мин. 480 530-680	мин. 22 мин. 20		мин. 27 мин. 47			
Средние значения	M21 M21	ПС CH	495 430	570 530	26 28	90	60 105	75		
CH : 15 4/580°C										

ВИДЫ УПАКОВКИ							
Диаметр (мм)	1,0	1,2	1,4	1,6			
Kaccema S200, 5 kz	Χ	Χ					
Kaccema B300, 15 kz	Χ	Χ	Χ	Χ			
Kaccema B435, 25 k2			Χ	Χ			
Бухта Accutrak®, 200 kг	Χ	Χ	Χ	Χ			
Металлическая kamyшka, 270 kг				Χ			

Outershield® MC710-H: Bep. C-RU23-19/04/16

Outershield® MC710-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tur

Конструкционная сталь общего назначения

EN 10025 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH36

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60, X65 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355, S420, S460

EN 10025 yacmb 4 S275M, S275ML, S355M, S355ML, S420M, S420ML, S460M, S460ML

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Tun gyzu	Вылет электрода (мм)	Скорость подачи проволоки см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (kz/ч)	Kz npoволоки/ kz наплавленного металла
1,2	Короткая дуга	15	230	100	15	1,1	1,10
			320	120	16	1,4	1,10
			400	150	17	1,9	1,10
1,2	Широкая дуга	20	940	275	31-34	4,8	1,10
			1420	340	35-38	6,8	1,10
			445	170	27-29	2,5	1,10
1,4	Широкая дуга	25	890	270	29-32	5,0	1,10
			1400	355	32-34	8,1	1,10
			635	325	29-32	5,0	1,10
1,6	Широкая дуга	25	890	400	34-37	7,0	1,10
			1145	460	36-38	9,1	1,10
			320	290	25-27	3,7	1,05
2,0	Широкая дуга	28	510	385	28-31	6,1	1,05
			760	510	32-35	9,3	1,05
				400	28-32		
2,4	Широкая дуга	30		475	28-32		
				550	30-34		

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% СО

0111711-1701	DITIBLE I EXITABLE		толи плио щиле	пп олодов в элеци	IIIOMINISEN	(13 23) 70 202	
Диамет				оложения сварки			
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G		
1,2	230-380A 26-36B	230-380A 26-36B	230-300A 26-30B	130-170A 15-17B	140-175A 16-17B		
1,4	240-385A 26-36B	240-385A 26-36B	240-340A 26-31B	160-180A 14-15B	175-185A 15-16B		
1,6	280-460A 28-36B	280-460A 28-36B	270-300A 28-30B				
2,0	300-510A 28-33B	300-510A 28-33B					
2,4	400-550A 32-36B	400-550A 32-36B				LINCOLN	4

Outershield® MC710C-H

AWS A5.18 E70C-6C H4 A-Nr FN ISO 17632-A T 46 3 M C 2 H5 F-Nr 6 9606 FM 1

ОБШЕЕ ОПИСАНИЕ

Высокоэффективная порошковая проволока для сварки в защитном газе СО2 во всех пространственных положениях Технологична в использовании благодаря высоким сварочным характеристикам

Низкое образование шлака, практически полное отсутствие разбрызгивания, обеспечивает хорошую подаваемость

Хорошо подходит для сварки загрунтованного металла и металла с окалиной, хорошая устойчивость к порообразованию на загрунтованных пластинах

Высокие показатели идарной вязкости наплавленного металла при низких температирах (мин 47 Дж по Шарпи npu -30°С)

Постоянно высокое качество продукции и точный контроль легирования

ПРОСТРАНСТВЕННЫ<u>Е ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)</u>

РОД ТОКА / ЗАШИТНЫЙ ГАЗ (ISO 14175)

: Активный газ 100% (1 Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	ABS	BV	DNV	GL	LR	RINA	ΤÜV				
C1	3YSAH5	3YH5	III YMS	3YH5	3YH5	3YSh5	+				

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный газ	С	Mn	Si	Р	S	HDM
C1	0,05	1,35	0,6	0,015	0,023	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Ударная вязкость Предел Предел Отн. Защитный ́по Шарпи (Дж) Состояние mekuvecmu прочности иалинение газ -20°C (MΠa) (M∏a) [%] -29°C/-30°C Tnefinflahug: AWS A518 мин 400 мин 22 мин 27 мин 480 EN ISO 17632-A мин. 460 530-680 мин. 20 мин. 47 Средние значения C1 ПС 90 70 490 585 27

ВИДЫ УПАКОВКИ

Диаметр (мм) 1,2 Kaccema B300, 15 kz

Outershield* MC710C-H: 8ep. C-RU25-01/02/16

Outershield® MC710C-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH36

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355, S420

EN 10025 часть 4 S275M, S275ML, S355M, S355ML, S420ML, S460

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Tun gyzu	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Kz проволоки/ kz наплавленного металла
1,2	Короткая дуга	15	230	100	15	1,1	1,10
			320	120	16,5	1,4	1,10
			400	150	17	1,9	1,10
1,2	Широкая дуга	20	635	180	28-30	2,7	1,10
			940	275	31-34	4,8	1,10
			1420	340	35-38	6.8	1.10

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮШИХ ПРОХОДОВ В ЗАШИТНОМ ГАЗЕ Ar + I	>15-25	1% CO.	

Диаметр	Пространственные положения сварки						
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G		
1,2	230-380A	230-380A	230-300A	100-170A	140-175A		
	26-36B	26-36B	26-30B	16-17B	16-17B		

Outershield® MC715-H

AWS A5.18 E70C-6M H4 A-Nr EN ISO 17632-A T 46 4 M M 2 H5 F-Nr 6 9606 FM 1

ОБШЕЕ ОПИСАНИЕ

Металлопорошковая газозащитная проволока для сварки во всех пространственных положениях

Низкое образование шлака, практически полное отсутствие разбрызгивания, хорошая подаваемость проволоки

Технологична в использовании благодаря высоким сварочным характеристикам

Высокие показатели ударной вязкости наплавленного металла при низких температурах (мин 47 Дж по Шарпи npu -40°С

Постоянно высокое качество продукции и точный контроль легирования

В зависимости от типа применения является хорошей альтернативой основным порошковым проволокам

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+

: Смешанный газ Ar+ (>15-25%) CO M21 Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТЕ

Защитный газ	BV	DB	DNV	GL	RINA
M21	SA3,3YMHH	+	IV Y40H5	4Y40H5S	4YSH5

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный газ	C	Mn	Si	Р	S	НДМ
M21	0,04	1,5	0,4	0,012	0,020	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%

	Зашитный		Предел mekuчести	Предел прочности	Отн. цалинение		ная вязк Шарпи (£	
	283	Состояние	- 3 - 3	(МПа)	(%)	-30°C	-40°C	-50°C
Требования: AWS A5.18 EN ISO 17632-A			мин. 400 мин. 460	мин. 480 530-680	мин. 22 мин. 20		мин. 47	
Средние значения	M21 M21	ΠC CH	480 430	580 485	27 30	120	110 120	80 90

CH: 2 4/640°C

Диаметр (мм)	1,0	1,2	1,4	1,6
Kaccema S200, 5 kz	Χ	Χ		
Kaccema B300, 15 kz	Χ	Χ	Χ	Χ
Бухта Accutrak®, 200 kг	Χ	Χ	Χ	Χ

Outershield* MC715-H: 8ep. C-RU28-12/05/16

Outershield® MC715-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH40

Литая сталь EN 10213-2 G P 240R

Трибная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L3600B, L240MB,

L290MB, L360MB, L415MB, L415NB, L445

API 5LX X42, X46, X52, X60, X65 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давления EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 yacmb 3 S275N, S275NL, S355N, S355NL, S420N, S420NL, S460N, S460NL EN 10025 часть 4 S275M, S275ML, S355M, S355ML, S420M, S420ML, S460M, S460ML

ДАННЫЕ ПО І	РАСХОДУ						
Диаметр (мм)	Tun gyги	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Kz проволоки/ kz наплавленного металла
1,2	Короткая дуга	15	230	100	15	1,1	1,10
			320	120	16	1,4	1,10
			400	150	17	1,9	1,10
1,2	Широкая дуга	20	635	180	28-30	2,7	1,10
			940	275	31-34	4,8	1,10
			1420	340	35-38	6,8	1,10
1,4	Короткая дуга	15	205	105	14,5	1,2	1,10
			255	125	15,0	1,5	1,10
			280	135	15,5	1,6	1,10
1,4	Широкая дуга	20	445	170	27-29	2,5	1,10
			890	270	29-32	5,0	1,10
			1400	355	32-34	8,1	1,10
1,6	Короткая дуга	18	180	145	15	1,5	1,10
			205	160	16	1,7	1,10
			230	170	18	1,9	1,10
1,6	Широкая дуга	25	380	235	25-26	2,9	1,10
			635	325	29-32	5,0	1,10
			890	400	34-37	7,0	1,10
			1145	460	36-38	9,1	1,10

mp	иаметр	Пространственные положения сварки								
PA/1G	(мм)	PB/2F	PC/2G	PF/3G на подъем	PE/4G					
230-380A	1,2	230-380A	230-300A	130-170A	140-175A					
26-36B		26-36B	26-30B	15-17B	16-17B					
240-385A	1,4	240-385A	240-340A	160-180A	175-185A					
26-36B		26-36B	26-31B	14-15B	15-16B					
280-460A	1,6	280-460A	270-300A							
28-36B		28-36B	28-30B			TINCOLN				

$\mathsf{N}\mathsf{V}\mathsf{J}$

Outershield® MC715Ni1-H

КЛАССИФИКАЦИЯ

 AWS A5.28
 E80 C-Ni1M H4
 A-Nr
 10

 EN ISO 17632-A
 T 46 5 1Ni M M 2 H5
 F-Nr
 6

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Газозащитная металлопорошковая проволока с содержанием Ni 1% для сварочных работ на офшорных сооружениях и иного подобного применения

Технологична в использовании благодаря высоким сварочным характеристикам

Практически полное отсутствие разбрызгивания, хорошая подаваемость проволоки

Высокие показатели ударной вязкости наплавленного металла при низких температурах (мин 47 Дж по Шарпи при -50° C)

Постоянно высокое качество продукции и точный контроль легирования

Cogepжaние Ni в составе позволяет выполнить требования "кислотозащищенного исполнения", например, стандарта NACE MR0175

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxog газа : 15-25 л/мин.

		4 —		Î
PA/1G	PB/2F	PC/2G	PF/3Gu	PE/4G

химический со	OCTAB H	АПЛАВЛ	ЕННОГО	МЕТАЛ.	ЛА [%]		
Защитный газ	С	Mn	Si	Р	5	Ni	НДМ
M21	0,05	1,35	0,45	0,020	0,020	0,95	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРА	ктеристикі	и наплавле	ННОГО МЕТА.	ЛЛА (%)				
	Защитный	Состояние	Предел текичести	Предел прочности	Отн. цалинение		ная вязко Шарпи (Д	
	2a3		(МПа)	[·] (M∏a)	[%]	-40°C	-50°C	-60°C
Требования: AWS A5.28			мин. 470	мин. 550	мин. 24	мин. 27		
EN ISO 17632-A			мин. 460	530-680	мин. 20		мин. 47	
Средние значения	M21	ПС	530	600	25	100	80	60

ВИДЫ УПАКОВКИ				
Диаметр (мм)	1,2	1,6		
Кассета S300, 14 kz (в алюм. пленке)	Χ	X		
Kaccema B300, 15 kz	Χ			

Outershield* MC715Ni1-H: 8ep. C-RU04-01/02/16

Outershield® MC715Ni1-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 vacmb 2 S185, S235, S275, S355, S460

Листы судостроительной стали

ASTM A131 Mapku A. B. D. om AH32 go EH40

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240NB. L290NB. L360NB. L360OB. L240MB. L290MB. L360MB. L415MB. L415NB

API 5LX X42, X46, X52, X60, X65 EN 10216-1 P235T1, P235T2, P275T1 EN 10217-1 P275T2. P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH Сталь с мелкозернистой структурой

EN 10025 часть 3 S275N, S275NL, S355N, S355NL, S420N, S420NL, S460N, S460NL EN 10025 часть 4 S275M, S275ML, S355M, S355ML, S420M, S420ML, S460M, S460ML

Скорость Произвоаиподачи тельность Кг проволоки/ Диаметр Вылет электрода проволоки Сварочный Напряжение наплавки кг наплавленного (см/мин.) mok (A) gyzu (B) (kz/u) (MM) Tun gyzu (MM) металла 15 1.2 Короткая дуга 15 230 100 1.1 1.10 320 120 16 1,4 1,10 400 150 17 19 1.10 1.2 Широкая дуга 20 635 180 28-30 2.7 1.10 940 275 31-34 4,8 1,10 1420 340 35-38 6,8 1,10 16 18 180 145 15 1.5 1.10 Короткая дуга 205 1,7 160 16 1,10 230 170 18 1.9 1.10 25 380 235 2,9 1,6 Широкая дуга 25-26 1,10 635 325 29-32 5,0 1,10 890 400 34-37 7.0 1.10 1145 460 36-38 9.1 1.10

иаметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G					
1,2	230-380A 26-36B	230-380A 26-36B	230-300A 26-30B	130-170A 15-17B	140-175A 16-17B					
1,6	280-460A 28-36B		270-300A 28-30B							

Outershield® MC420N-H

AWS A5.28 E70C-GM H4 A-Nr EN ISO 17632-A T 38 Z Z M M 2 H5 F-Nr 6 9606 FM 1

Примечание: вышеуказанная классификация описывает характеристики металла в состоянии после сварки. При этом проволока Outershield MC420N-H разработана для только применения с последующей нормализацией. Так как ни AWS, ни EN не описывают свойства металла после нормализации, классификация проволоки не соответствует реальным условиям, для которых она была разработана.

ОБШЕЕ ОПИСАНИЕ

Высокоэффективная металлопорошковая проволока для сварки в смешанном защитном газе во всех пространственных положениях

Высокие характеристики дуги, низкое образование шлака, практически полное отсутствие разбрызгивания, хорошая подаваемость проволоки

Высокая истойчивость к порообразованию

Разработана для применения с последующей нормализацией (4 часа при 900°C)

Механические свойства наплавленного металла после нормализации отвечают требованиям, предъявляемым основному материалу

Обязательно требует последующей нормализации!

ПРОСТРАНСТВЕННЫ<u>Е ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME</u>

PC/2G

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

M21 : Смешанный газ Ar+ (>15-25%) CO₃ Расход газа : 15-25 л/мин.

химический со	OCTAB H	АПЛАВЛ	ЕННОГО	МЕТАЛ.	ЛА [%]			
Защитный газ	С	Mn	Si	Р	S	Cr	Ni	HDM
M21	0,03	0,6	0,45	0,017	0,023	0,03	2,9	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХА	АРАКТЕРИСТ	ИКИ НАПЛА	ВЛЕННОГО МЕ	ТАЛЛА [%]		
	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) -50°С
Средние значения	M21	N	353	493	32	57

N = 900°C/4 u

ВИДЫ УПАКОВКИ		
Диаметр (мм)	1,6	
Kaccema B300, 15 k2	Χ	
Бухта Accutrak®, 200 kг	Χ	

Outershield® MC420N-H: Bep. C-RU27-01/02/16

Outershield® MC420N-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Koq Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH36

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

EN 10028-3 P275N, P355N

Сталь с мелкозернистой структурой

EN 10025 4acmb 3 S275N, S275NL, S355N, S355NL

Проволока предназначена только для сварки с последующей нормализацией материала

ДАННЫЕ	ПО РАСХОДУ						
Диаметр (мм)	Tun gyzu	Вылет электрода (мм)	Ckopocmь nogaчu npoволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Kz проволоки/ kz наплавленного металла
1,2	Широкая дуга	20	635	180	28-30	2,7	1,10
			940	275	31-34	4,8	1,10
			1420	340	35-38	6,8	1,10
1,6	Широкая дуга	25	380	235	25-26	2,9	1,10
			635	325	29-32	5,0	1,10
			890	400	34-37	7,0	1,10
			1145	460	36-38	9,1	1,10

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO

Диаметр		· · · · · · · · · · · · · · · · · · ·						
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G			
1,2	230-380A	230-380A	230-300A	130-170A	140-175A			
	26-36B	26-36B	26-30B	15-17B	16-17B			

W V J

Outershield® MC460VD-H

КЛАССИФИКАЦИЯ

 AWS A5.18
 E70C-6M H4
 A-Nr
 10

 EN ISO 17632-A
 T 46 2 M M 1 H5
 F-Nr
 6

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Металлопорошковая проволока для угловой сварки с высокой эффективностью

Рекомендуется сварки пластин небольшой толщины в вертикальном направлении на спуск

Технологична в использовании благодаря высоким сварочным характеристикам

Не образует шлака, только отдельные силикатные формирования

Хорошая подаваемость проволоки

Высокая устойчивость к образованию пор при сварке загрунтованных поверхностей

Постоянно высокое качество продукции и точный контроль легирования

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC -M21

1 : Смешанный газ Ar+ (>15-25%) СО₂

Pacxog газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	ABS	BV	DNV	GL	LR
M21	3YSA,H5	SA3YMHHH	IIIYMSH5	3YH5S	3S,3YSH5

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный газ	С	Mn	Si	Р	S	HDM
M21	0,05	1,25	0,6	0,015	0,015	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		mekyчести прочн		Предел Отн. очности цалинение		ная ость nu (Дж)	
	2a3	Состояние	(МПа)	(МПа)	[%]	-20°C	-29°C	
Требования: AWS A5.18 EN ISO 17632-A			мин. 400 мин. 460	мин. 480 530-680	мин. 22 мин. 20	мин. 47	мин. 27	
Средние значения	M21	ПС	510	600	25	90	60	

ВИЛЫ УПАКОВКИ

Диаметр (мм)	1,2			
Kaccema B300, 15 kz	Χ			

Outershield® MC640VD-H: Bep. C-RU25-01/02/16

Outershield® MC460VD-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tur

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH40

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB, L445

API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 yacmb 3 S275N, S355N, S420N

EN 10025 часть 4 S275M, S275ML, S355M, S355ML, S420M, S420ML

ДАННЫЕ ПО РАСХОДУ									
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла			
1,2	20	635	180	28-30	2,7	1,10			
		940	275	31-34	4,8	1,10			
		1420	340	35-38	6,8	1,10			

ОПТИМАЛЬНІ	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO ₂									
Диаметр	Про	остранстве	нные положения сва							
(мм)	PB/2F	PC/2G	PF/3G на подъем	PE/4G						
1,2	250-300A	250-300A	200-220A	200-220A						
	26-30B	26-30B	21-24B	23-25B						

MYJ.

Outershield® 70-H

КЛАССИФИКАЦИЯ

 AWS A5.20
 E70T-1C-H4 / E70T-1M-H4
 A-Nr
 1

 EN ISO 17632-A
 T 46 0 R C 3 H5 / T 46 0 R M 3 H5
 F-Nr
 6

9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Порошковая газозащитная проволока для полуавтоматической или механизированной сварки

Низкий уровень разбрызгивания, легкое отделение шлака, формирование гладкого сварного шва, технологичность в использовании

Высокие nokaзameли ударной вязкости, обеспечивает большую глубину проплавления, хорошо nogxogum для сварки загрязненных и ржавых поверхностей

Металл шва обладает высокими механическими характеристиками

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%

Хорошая подаваемость проволоки

Постоянно высокое качество продукции и точный контроль легирования

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ C1 : Активный газ 100% CO₃

Pacxog zasa : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	DR		
M21	+		
C1	+		

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Зашитный газ С Si Р S **HDM** M21 0,06 1,70 0,35 0,015 0,010 < 5 мл/100 гр. C1 0,06 1,30 0,50 0,015 0,010 < 5 мл/100 гр.

	Защитный		Предел текичести	Предел прочности	Отн. цалинение		ная вязко Шарпи (Д	
	283	Состояние	(MΠa)	(МПа)	(%)	0°C	-18°C	-30°C
Требования: AWS A5.20 EN ISO 17632-A			мин. 400 мин. 460	мин. 480 530-680	мин. 22 мин. 20	мин. 47	мин. 27	
Средние значения	C1 M21	ПС ПС	480 530	560 610	26 27	80 70		50 40

инды ликовки	
Диаметр (мм)	2,4
Kaccema B435, 25 kz	Χ
Деревянная kamuwka. 270 kz	Χ

Outershield* 70-H: 8ep. C-RU24-01/02/16

L240NB, L290NB, L360NB, L360OB, L240MB, L290MB, L360MB, L415MB, L415NB

Outershield® 70-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Литая сталь

EN 10208-2

EN 10213-2 G P 240R

Трибная сталь

EN 10208-1 L210, L240, L290, L360

API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 yacmb 3 S275, S355, S420

EN 10025 часть 4 S275M, S275ML, S355M, S355ML, S420M, S420ML

АННЫЕ ПО Р. Диаметр (мм)	Вылет электрода (мм)	Ckopocmь nogaчu npoволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ kг наплавленного металла
2,4	28	320	340	24-27	4,5	1,15
		510	450	28-31	7,3	1,15
		635	510	30-32	9,1	1,15
		700	535	31-34	10,0	1,15
		825	585	33-35	11,8	1,15

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ 100% СО2								
Диаметр	Прос	транственн	ые положения сварки					
(мм)	PA/1G	PB/2F						
2,4	410-560A	410-510A						
	27-34B	28-32B						

Outershield® 71E-H

КЛАССИФИКАЦИЯ

 AWS A5.20
 E71T-1M-JH4 / E71T-1C-H4
 A-Nr
 1

 EN ISO 17632-A
 T 46 3 P M 1 H5 / T 42 0 P C 1 H5
 F-Nr
 6

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Порошковая газозащитная проволока для сварки в любых пространственных положениях

Технологична в использовании благодаря высоким сварочным характеристикам

Высокая производительность наплавки во всех пространственных положениях

Исключительные механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -30°C с защитным газом М21)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

Обеспечивает хорошее формирование корневого шва при сварке на керамических подкладках

Предназначен для использования с защитным сазом M21 Ar+15-25% CO_2 . Также пригоден для использования с C1 100% CO_3

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

PA/1G PB/2F PC/2G PF/3Gu PG/3Gd PE/4G

DC + M21 : Смешанный газ Ar+ [>15-25%] CO₂ C1 : Активный газ 100% CO₂ Pacxoq газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ DNV TÜV Зашитный газ ABS RV DB GI I R RINA RMRS M21 3YSAH5 SA3YMH5 IIIYMS(H5) 3YH5S 3YSH5 3YSH5 3YSH5 C1 2YS H5 2YSA H5 IIYMS(H5)

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Защитный газ C Ρ S HDM M21 0.04 1.4 0,6 0,013 0,010 3 мл/100 гр. C1 0,05 1,3 0,6 0,015 0,010 3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный Состо-		Предел Предел Ващитный Состо- текучести прочности у		Отн. иалинение	по шарпа (для)			
	газ	яние	(ЙПа)	(МПа)	(%)	0°C	-20°C	-30°C	-40°C
Требования: AWS A5.20 EN ISO 17632-A			мин. 400 мин. 460	мин. 480 530-680	мин. 22 мин. 20			мин. 47	мин. 27
Средние значения	M21 C1	ПС ПС	570 520	620 575	25 24	80	90	65	40

ВИДЫ УПАКОВКИ				
Диаметр (мм)	1,2	1,6		
Kaccema S200, 5 kz	Х			
Kaccema B300, 15 kz	Χ	Χ		
Kaccema S300, 15 kz	Χ	Χ		
Бочка Accutrak®, 200 кг	Χ			
· · · · · · · · · · · · · · · · · ·				Outerchield* 71F

Outershield® 71E-H: Bep. C-RU31-01/02/1

Outershield® 71E-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения EN 10025 часть 2 S185, S235, S275

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH36

Литая сталь EN 10213-2 G P 240R

Трубная сталь

ÄPI 5LX X42, X46, X52, X60, X65

ISO 3183 X42 - X60; L245-L415N, L245-L450Q, L245M - L450M

EN 10216-1 P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N Сталь для бойлеров и камер высокого давления

EN 10028-2 P235-355 GH EN 10028-3 P235-460 N, NH

Сталь с мелкозернистой структурой

EN 10025 yacmb 3 S275, S355, S420, S460

EN 10025 часть 4 S275M, S275ML, S355M, S355ML, S420M, S420ML

ДАННЫЕ ПО РАСХОДУ									
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ kг наплавленного металла			
1,2	20	445	130	20-22	1,6	1,20			
		700	180	23-25	2,3	1,20			
		950	220	25-27	3,2	1,20			
		1270	265	27-29	4,3	1,20			
		1590	305	30-32	5,4	1,20			
1,6	20	320	160	20-22	2,2	1,20			
.,0		510	230	21-24	3,3	1,20			
		635	280	23-25	4,2	1,20			
		760	300	24-26	5,0	1,20			
		890	340	26-28	5,8	1,20			
		1015	360	27-29	6,5	1,20			
		1080	390	28-30	7,0	1,20			

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO 2									
Диаметр	Пространственные положения сварки								
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PG/3G на cnyck	PE/4G			
1,2	230-260A	230-260A	200-240A	200-240A	160-220A	160-220A			
1,2	26-32B	26-32B	25-30B	25-28B	23-26B	26-28B			

Outershield® 71M-H

AWS A5.20 E71T-1/9C-H4 / E71T-1/9M-H4 A-Nr FN ISO 17632-A T 46 3 P C 1 H5 /T 46 2 P M 2 H5 F-Nr б 9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Ритиловая газозащитная порошковая проволока для высококачественной сварки с высокой производительностью

Технологична в использовании благодаря высоким сварочным характеристикам и эффективной системе образования шлака

Специально разработана для сварки в 100% защитном газе 100% СО, и оптимизирована для газовой смеси Аг/СО,; образует гладкую дугу с низким уровнем разбрызгивания

Пригодна для сварки загрязненных поверхностей

Обеспечивает хорошее формирование корневого шва при сварке на керамических подкладках

Высокие механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -30°С с защитным газом 100% СО.)

Высокая допустимая токовая нагрузка, особенно в сложных пространственных положениях

Стабильные механические характеристики при широком диапазоне тепловложения

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+ M21 : Ar + (15-25%) CO. : Активный газ 100% СО, Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ										
	Защитный газ	ABS	BV	DNV	GL	LR	RINA	PRS		
	C1	3YSAH5	SA3YMH5	3YH5S	IIIYMS(H5)	3YH5S	3YSH5	3YSH5		
	M21	3V/1005AH5	SARVANMHS	SYNUHES	IIIVANMS(HE)	SANUMZ(HP)	3V/105H5	3V/0SMH5		

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Защитный газ C Mn Si S HDM C1 0,05 0,009 3 мл/100 гр. 1.3 0,4 0,015 M21 0.05 147 05 0.015 0.009 4 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный	Состояние	Предел mekyчести	Предел прочности	Отн. идлинение		вязкость nu (Дж)
	283		(МПа)	[·] (M∏a)	⁵ (%)	-20°C	-30°C
Требования: AWS A5.20			мин. 400	мин. 480	мин. 22		
EN ISO 17632-A			мин. 460	530-680	мин. 20	мин. 47	мин. 47
Средние значения	C1	ПС	530	590	25		70
	M21	ПС	595	650	26	80	

Диаметр (мм)	1,2	1,6
Kaccema S200, 5 kz	Χ	
Kaccema B300, 15 kz	Χ	Χ
Kaccema S300, 15 kz	Χ	Χ

Outershield* 71M-H: 8ep. C-RU30-11/05/16

Outershield® 71M-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения EN 10025 S185, S235, S275

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH36

Литая сталь EN 10213-2 G P 240R

Трибная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240NB. L290NB. L360NB. L360OB. L240MB. L290MB. L360MB. L415MB. L415MB

API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355, S420, S460

EN 10025 часть 4 S275M, S275ML, S355M, S355ML, S420M, S420ML

ДАННЫЕ ПО РА	АСХОДУ С ЗАЩИТ	НЫМИ ГАЗАМІ	И С1 И M21				
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
1,2	20	445	130	21-23	1,75	1,16	
		700	170	22-24	2,54	1,16	
		955	220	25-27	3,45	1,16	
		1270	260	27-29	4,73	1,16	
		1590	290	30-32	6,2	1,16	
1,6	20	320	180	21-23	2,2	1,16	
		510	255	22-25	3,3	1,16	
		635	300	24-26	4,2	1,16	
		760	335	25-27	5,0	1,16	
		890	370	27-29	5,8	1,16	
		1015	395	28-30	6,5	1,16	
		1080	415	29-30	7,0	1,16	

ОПТИМАЛЬНІ	ЫЕ РЕЖИМЬ	І СВАРКИ ЗАП	олняющих	ПРОХОДОВ С ЗАЦ	ЦИТНЫМИ ГАЗАМ	И С1 И М21	
Диаметр		Пр	остранстве	нные положения	сварки		
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PG/3G на cnyck	PE/4G	
1,2	230-280A	230-280A	200-240A	200-240A	160-220A	160-220A	
	26-32B	26-32B	25-30B	25-28B	23-26B	26-28B	
1,6	250-380A	250-380A	230-280A	220-260A	170-240A	170-240A	
	24-32B	24-32B	24-30B	22-28B	22-28B	22-28B	

Outershield® 71MS-H

AWS A5.20 A-Nr 1 EN ISO 17632-A T 46 4 P C 2 H5 F-Nr 6 **9606 FM** 1

ОБЩЕЕ ОПИСАНИЕ

Рутиловая газозащитная порошковая проволока для высококачественной сварки с высокой производительностью

Точный контроль дуги и высокие сварочно-технологические характеристики

Обеспечивает хорошее формирование корневого шва при сварке на керамических подкладках

Исключительные механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -40°C)

Высокая допустимая токовая нагрузка, особенно в сложных пространственных положениях

Стабильные механические характеристики при широком диапазоне тепловложения

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

<u>МЕХАНИЧЕСКИЕ</u> ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

DC+ : Активный газ 100% СО, Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	ABS	DNV
C1	4YSA H5	IVY40MS(H5)

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%

Защитный газ	С	Mn	Ni	Si	Р	S	HDM
C1	0,05	1,35	0,4	0,4	0,015	0,010	3 мл/100 гр.

Ударная вязкость Ωти Ппепел Ппепел

	Защитный		текичести	прочности	идлинение	по шарпа (дж)	
	газ	Состояние	(M∏a)	(M∏a)	[%]	-40°C	
Требования: AWS A5.20 EN ISO 17632-A			мин. 400 мин. 460	мин. 480 530-680	мин. 22 мин. 20	мин. 47	
Средние значения		ПС	540	610	25	75	

Диаметр (мм)	1,2	1,6	
Kaccema S200, 5 kz	Χ		
Kaccema B300, 15 kz	Χ	Χ	
Kaccema S300, 15 kz	Χ	Χ	

Outershield® 71MS-H: Bep. C-RU06-19/04/16

Outershield® 71MS-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN10027-1 S235 - S460; J2, K2, N u NL, M u ML

Листы судостроительной стали

ASTM, ABS, DNV Copm A, D, om EH32 go 40; NV A,D,E 32-40; NV A,D,E 420-460

Трубная сталь

ISO 3183 L210, L240, L290, L360 API 5LX X42, X46, X52, X60, X65 Сталь для бойлеров и камер высокого давления

EN 10028-2 P235-355GH EN 10028-3 P235-460, N, NH, NL

Сталь с мелкозернистой структурой

EN 10025 -2, -3, -4 S235, S275; S355, S420, S420, S460, S460, S460, S460 N, NL, M, ML

EN 10025 S355G, S420G EN 10025-6 S460Q, QL

али		HO	$D \wedge C \wedge$	'O TV
ДАН	HDIE	IIU	PALA	νυμγ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ kг наплавленного металла	
1,2	20	445	130	21-23	1,75	1,16	
		700	170	22-24	2,54	1,16	
		955	220	25-27	3,45	1,16	
		1270	260	27-29	4,73	1,16	
		1590	290	30-32	6,2	1,16	

	\РКИ ЗАПОЛНЯЮЦ		

Диаметр		Пр	остранстве	нные положения сва	pku
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G
1,2	160-280A 24-32B	160-280A 24-32B	160-230A 24-30B	200-240A 24-27B	150-220A 23-28B

$\mathsf{N}\mathsf{V}\mathsf{J}$

Outershield® T55-H

КЛАССИФИКАЦИЯ

 AWS A5.20
 E71T-5C-JH4 / E71T-5M-JH4
 A-Nr
 1

 EN ISO 17632-A
 T 42 4 B C 2 H5 / T 42 4 B M 2 H5
 F-Nr
 6

9606 FM 1

ОБШЕЕ ОПИСАНИЕ

Основная газозащитная порошковая проволока для сварки во всех пространственных положениях

Высокая смачиваемость, в т. ч. при вертикальной сварке на подъем (3G)

Исключительные механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -50°С)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC -M21

: Смешанный газ Ar+ (>15-25%) СО₂ : Активный газ 100% СО₃

C1 : Akmuвный газ 100% CO Pacxoq газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	ABS	BV	DB	DNV	GL	LR	RINA
M21	3SA,3YSA	SA3,3YMHH	+	IVYMSH5	4YH10S	4Y40SH15	
C1	3SA,3YSA	SA3,3YMHH	+	IVYMSH5	4YH10S	4Y40SH15	3YS

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный газ	С	Mn	Si	Р	S	HDM
C1	0,05	1,5	0,55	0,012	0,010	3 мл/100 гр.
M21	0,06	1,5	0,6	0,012	0,010	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел текичести	Предел прочности	Отн. идлинение		ная вязко Шарпи (Д	
	283	Состояние	(M∏a)	(МПа)	[%]	-20°C	-40°C	-50°C
Требования: AWS A5.20 EN ISO 17632-A			мин. 400 мин. 420	мин. 480 500-640	мин. 22 мин. 20		мин. 27 мин. 47	
Средние значения	M21	ПС	480	570	27	130	85	60
CH : 15 4/580°C		CH	425	550	27		80	

ВИЛЫ УПАКОВКИ

Диаметр (мм)	1,2	1,6
Kaccema B300, 15 kz	Χ	Χ

Outershield* T55-H: Bep. C-RU28-01/02/16

Outershield® T55-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH40

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240NB. L290NB. L360NB. L360OB. L240MB. L290MB. L360MB. L415MB. L415NB

API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355, S420

EN 10025 yacmb 4 S275M, S275ML, S355M, S355ML, S420M, S420ML

ННЫЕ ПО Р	АСХОДУ					
ļиаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ kг наплавленного металла
1,2	20	510	130	25-27	1,6	1,20
		760	185	26-28	2,5	1,20
		1015	225	27-29	3,3	1,20
		1270	260	28-30	4,1	1,20
		1525	290	29-31	5,0	1,20
		1780	310	30-32	5,8	1,20
1,6	20	380	170	24-26	2,5	1,15
		510	225	25-27	3,1	1,15
		760	310	27-29	4,7	1,15
		1015	380	29-31	6,3	1,15
		1270	430	31-33	7,9	1,15

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO

Диаметр	Пр	остранствен	ные положен	ния сварки	
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	
1,2	215-290A	215-290A	215-250A	110-150A	
	28-34B	28-34B	28-30B	17-20B	
1,6	320-390A	320-390A	280-350A	130-180A	
	28-34B	28-34B	28-32B	18-22B	
2,4	350-550A	350-550A			
	30-34B	30-34B			

Outershield® 81Ni1-H

E81T1-Ni1M-JH4 (все quаметры) A-Nr 10 EN ISO 17632-A Т 50 5 1Ni P M 2 H5 (только quaметр 1,2 мм) F-Nr 6 9606 FM 2

ОБЩЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с содержанием Ni 1% для сварочных работ на офшорных сооружениях и иного подобного применения во всех пространственных положениях

Высокие сварочно-технологические характеристики, низкий цровень разбрызгивания, хороший внешний вид шва Технологична в использовании

Исключительные механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -50°C)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

Соответствиет требованиям NACE МП-0175

При необходимости в послесварочной термической обработке лучше использовать проволоку Outershield 81Ni1-HSR

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+ M21 : Смешанный газ Ar+ (>15-25%) CO : 15-25 л/мин. Расход газа

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	RINA	BV	DNV	GL	LR
M21	4YSH5	SA3,3YMHH	IVYMSH5	4YH10S	4Y40SH5

Защитный газ	С	Mn	Si	Р	S	Ni	НДМ
M21	0,05	1,4	0,2	0,013	0,010	0,95	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел mekyчести	Предел прочности	Отн. цалинение		Вязкость nu (Дж)	
	283	Состояние		(M∏a)	[%]	-40°C	-50°C	
Требования: AWS A5.29			мин. 470	550-690	мин. 19	мин. 27		
EN ISO 17632-A			мин. 500	560-720	мин. 18		мин. 47	
Средние значения	M21	ПС	530	600	24	90	60	

Диаметр (мм)	1,0	1,2	1,4	1,6	2,0
Kaccema S200, 4.5 kz	Χ	Χ			
Кассета S300, 14 kz (в алюм. пленке)		Χ	Χ	Χ	Χ
Kaccema B300, 15 kz		Χ		Χ	
Kaccema BS300, 15 kz		Χ			

Outershield® 81Ni1-H; Bep. C-RU29-19/04/16

Outershield® 81Ni1-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH40

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60, X65, X70 EN 10216-1/ P235T1, P235T2, P275T1

EN 10217-1 P275T2, P355N Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 yacmb 3 S275N, S275NL, S355NL, S355NL, S420NL, S460NL, S460NL EN 10025 yacmb 4 S275M, S275ML, S355M, S355ML, S420M, S420ML, S460M, S460ML

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ kг наплавленного металла	
1,2	20	445	130	20-22	1,6	1,20	
		700	180	23-25	2,5	1,20	
		950	220	25-27	3,4	1,20	
		1270	265	27-29	4,5	1,20	
		1590	305	30-32	5,9	1,20	
1,6	20	320	170	21-23	1,9	1,20	
		510	235	22-24	3,1	1,20	
		635	275	24-25	3,9	1,20	
		760	310	25-27	4,7	1,20	
		890	350	27-29	5,6	1,20	
		1015	385	28-30	6,4	1,20	
		1080	400	30-31	6,8	1,20	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO₃

Диаметр	Пространственные положения сварки					
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	
1,2	230-280A	230-280A	200-240A	200-240A	160-220A	
	26-32B	26-32B	25-32B	25-28B	23-28B	
1,6	250-350A	250-350A	230-280A	220-260A	170-240A	
	24-32B	24-32B	24-32B	24-28B	22-28B	

Outershield® 81Ni1-HSR

AWS A5.29 F81T1-Ni1M-IH4 A-Nr 10 EN ISO 17632-A T 50 5 1Ni P M 2 H5 T F-Nr 6 9606 FM 2

ОБЩЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с содержанием Ni 1% для сварочных работ на офшорных сооружениях и иного подобного применения во всех пространственных положениях

Специально разработана для сварки с последующей термообработкой, гарантирует сохранение характеристик ударной вязкости после термической обработки

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва Технологична в использовании

Исключительные механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -50°С)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

Соответствует требованиям NACE МП-0175

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+ M21 : Смешанный газ Ar+ (>15-25%) CO Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΧΝΜΝΑΕΓΚΝΏ СОСТФВ ΗΦΩΊΦΒΩΕΗΗΌΣΟ ΜΕΤΦΊΩΦ (%)

Защитный газ	С	Mn	Si	Р	S	Ni	HDM
M21	0,05	1,4	0,2	0,013	0,010	0,95	3 мл/100 гр.

<u>МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛ</u>АВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел mekuчести	Предел прочности	Отн. идлинение	Ударная вязкость по Шарпи (Дж)	
	газ	Состояние	(МПа)	(МПа)	(%)	-40°C	-50°C
Требования: AWS A5.29			мин. 470	550-690	мин. 19	мин. 27	
EN ISO 17632-A			мин. 500	560-720	мин. 18		мин. 47
Средние значения	M21	ПС	530	600	24	90	60
. 3		CH	525	590	25		70

CH 14/600°C, 3G на подъем - V45°

Диаметр (мм)	1,2	1,6
Кассета S300, 14 kz (в алюм. пленке)	Х	Χ
Kaccema B300, 15 kz	Χ	

Outershield® 81Ni1-HSR: 8ep. C-RU27-12/05/16

Outershield® 81Ni1-HSR

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, C, D, om AH32 go DH36

Литая сталь EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L360NB, L360NB, L360NB, L240MB, L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60, X65, X70 EN 10216-1/ P235T1, P235T2, P275T1

EN 10217-1 P275T2, P355N Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275N, S275NL, S355N, S355NL, S420N, S420NL, S460N, S460NL

EN 10025 часть 4 S275M, S275ML, S355ML, S420M, S420ML, S460M, S460ML S460ML

UVHHPIE UU BVCAUUA

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
1,2	20	445	130	20-22	1,6	1,20	
		700	180	23-25	2,5	1,20	
		950	220	25-27	3,4	1,20	
		1270	265	27-29	4,5	1,20	
		1590	305	30-32	5,9	1,20	
1,6	20	320	170	21-23	1,9	1,20	
		510	235	22-24	3,1	1,20	
		635	275	24-25	3,9	1,20	
		760	310	25-27	4,7	1,20	
		890	350	27-29	5,6	1,20	
		1015	385	28-30	6,4	1,20	
		1080	400	30-31	6,8	1,20	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO

Диаметр		Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G						
1,2	230-280A	230-280A	200-240A	200-240A	160-220A						
	26-32B	26-32B	25-32B	25-28B	23-28B						
1,6	250-350A	250-350A	230-280A	220-260A	170-240A						
	24-32B	24-32B	24-32B	24-28B	22-28B						

V V J

Outershield® 81Ni1C-H

КЛАССИФИКАЦИЯ

 AWS A5.29
 E81T1-Ni1C-JH4
 A-Nr
 10

 EN ISO 17632-A
 T 50 41Ni P C 2 H5
 F-Nr
 6

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с содержанием Ni 1% для сварочных работ в 100% защитном газе CO₂ на офшорных сооружениях и иного подобного применения во всех пространственных положениях

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва Технологична в использовании

Исключительные механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -40°C)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

Соответствует требованиям NACE МП-0175

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

PA/1G

DC + C1 : Активный газ 100% CO₂ Pacxog газа : 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]										
Защитный газ	С	Mn	Si	Р	S	Ni	HDM			
<u>Γ1</u>	0.05	1/	N 2	N N13	0.010	N 95	/ Mu/100 su			

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]										
	Защитный		Предел mekuчести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)				
	283	Состояние	(МПа)	(МПа)	[%]	-40°C				
Требования: AWS A5.29 EN ISO 17632-A			мин. 470 мин. 500	550-690 560-720	мин. 19 мин. 18	мин. 27 мин. 47				
Средние значения	C1	ПС	530	600	24	80				

ВИДЫ УПАКОВКИ			
Диаметр (мм)	1,2		
Kaccema B300, 15 kz	X		

Outershield® 81Ni1C-H: Bep. C-RU03-01/02/16

Outershield® 81Ni1C-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH40

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1

EN 10217-1 P275T2, P355N Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

Циаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Kz проволоки/ kz наплавленного металла
1,2	20	445	130	20-22	1,6	1,20
		700	180	23-25	2,5	1,20
		950	220	25-27	3,4	1,20
		1270	265	27-29	4,5	1,20
		1590	305	30-32	5,9	1,20

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO ₂										
Диаметр Пространственные положения сварки											
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G						
1,2	230-280A	230-280A	200-240A	200-240A	160-220A						
	26-32B	26-32B	25-32B	25-28B	23-28B						

Outershield® 81K2-H

AWS A5.29	E81T1-K2M-JH4 (все диаметры)	A-Nr	10
EN ISO 17632-A	T 50 6 1,5Ni P M 2 H5 (только диаметр 1,2 мм)	F-Nr	6
		9606 FM	2

Газозащитная порошковая проволока с содержанием Ni, Ti и В 1,5% для сварки во всех пространственных положениях Используется для сварки офшорных сооружений и в других схожих отраслях

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва Технологична в использовании

Исключительные показатели ударной вязкости наплавленного металла при низких температурах (мин. 80 Дж по Шарпи при -60°С)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

При необходимости в послесварочной термообработке рекомендуется использовать Outershield 81K2-HSR

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+

: Смешанный газ Ar+ (>15-25%) CO. Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	DNV	RINA	LR	RMRS	CWB
M21	IVY46MSH5	4YS	4Y40SH5	4Y50SH5	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Защитный газ	С	Mn	Si	Р	S	Ni	НДМ
M21	0,04	1,4	0,2	0,012	0,010	1,4	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел mekyчести	Предел прочности	Отн. цалинение		ная вяз Шарпи	
	283	Состояние	(M∏a)	(МПа)	[%]	-40°C	-50°C	-60°C
Требования: AWS A5.29			мин. 470	550-690	мин. 19	мин.		
EN ISO 17632-A			мин. 500	560-720	мин. 18	27		мин. 47
Средние значения	M21	ПС	590	630	23	130	100	80

Диаметр (мм)	1,2	1,6
Kaccema S200, 4.5 kz	Χ	
Кассета S300, 14 kz (в алюм. пленке)	Χ	
Kaccema B300, 15 kz	Χ	
Kaccema B435, 25 kz		Χ

Outershield* 81K2-H: Bep. C-RU27-01/02/16

Outershield® 81K2-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH40

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60, X65, X70 EN 10216-1/ P235T1, P235T2, P275T1

EN 10217-1 P275T2, P355N Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275N, S275NL, S355NL, S355NL, S420NL, S460NL, S460NL EN 10025 часть 4 S275M, S275ML, S355ML, S355ML, S420ML, S460M, S460ML

EN 10025 часть 6 S460Q, S460QL1, S500S, S500QL, S500QL1

ДАННЫЕ ПО РА	АСХОДУ					
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
1,2	20	445	130	20-22	1,6	1,20
		700	180	23-25	2,5	1,20
		950	220	25-27	3,4	1,20
		1270	265	27-29	4,5	1,20
		1590	305	30-32	5,9	1,20
1,6	20	320	170	21-23	1,9	1,20
		510	235	22-24	3,1	1,20
		635	275	24-25	3,9	1,20
		760	310	25-27	4,7	1,20
		890	350	27-29	5,6	1,20
		1015	385	28-30	6,4	1,20
		1080	400	30-31	6,8	1,20

ОПТИМАЛЬНІ	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO,									
Диаметр	Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G					
1,2	230-280A	230-280A	200-240A	200-240A	160-220A					
	26-32B	26-32B	25-32B	25-28B	23-28B					
1,6	250-350A	250-350A	230-280A	220-260A	170-240A					
	24-32B	24-32B	24-32B	24-28B	22-28B					

W V J

Outershield® 81K2-HSR

КЛАССИФИКАЦИЯ

 AWS A5.29
 E81T1-K2M-JH4
 A-Nr
 10

 EN ISO 17632-A
 T 50 6 1,5Ni P M 2 H T
 F-Nr
 6

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с содержанием Ni 1,5% для сварочных работ на офшорных сооружениях и иного подобного применения во всех пространственных положениях

Специально разработана для сварки с последующей термообработкой, гарантирует сохранение характеристик ударной вязкости после термической обработки

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва и технологичность в использовании

Исключительные показатели ударной вязкости наплавленного металла при низких температурах (мин. 80 Дж по Шарпи при -60° С)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Расход газа : 15-25 л/мин.

химический со	ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]									
Защитный газ	С	Mn	Si	Р	S	Ni	HDM			
M21	0,06	1,3	0,3	0,012	0,010	1,4	3 мл/100 гр.			

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Ударная вязкость Предел Предел Отн. , no Шарпи (Дж) Зашитный удлинение mekuvecmu прочности -60°C -40°C -50°C газ Состояние (M∏a) (M∏a) [%] Требования: AWS A5.29 мин. 470 550-690 мин. 19 мин. EN ISO 17632-A мин. 500 560-720 мин. 18 27 мин. 47 Средние значения M21 ПС 590 630 23 140 100 80 CH570 620 23 85 CH 14/600°C, 3G на подъем - V45°

BNUPLAUVKUBKI

Диаметр (мм)	1,2
Kaccema S200, 4.5 kz	Χ
Kaccema B300, 15 kz	X

Outershield* 81K2-HSR: 8ep. C-RU27-12/05/16

Outershield® 81K2-HSR

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go EH40

Литая сталь

EN 10213-2 G P 240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60, X65, X70 EN 10216-1/ P235T1, P235T2, P275T1

EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275N, S275NL, S355NL, S355NL, S420NL, S460NL, S460NL EN 10025 часть 4 S275M, S275ML, S355ML, S355ML, S420M, S420ML, S460M, S460ML

EN 10025 часть 6 S460Q, S460QL1, S500S, S500QL, S500QL1

ДАННЫЕ ПО РА	АСХОДУ						
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	K2 проволоки/ k2 наплавленного металла	
1,2	20	445	130	20-22	1,6	1,20	
		700	180	23-25	2,5	1,20	
		950	220	25-27	3,4	1,20	
		1270	265	27-29	4,5	1,20	
		1590	305	30-32	5,9	1,20	

ОПТИМАЛЬНІ	ЫЕ РЕЖИМЬ	І СВАРКИ ЗАП	олняющих	ПРОХОДОВ В ЗАЩИТ	ΉOM ΓA3E Ar	· + (>15-25)% CO ₂			
Диаметр	Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G				
1,2	230-280A 26-32B	230-280A 26-32B	200-240A 25-32B	200-240A 25-28B	160-220A 23-28B				

W V J

Outershield® 91Ni1-HSR

КЛАССИФИКАЦИЯ

 AWS A5.29
 E91T1-GM-H4
 A-Nr
 10

 ISO 18276-A
 T 55 4 1NiMo P M 2 H5
 F-Nr
 6

 9606 FM
 2

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с содержанием 1% Ni и 0,4% Мо для сварки офшорных сооружений, трубопроводов и иного подобного применения во всех пространственных положениях

Специально разработана для сварки с последующей термообработкой, гарантирует сохранение

характеристик ударной вязкости после термической обработки

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва и технологичность в использовании

Исключительные механические характеристики наплавленного металла

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

Специально разработана для сварочных процессов с высоким уровнем тепловложения

Соответствиет требованиям NACE МП-0175

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxog газа : 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%] Зашитный газ C Mn Si Р S Ni Μo **HDM** M21 0,05 1,4 0,2 0,013 0,010 0,95 0,4 3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -40°С			
Требования: AWS A5.29 ISO 18276-A			мин. 540 мин. 550	620-760 640-820	мин. 17 мин. 18	мин. 47			
Средние значения	M21	ПС	640	700	19	60			

ВИДЫ УПАКОВКИ Диаметр (мм) 1,2 Кассета S300, 14 kz X Кассета B300, 15 kz X

Outershield* 91Ni1-HSR: 8ep. C-RU12-01/052/16

Outershield® 91Ni1-HSR

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код Tun

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, C, D, om AH32 go DH36 Литая сталь

FN 10213-2

G P 240R

Трибная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60, X65, X70, X80

P235T1, P235T2, P275T1 EN 10216-1/ EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH, P420GH, P460GH

Сталь с мелкозернистой структурой

S275N, S275NL, S355N, S355NL, S420N, S420NL, S460N, S460NL S275M, S275ML, S355M, S355ML, S420M, S420ML, S460M, S460ML EN 10025 yacmb 3 EN 10025 yacmb 4

EN 10025 часть 6 S460Q, S460QL1, S500Q, S500QL1, S550Q, S550QL1

Диаметр (мм)	Вылет электрода (мм)	Ckopocmь nogaчu npoволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
1,2	20	445	130	20-22	1,6	1,20	
		700	180	23-25	2,5	1,20	
		950	220	25-27	3,4	1,20	
		1270	265	27-29	4,5	1,20	
		1590	305	30-32	5,9	1,20	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮШИХ ПРОХОДОВ В ЗАШИТНОМ ГАЗЕ Ar + (>15-25)% CO

Диаметр	Пространственные положения сварки							
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G			
1,2	230-280A	230-280A	200-240A	200-240A	160-220A			
	26-32B	26-32B	25-32B	25-28B	23-28B			

$\mathsf{N}\mathsf{V}\mathsf{J}$

Outershield® 91K2-HSR

КЛАССИФИКАЦИЯ

 AWS A5.29
 E91T1-GM-H4
 A-Nr
 10

 ISO 18276-A
 T 55 4 1,5NiMo P M 2 H5
 F-Nr
 6

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с содержанием 1,5% Ni и 0,4% Мо для сварки офшорных сооружений, трубопроводов и иного подобного применения во всех пространственных положениях

Специально разработана для сварки с последующей термообработкой, гарантирует сохранение характеристик ударной вязкости после термической обработки

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва и технологичность в использовании

Исключительные механические характеристики наплавленного металла

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

Специально разработана для сварочных процессов с высоким уровнем тепловложения

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxog газа : 15-25 л/мин.

химический со	ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
Защитный газ	С	Mn	Si	Р	S	Ni	Мо	HDM		
M21	0,05	1,4	0,2	0,013	0,010	1,4	0,4	3 мл/100 гр.		

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)								
	Защитный газ	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) -40°С		
Требования: AWS A5.29 ISO 18276-A			мин. 540 мин. 550	620-760 640-820	мин. 17 мин. 18	мин. 47		
Средние значения	M21	ПС	640	700	19	60		

ВИДЫ УПАКОВКИ		
Диаметр (мм)	1,2	
Kaccema S200, 4.5 kz	X	
Kaccema S300, 14 kz	X	
Kaccema B300, 15 kz	Χ	

Outershield® 91K2-HSR: Bep. C-RU06-01/02/16

Outershield® 91K2-HSR

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, C, D, om AH32 go DH36

Литая сталь FN 10213-2

G P 240R

Трибная сталь

EN 10208-1 L210, L240, L290, L360

EN 10208-2 L240NB, L290NB, L360NB, L360QB, L240MB, L290MB, L360MB, L415MB, L415NB

API 5LX X42, X46, X52, X60, X65, X70, X80

EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N Сталь для бойлеров и камер высокого давления

EN 10028-2

P235GH, P265GH, P295GH, P355GH, P420GH, P460GH Сталь с мелкозернистой структурой

S275N, S275NL, S355N, S355NL, S420N, S420NL, S460N, S460NL S275M, S275ML, S355M, S355ML, S420M, S420ML, S460M, S460ML EN 10025 часть 3 EN 10025 yacmb 4

S460Q, S460QL1, S500Q, S500QL1, S550Q, S550QL1 EN 10025 часть 6

иаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
1,2	20	445	130	20-22	1,6	1,20
		700	180	23-25	2,5	1,20
		950	220	25-27	3,4	1,20
		1270	265	27-29	4,5	1,20
		1590	305	30-32	5,9	1,20

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + [>15-25]% CO ₂										
Диаметр	Пространственные положения сварки										
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G						
1,2	230-280A	230-280A	200-240A	200-240A	160-220A						
	26-32B	26-32B	25-32B	25-28B	23-28B						

$M \nabla J$

Outershield® 101Ni1-HSR

КЛАССИФИКАЦИЯ

AWS A5.29 E101T1-G-H4 A-Nr 11 F-Nr 6 9606 FM 2

ОБЩЕЕ ОПИСАНИЕ

Рутиловая микролегированная порошковая проволока для сварки во всех пространственных положениях, специально разработанная для сварки низколегированных высокопрочных сталей с высоким содержанием углерода, например, SAE 4130

Специально предназначена для сварки с последующим снятием напряжения

Технологична в использовании

Высокие механические характеристики наплавленного металла (мин. 50 Дж по Шарпи при -40°С)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

Соответствует требованиям NACE МП-0175

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxog газа : 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
Защитный газ	С	Mn	Si	Р	S	Ni	Mo	HDM	
M21	0,06	2,0	0,3	0,013	0,010	0,95	0,4	3 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАК	Защитный		Предел текучести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	283		(МПа)	. (МПа)	5 (%)	-40°C	-50°C
Требования: AWS A5.29			мин. 610	830	мин. 16		мин. 27
Средние значения	M21	ΠC CH	750 690	810 780	17 18	60	40 50

CH: 44/645°C

ВИДЫ УПАКОВКИ

Диаметр (мм) 1,2 Кассета S300, 14 k2 X

Outershield® 101Ni1-HSR: 8ep. C-RU06-12/05/16

Outershield® 101Ni1-HSR

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Сталь с мелкозернистой структурой

EN 10025 yacmb 6 om S500Q go S620QL1

AISi/SAE 4130-4140 ASTM A1031 Copm 4130 ASTM A519 Copm 4130

АННЫЕ ПО Р.	АСХОДУ					
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
1,2	20	445	130	20-22	1,6	1,20
		700	180	23-25	2,5	1,20
		950	220	25-27	3,4	1,20
		1270	265	27-29	4,5	1,20
		1590	305	30-32	5,9	1,20

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO2										
Диаметр		Простра	нственные п	оложения сварки							
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G						
1,2	230-280A	230-280A	200-240A	200-240A	160-220A						
	26-32B	26-32B	25-32B	25-28B	23-30B						

MYJ.

Outershield® 690-H

КЛАССИФИКАЦИЯ

 AWS A5.29
 E111T1-K3M-JH4
 A-Nr
 10

 ISO 18276-A
 T 69 4 Z P M 2 H5
 F-Nr
 6

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Рутиловая газозащитная порошковая проволока для сварки таких высокопрочных сталей, как S690, во всех пространственных положениях

Технологична в использовании

Высокие механические характеристики наплавленного металла (мин. 70 Дж по Шарпи при -40°С)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	ABS	DNV	LR	GL	RINA
M21	4YQ690H5	IVY69SH5	4Y69SH5	4Y69H5S	4Y69SH5

химический со	OCTAB H	АПЛАВЛ	ЕННОГО	МЕТАЛ.	ЛА (%)			
Защитный газ	С	Mn	Si	Р	S	Ni	Мо	HDM
M21	0.06	1.5	0.2	0,015	0.010	2.0	0.3	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Ударная вязкость Отн. Предел Предел Защитный , no Шарпи (Дж) Состояние текучести прочности иалинение 283 -40°C (M∏a) (M∏a) [%] -29°C -46°C Требования: AWS A5.29 мин 680 760-900 мин 15 мин 27 мин. 690 770-940 мин. 17 мин. 47 ISO 18276-A M21 ПС Средние значения 780 810 18 85 80 65

ВИДЫ УПАКОВКИ	иды упаковки						
Диаметр (мм)	1,2	1,6					
Kaccema S200, 4.5 kz	Χ						
Кассета S300, 14 kz (в алюм. пленке)		Χ					
Kaccema B300, 15 kz	Χ	Χ					

Outershield* 690-H; 8ep. C-RU28-12/05/16

Outershield® 690-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Сталь с мелкозернистой структурой

EN 10025 yacmb 6 om S500Q go S690QL1

API 5L X100 MIL-S-162164 HY100 ASTM A514 Copm F

ASTM A517 Mapku A, B, F, H, D

ASTM A709 Copm 690 mun F, copm 100W mun F

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Kг проволоки/ kг наплавленного металла
1,2	20	445	130	20-22	1,6	1,20
		700	180	23-25	2,5	1,20
		950	220	25-27	3,4	1,20
		1270	265	27-29	4,5	1,20
		1590	305	30-32	5,9	1,20
1,6	20	320	170	21-23	1,9	1,20
		510	235	22-24	3,1	1,20
		635	275	24-25	3,9	1,20
		760	310	25-27	4,7	1,20
		890	350	27-29	5,6	1,20
		1015	385	28-30	6,4	1,20
		1080	400	30-31	6,8	1,20

иаметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G					
1,2	230-280A	230-280A	200-240A	200-240A	160-220A					
	26-32B	26-32B	25-32B	25-28B	23-30B					
1,6	250-350A	250-350A	230-280A	220-260A	170-240A					
	24-29B	24-29B	24-28B	24-26B	22-26B					

W V J

Outershield® 690-HSR

КЛАССИФИКАЦИЯ

 AWS A5.29
 E111T1-K3M-JH4
 A-Nr
 10

 ISO 18276-A
 T 69 4 Z P M 2 H5 T
 F-Nr
 6

 9606 FM
 2

ОБЩЕЕ ОПИСАНИЕ

Газозащитная рутиловая порошковая проволока для сварки таких высокопрочных сталей, как S690, во всех пространственных положениях

Специально разработана для сварки с последующей термообработкой, гарантирует сохранение характеристик ударной вязкости после термической обработки

Технологична в использовании

Высокие механические характеристики наплавленного металла (мин. 50 Дж по Шарпи при -40°С)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC +

M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxoq газа : 15-25 л/мин.

химический со	химический состав наплавленного металла [%]										
Защитный газ	С	Mn	Si	Р	S	Ni	Мо	HDM			
M21	0.06	15	Π 2	N N15	N N1N	2 N	n 5	3 мп/100 гл			

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]										
	Защитный		Предел mekyчести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)				
	2a3	Состояние	(МПа)	(МПа)	(%)	-29°C/-30°C	-40°C			
Требования: AWS A5.29	ı		мин. 680	760-900	мин. 15	мин. 27				
ISO 18276-A	ı		мин. 690	770-940	мин. 17		мин. 47			
Средние значения	M21	ПС	740	790	19	75	70			
CH: 1ч/580°C, 3G на no	ідъем - V60°	CH	720	770	20		60			

Диаметр (мм) 1,2 1,6 Кассета В300. 15 kz X X

Outershield® 690-HSR: Bep. C-RU27-12/05/16

Outershield® 690-HSR

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Сталь с мелкозернистой структурой

EN 10025 vacmb 6 om S500Q go S690QL1

API 5L X100 MIL-S-162164 HY100 ASTM A514 Copm F

ASTM A517 Mapku A, B, F, H, D

ASTM A709 Copm 690 mun F, copm 100W mun F

luаметр (мм)	Вылет электрода (мм)	Ckopocmь nogaчu npoволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ kг наплавленного металла
1,2	20	445	130	20-22	1,6	1,20
		700	180	23-25	2,5	1,20
		950	220	25-27	3,4	1,20
		1270	265	27-29	4,5	1,20
		1590	305	30-32	5,9	1,20
1,6	20	320	170	21-23	1,9	1,20
		510	235	22-24	3,1	1,20
		635	275	24-25	3,9	1,20
		760	310	25-27	4,7	1,20
		890	350	27-29	5,6	1,20
		1015	385	28-30	6,4	1,20
		1080	400	30-31	6,8	1,20

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO,

Диаметр		Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G						
1,2	230-280A	230-280A	200-240A	200-240A	160-220A						
	26-32B	26-32B	25-32B	25-28B	23-30B						
1,6	250-350A	250-350A	230-280A	220-260A	170-240A						
	24-29B	24-29B	24-28B	24-26B	22-26B						

$\mathsf{N}\mathsf{V}\mathsf{J}$

Outershield® 500CT-H

КЛАССИФИКАЦИЯ

 AWS A5.29
 E81T1-GM-H4
 A-Nr
 10

 ISO 18276-A
 T 50 5 Z P M 2 H5
 F-Nr
 6

 9606 FM
 2

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с содержанием 0.8% Ni и 0.4% Си для сварки устойчивой к атмосферному воздействию стали (CorTen) во всех пространственных положениях

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва Технологична в использовании

Исключительные механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -50°С) Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

Для сварки конструкций для эксплуатации при повышенной температуре (например, дымоходов) предпочтительнее использовать проволоку Outershield 555CT-H

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC +

M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxoq газа : 15-25 л/мин.

химический состав наплавленного металла (%)									
Защитный газ	С	Mn	Si	Р	S	Ni	Cu	НДМ	
M21	0,04	1,3	0,2	0,014	0,010	0,84	0,39	4 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРА	МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
	Защитный газ	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -50°С				
Требования: AWS A5.29 EN ISO 17632-A			мин. 470 мин. 500	550-690 560-720	мин. 19 мин. 18	не требуется мин. 47				
Средние значения	M21	ПС	580	610	23	80				

ВИДЫ УПАКОВКИ

Диаметр (мм) 1,2

Kaccema B300, 15 kz

Outershield* 500CT-H: 8ep. C-RU26-01/02/16

Outershield® 500CT-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Устойчивая к атмосферному воздействию сталь

EN 10025 часть 5 S235 J0W, S235 J2W, S355 J0WP, S355 J2WP, S355 J0W, S355 J2W, S355 K2W

ASTM A242 Tun 1

ASTM A588 Mapku A, B, C

ASTM A595 Любые стали, согласно А595 устойчивые k атмосферному воздействию

ASTM A709 Copm HPS 50W u HPS 70W

ISO 5952 HSA 235W, 245W, 355W1, 355W2, 365W

Устойчивые k атмосферному воздействию стали, например, Cor-Ten®, Patinax®-F, Patinax®-37 и иные подобные стали с легированием Ni и Cu

АННЫЕ ПО РАСХОДУ											
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла					
1,2	20	445	130	20-22	1,6	1,20					
		700	180	23-25	2,5	1,20					
		950	220	25-27	3,4	1,20					
		1270	265	27-29	4,5	1,20					
		1590	305	30-32	5,9	1,20					

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO

Диаметр	Пространственные положения сварки									
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G					
1,2	230-280A 26-32B	230-280A 26-32B	200-240A 25-32B	200-240A 25-28B	160-220A 23-28B					

$\Gamma \Delta W$

Outershield® 555CT-H

КЛАССИФИКАЦИЯ

 AWS A5.29
 E81T1-W2M-JH4
 A-Nr
 2

 ISO 18276-A
 T555T1-IMA-NCC1-UH5
 F-Nr
 6

 9606 FM
 2

ОБШЕЕ ОПИСАНИЕ

Газозащитная легированная порошковая проволока с содержанием 0.6% Ni, 0,5%Cr и 0.5% Cu для сварки стали, устойчивой к атмосферному воздействию (CorTen) во всех пространственных положениях

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва Технологична в использовании

Исключительные механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -50°С) Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC +

M21 : Смешанный газ Ar+ (>15-25%) CO₂ Расход газа : 15-25 л/мин.

химический со	ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
Защитный газ	С	Mn	Si	Р	5	Ni	Cr	Cu	HDM	
M21	0,03	1,1	0,4	0,015	0,010	0,60	0,55	0,55	4 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел текичести	Предел прочности	Отн. идлинение	вязк	рная ость ınu (Дж)
	газ	Состояние	(МПа)	(МПа)	(%)	-40°C	-50°C
Требования: AWS A5.29 EN ISO 17632-B			мин. 470 мин. 460	550-690 550-740	мин. 19 мин. 17	мин. 27	мин. 47
Средние значения	M21	ПС	600	660	20	140	100

ВИДЫ УПАКОВКИ

Диаметр (мм) 1,2 Кассета B300.15 k2

Outershield® 555CT-H: 8ep. C-RU03-01/02/16

Outershield® 555CT-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Устойчивые к атмосферному воздействию стали

EN 10025 часть 5 S235 J0W, S235 J2W, S355 J0WP, S355 J2WP, S355 J0W, S355 J2W, S355 K2W

ASTM A242 Tun 1

ASTM A588 Mapku A, B, C

ASTM A595 Любые стали, согласно А595 устойчивые k атмосферному воздействию

ASTM A709 Copm HPS 50W u HPS 70W

ISO 5952 HSA 235W, 245W, 355W1, 355W2, 365W

Устойчивые k атмосферному воздействию стали, например, Cor-Ten®, Patinax®-F, Patinax®-37 и иные подобные стали с легированием Ni и Cu

ДАННЫЕ ПО РА	АСХОДУ						
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
1,2	20	445	130	20-22	1,6	1,20	
		700	180	23-25	2,5	1,20	
		950	220	25-27	3,4	1,20	
		1270	265	27-29	4,5	1,20	
		1590	305	30-32	5,9	1,20	

ОПТИМАЛЬНІ	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO ₂								
Диаметр	Пространственные положения сварки								
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G				
1,2	230-280A 26-32B	230-280A 26-32B	200-240A 25-32B	200-240A 25-28B	160-220A 23-28B				

Γ AW

Outershield® MC555CT-H

КЛАССИФИКАЦИЯ

 AWS A5.28
 E80C-W2 H4
 A-Nr
 2

 EN ISO 17632-B
 T554T15-0MA-NCC1-UH5
 F-Nr
 6

 9606 FM
 2

ОБШЕЕ ОПИСАНИЕ

Газозащитная металлопорошковая проволока с содержанием 0,5% Ni, 0,5% Cu и 0,5% Cr для сварки цстойчивых к атмосферному воздействию сталей класса (CorTen)

Технологична в использовании благодаря высоким сварочным характеристикам

Практически полное отсутствие разбрызгивания, высокая скорость сварки и хорошая подаваемость проволоки

Высокие механические характеристики наплавленного металла (мин. 47 Дж по Шарпи при -40°С)

Постоянно высокое качество продукции и точный контроль легирования

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	TUV
M21	+

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC +

M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxog газа : 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Защитный газ C Mn Si S Ni CrCu **HDM** M21 0.03 0.020 0.55 1.3 0.4 0.015 0.55 0.55 3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАК	KTEPULTUKU	1 HAIIJIABJIEI	HHUI U ME IAJI	IJIA [%]				
	Защитный		Предел mekuчести	Предел прочности	Отн. цалинение		ная вязк Шарпи (£	
	2 a 3	Состояние		(МПа)	(%)	-30°C	-40°C	-50°C
Требования: AWS A5.28 EN ISO 17632-B			мин. 470 мин. 460	мин. 550 550-740	мин. 19 мин. 17	мин. 27	мин. 47	
Средние значения	M21	ПС	650	680	22	80	70	60

ВИЛЫ УПАКОВКИ

Диаметр (мм) 1,2 Кассета В300, 15 kг X

Outershield® MC555CT-H: Bep. C-RU02-01/02/16

Outershield® MC555CT-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Устойчивая к атмосферному воздействию сталь	
EN 10155 / 100025-5	S235 J0W, S235 J2W, S355 J0W, S 355 J0WP, S 355 J2 W, S 355 J2WP, S 355 J2G1W,
ASTM A242	S 355 J2G2W, S 355 K2G1W, S 355 K2G2W
ASTM A588	Tun 1
ASTM A709	Mapku A, B, C, K
ISO 5952	Copm HPS 50 u WHPS 70W
Без классификации:	HSA 235W, 245W, 355W1, 355W2, 365W
	С пределом текучести до 550 MPa
	С высокой ударной вязкостью при -50°С

ДАННЫЕ ПО РАСХОДУ							
Tun gyzu	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
Короткая дуга	15	230	100	15	1,1	1,10	
		320	120	16	1,4	1,10	
		400	150	17	1,9	1,10	
Широкая дуга	20	635	180	28-30	2,7	1,10	
		940	275	31-34	4,8	1,10	
		1420	340	35-38	6,8	1,10	
	Tun gyги Короткая gyга	Вылет электрода Тип дуги (мм) Короткая дуга 15	Коротикая дуга15230Широкая дуга20635940	Короткая дуга15230100Широкая дуга206635180400150320120400150180940275	Короткая дуга1523012015100153201201640015017Широкая дуга2063518028-3094027531-34	Короткая дуга15230100151,1100320120161,4400150171,910028-3028-3028-3010028-3028-3028-30100320161,4400150171,910015171,910015171,910015171,910015171,91001518028-302,71002027531-344,8	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO ₂								
Диаметр	Пространственные положения сварки							
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G			
1,2	230-380A 26-36B	230-380A 26-36B	230-300A 26-30B	130-170A 15-17B	140-175A 16-17B			

Outershield® 12-H

AWS A5.29 F81T1-A1M-H4 A-Nr 2 ISO 17634-A T MoL P M 2 H5 F-Nr 9606 FM 1/3

ОБЩЕЕ ОПИСАНИЕ

Рутиловая порошковая проволока с содержанием 0,5% Мо для сварки в смешанном защитном газе во всех пространственных положениях

Высокие сварочно-технологические характеристики, низкий цровень разбрызгивания, хороший внешний вид шва Технологична в использовании

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+ M21 : Смешанный газ Ar+ (>15-25%) CO Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	TÜV
M21	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]								
Защитный газ	С	Mn	Si	Р	S	Мо	HDM	
M21	0.065	0.8	0.2	0.014	0.010	0.46	3 мл/100 гр.	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел mekuчести	Предел прочности	Отн. цалинение	Ударная вязко по Шарпи (Д	
	2a3	Состояние	(M∏a)	(МПа)	[%]	+20°C	-20°C
Требования: AWS A5.29		CH ⁽¹⁾	мин. 470	550-690	мин. 19	не требуется	
ISO 17634-A		CH ⁽²⁾	мин. 355	мин. 510	мин. 22	мин. 47	
Средние значения	M21	CH ⁽³⁾	540	600	27	160	79
Luamile nauvanila. LU ₁	- 620 ± 15°C/1 i	ı T∩²] – 570-62ı	∩ºC/1 u T∩3] – 1u.	/ควกºr			

Снятие напряжения: $T0^{\circ} = 620 \pm 15^{\circ}$ С/1 ч, $T0^{\circ} = 570 - 620^{\circ}$ С/1 ч, $T0^{\circ} = 14/620^{\circ}$ С

Диаметр (мм) 1.2 Kaccema B300, 15 kz

Outershield® 12-H: 8ep. C-RU26-01/02/16

Outershield® 12-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код	Tun				
Жаропрочная сталь					
EN 10028-2	Р295GH, Р355GH, 16Mo3 и аналогичные сплавы				
EN 10222-2	17Мо3, 14Мо6 и аналогичные сплавы				
ASTM A335	Copm P1				
ASTM A209	Copm T1				
ASTM A250	Copm T1				
ASTM A336	Copm F1				
ASTM A204	Mapku A, B, C				
ASTM A217	Copm WC1				
ASTM A352	Copm LC1				
Сталь с мелкозернистой структурой					

S275, S355, S420 EN 10025 часть 3 EN 10025 часть 4 S275, S355, S420

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
1,2	20	445	130	20-22	1,6	1,20	
		700	180	23-25	2,5	1,20	
		950	220	25-27	3,4	1,20	
		1270	265	27-29	4,5	1,20	
		1590	305	30-32	5,9	1,20	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO.)

Диаметр		Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G					
1,2	230-280A	230-280A	200-240A	200-240A	160-220A					
	26-32B	26-32B	25-32B	25-28B	23-28B					

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемый диапазон температур термообработки: 570-630°C

Продолжительность зависит от толщины материала

MYJ.

Outershield® 19-H

КЛАССИФИКАЦИЯ

 AWS A5.29
 E 81T1-B2M-H4
 A-Nr
 3

 ISO 17634-A
 T CrMo1 P M 2 H5
 F-Nr
 6

 9606 FM
 3

ОБЩЕЕ ОПИСАНИЕ

Рутиловая порошковая проволока с легированием 1,25% Cr и 0,5% Мо для сварки в смешанном защитном газе во всех пространственных положениях

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва Технологична в использовании

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxog газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	ΤÜV
M21	+

химический со	CTAB H	АПЛАВЛ	ЕННОГО	МЕТАЛ.	ЛА (%)			
Защитный газ	С	Mn	Si	Р	S	Cr	Мо	HDM
M21	0,07	0,74	0,24	0,013	0,010	1,24	0,52	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел mekuчести	Предел прочности	Отн. цалинение	Ударная вязк по Шарпи (1	
	газ	Состояние		(МПа)	(%)	+20°C	-20°C
Требования: AWS A5.29		CH ^(t)	мин. 470	550-690	мин. 19	не требуется	
ISO 17634-A		CH ⁽²⁾	мин. 355	мин. 510	мин. 20	мин. 47	
Средние значения	M21	CH ⁽³⁾	545	635	21	150	80

Снятие напряжения: $T0^{1} = 690 \pm 15^{\circ}$ С/1 ч. $T0^{2} = 660-700^{\circ}$ С/1 ч. $T0^{3} = 14/690^{\circ}$ С

ВИДЫ УПАКОВКИ

Диаметр (мм) 1,2 Кассета В300, 15 kг X

Outershield" 19-H: Bep. C-RU25-01/02/16

Outershield® 19-H

	АТЕРИА	

CDAI NDAEMDIE MATEI NATOI		
	Класс прочности стали / Kog	Tun
	Жаропрочная сталь	
	EN 10028-2	13CrMo4-5 и аналогичные сплавы
	EN 10083-1	25CrMo4 и аналогичные сплавы
	EN 10222-2	14CrMo4-5 и аналогичные сплавы
	ASTM A387	Copm 11 u 12
	ASTM A182	Copm F1 u F12
	ASTM A217	Copm WC6 u WC11
	ASTM A234	Copm WP11 u WP12
	ASTM A199	Copm T11
	ASTM A200	Copm T11
	ASTM A213	Copm T11 u T12
	ASTM A335	Copm P11 u P12
	Инструментальная сталь	
	DIN 17210	16MnCr5 и аналогичные сплавы

ДАННЫЕ ПО Р	АСХОДУ						
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
1,2	20	445	130	20-22	1,6	1,20	
		700	180	23-25	2,5	1,20	
		950	220	25-27	3,4	1,20	
		1270	265	27-29	4,5	1,20	
		1590	305	30-32	5,9	1,20	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO2											
	Диаметр										
	(мм)	PA/1G	PB/2F	/2F PC/2G PF/3G на nogъем							
	1,2	230-280A	230-280A	200-240A	200-240A	160-220A					
		26-32B	26-32B	25-32B	25-28B	23-28B					

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемая температура предварительного подогрева: 200 - 250°С Рекомендуемый диапазон температур термообработки: 660-700°С Продолжительность зависит от толщины материала

$\mathsf{F}\mathsf{\Gamma}\mathsf{A}\mathsf{A}$

Outershield® 20-H

КЛАССИФИКАЦИЯ

AWS A5.29 E 91T1-B3M-H4 A-Nr 4
ISO 17634-A T CrMo2 P M 2 H5 F-Nr 6
9606 FM 3

ОБЩЕЕ ОПИСАНИЕ

Рутиловая порошковая проволока с легированием 2,25% Cr, 1% Мо для сварки в смешанном защитном газе во всех пространственных положениях

Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва Технологична в использовании

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	TÜV
M21	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)											
Защитный газ	С	Mn	Si	Р	S	Cr	Мо	HDM			
M21	0,21	0,013	0,008	2,23	1,09	3 мл/100 гр.					

МЕХАНИЧЕСКИЕ ХАРАК	Ударная вязко по Шарпи (С						
	283		(МПа)	์ (МПа)	[%]	+20°C	-20°C
Требования: AWS A5.29		CH ⁽¹⁾	мин. 540	620-760	мин. 17	не требуется	
ISO 17634-A		CH ⁽²⁾	мин. 400	мин. 500	мин. 18	мин. 47	
Средние значения	M21	CH ⁽³⁾	570	680	19	150	60
Снятие напряжения: ТО	i ¹⁾ = 690 ± 15°C/1	ч, TO ^{2]} = 690-7	50°C/1 ч, TO ³⁾ = 1	ч/690°С			

DINULIALIANODAL

Диаметр (мм) 1,2 Кассета В300, 15 kг X

Outershield* 20-H: Bep. C-RU26-01/02/16

Outershield® 20-H

ASTM A335

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Жаропрочная сталь	
EN 10028-2	10CrMo9-10 и аналогичные сплавы
EN 10222-2	12CrMo9-10 и аналогичные сплавы
ASTM A387	Copm 21 u 22
ASTM A182	Copm F22
ASTM A217	Copm WC9
ASTM A234	Copm WP22
ASTM A199/A200	Copm T21 u T22
ASTM A213	Copm T22

(АННЫЕ ПО І	РАСХОДУ					
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
1,2	20	445	130	20-22	1,6	1,20
		700	180	23-25	2,5	1,20
		950	220	25-27	3,4	1,20
		1270	265	27-29	4,5	1,20
		1590	305	30-32	5,9	1,20

оптимальн	ЫЕ РЕЖИМЫ	І СВАРКИ ЗАП	имженио	проходов в защи	ГНОМ ГАЗЕ А	r + (>15-25)% CO ₂)
Диаметр		Простра	нственные п	оложения сварки		
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	
1,2	230-280A 26-32B	230-280A 26-32B	200-240A 25-32B	200-240A 25-28B	160-220A 23-28B	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Рекомендуемая температура предварительного подогрева: 200 - 250°C Рекомендуемый диапазон температур термообработки: 690-750°C Продолжительность зависит от толщины материала

Copm P22

V V J

Innershield® NR®152

КЛАССИФИКАЦИЯ

 AWS A5.20
 E71T-14
 A-Nr
 1

 AWS A5.36
 E71T-14S
 F-Nr
 6

 EN ISO 17632-A
 T 42 Z Z N 5
 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Предназначена для высокоскоростной сварки сталей со специальным покрытием

Мягкая, стабильная дуга

Устойчивость к образованию пористости

Хорошо подходит для заполнения широких зазоров

Рекомендуется для роботизированной сварки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА DC -

химич	ЕСКИЙ СО	ОСТАВ Н	АПЛАВЛ	ЕННОГО	метал	ЛА (%)	
С	Mn	Si	Р	S	Al	Ti	N
0.30	n 99	N 24	N N13	0.007	163	U UU3	N N51

МЕХАНИЧЕСКИЕ ХАРАКТ	ГЕРИСТИКИ Н	АПЛАВЛЕННОГО	МЕТАЛЛА [%]		
	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж)
Требования: AWS A5.20		не требуется	480	не требуется	не требуется
Средние значения	ПС		525*		

^{*} с плоским образцом для испытания предела прочности

ВИДЫ УПАКОВКИ		
Диаметр (мм)	1,6	
Kaccema 50C, 22,68 kz	X	

Innershield* NR* 152: Bep. C-RU22-01/02/16

Innershield® NR®152

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Литая сталь

EN 10213-2 GP240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240, L290, L360 API 5LX X42, X46, X52 EN 10216-1/ P235T1, P235T2, P275T1

EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давленияEN 10028-2
P235GH. P265GH. P295GH. P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355 EN 10025 часть 4 S275, S355

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
1,6	13	75	90	13	0,55	1,11
		125	150	15	0,9	1,11
		280	250	19	2,0	1,11

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

			нственные п	оложения сварки	
Диаметр (мм)		PA/1G PB/2F	PC/2G	PG/3G на cnyck	
1,6	Скорость подачи проволоки (см/мин)	180	150	200	
	Сварочный ток (А)	205	170	220	
	Напряжение (B)	16,5	18,5	19,5	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Подходит для точечной сварки материалов толщиной от 0,75 мм до 1,5 мм

Cloga makже входит автоматическая сварка, которая требует очень легкого зажигания дуги

Для сварки оцинкованной стали с помощью Innershield NR-152 рекомендуется скорость перемещения от 75 go 100 см/мин.

Конструкция сварного шва должна позволять парам оксида цинка испаряться через расплавленный металл или в атмосферц

Innershield® NR®203 NiC

AWS A5.29 E61T8-K6 A-Nr F-Nr 9606 FM 1

Самозащитная: не требует применения специализированного оборудования

Сварка во всех пространственных положениях

Хорошо подходит для сварки на подъем

Пригоден для любых видов проходов

Отличные результаты испытаний на ударную вязкость и смещение раскрытия вершины трещины (СТОД)

6

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	DNV	LR
3SA	IIIMSH15	3SH15

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	Cr	Al	٧	Мо
0,06	0,83	0,05	0,004	0,003	0,57	0,08	0,73	<0,1	<0,1

МЕХАНИЧЕСКИЕ ХАРАК	ТЕРИСТИКИ Н	ІАПЛАВЛЕННО	ОГО МЕТАЛЛА	[%]	
	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -29°С
Требования: AWS A5.29		мин. 340	410-550	22	27
Средние значения	ПС	400	490	29	95

ВИДЫ УПАКОВКИ	
Диаметр (мм)	2,0
Kaccema 14C, 6.35 kz	X
Kaccema 50C, 22.68 kz	Χ

Innershield® NR® 203 NiC: Bep. C-RU22-01/02/16

Innershield® NR®203 NiC

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Литая сталь

EN 10213-2 GP240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240, L290, L360 API 5LX X42, X46, X52 FN 10216-1/ P235T1 P235T2 P275T

EN 10216-1/ P235T1, P235T2, P275T1

EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355 EN 10025 часть 4 S275, S355

ДАННЫЕ ПО РАСХОДУ									
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла			
2,0	19	125	145	16	1,10	1,32			
		230	235	20	1,95	1,32			
		280	275	21	2,40	1,32			

ОПТИМАЛЬ	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ										
Диаметр		Γ	Тространстве	нные положения св	apku						
(мм)		PA/1G PB/2F	PC/2G	PF/3G на подъем PH/5G на подъем							
2,0	Скорость подачи проволоки (см/мин.)	280	230	200	200						
	Сварочный mok (A)	275	235	215	215						
	Напряжение (В)	21	20	19	18						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Презназначается для сварки углеродистых и высокопрочных сталей с соблюдением требований по предели текучести

Хорошо nogxogum gля кольцевой сварки, особенно крупных трубных конструкций большого guamempa Takже используется в производстве основных конструкций, в том числе для мостостроения и судостроения, а также сварки элементов жесткости на судах, баржах и офшорных сооружениях

M V J

Innershield® NR®203 Ni1

КЛАССИФИКАЦИЯ

 AWS A5.29
 E71T8-Ni1
 A-Nr
 10

 AWS A5.36
 E71T8-A2-Ni1-H16
 F-Nr
 6

 EN ISO 17632-A
 T 42 4 1Ni Y N 1 H10
 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Образует наплавленный металл с содержанием никеля

Образует наплавленный металл с ударной вязкостью выше 27 Дж при -29°C

Цвет наплавленного металла соответствует цвету сталей, устойчивых к атмосферному воздействию

Подходит для сварки при некачественной подгонке изделий

Подходит для сварки корневых проходов

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV	GL	LR	RINA
3SA,3YSA	SA3YMHH	IIIYMSH10	3YSH10	3S,3YSH15	3S,3YS

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Р	S	Ni	Αl	
0,08	1,1	0,27	0,008	0,003	0,9	0,85	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текучести	Предел прочности	Отн. удлинение	Ударная вязкость no Шарпи (Дж)	
	Состояние	(МПа)	(M∏a)	[%]	-29°C	
Требования: AWS A5.29		мин. 400	480-620	20	27	
Средние значения	ПС	465	540	26	115	

ВИДЫ УПАКОВКИ

Innershield* NR*203 Ni1: 8ep. C-RU23-01/02/16

Innershield® NR®203 Ni1

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код

Tun

Констрикционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Питая сталь

EN 10213-2 GP240R

Трибная сталь

EN 10208-1 L210, L240, L290, L360 FN 10208-2 L240, L290, L360 API 5LX X42, X46, X52 FN 10216-1/ P235T1, P235T2, P275T1 P275T2, P355N FN 10217-1

Сталь для бойлеров и камер высокого давления

P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355 FN 10025 yacmb 4 S275, S355

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
2,0	19	125	145	16	1,10	1,30	
		230	235	20	1,95	1,30	
		355	310	23	3,15	1,30	
2,4	19	125	215	18	1,60	1,20	
		240	315	21	3,25	1,20	
		330	385	24	4,30	1,20	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

	Пространственные положения сварки										
Диаметр (мм)		PA/1G	PB/2F	PC/2G	PF/3G на nogъем	PH/5G на nogъем	PG/3G на cnyck PJ/5G на cnyck	PE/4G			
2,0	Скор. подачи проволоки (см/мин.)	280	330	230	200	200	200	200			
	Сварочный mok (A)	255	300	235	215	215	215	215			
	Напряжение (B)	21	22	20	19	19	18	19			
2,4	Скор. подачи проволоки (см/мин.)	280	280	215	180						
	Сварочный mok (A)	345	345	290	250						
	Напряжение (В)	22	22	19,5	19						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Презназначается для сварки углеродистых и высокопрочных сталей с соблюдением требований по пределу текучести

Также использиется в произвоастве основных констрикций. В том числе аля мостостроения и судостроения, а также сварки элементов жесткости на судах, баржах и офшорных сооружениях Пригодна для полуавтоматической и автоматической сварки

M V J

Innershield® NR®211 MP

КЛАССИФИКАЦИЯ

 AWS A5.20
 E71T-11
 A-Nr
 1

 AWS A5.36
 E71T-11-AZ-CS3
 F-Nr
 6

 EN ISO 17632-A
 T 42 Z Z N 1 H10
 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Универсальная сварочная проволока для многих видов стали

Высокие сварочно-технологические характеристики и хороший внешний вид шва

Легкое omgеление шлака

Быстрое застывание хорошо подходит для сварки с некачественной подгонкой изделий

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА DC -

OGOEDELING CEDTUCKINALINOLIN IV AFFILTCED

BV	LK
+	AWS

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Al
0,21	0,65	0,25	0,010	0,003	1,3

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж)	
Требования: AWS A5.20		мин. 400	480	20	не требуется	
Средние значения	ПС	450	610	22		

ВИДЫ УПАКОВКИ				
Диаметр (мм)	0,9	1,2	1,7	2,0
Kaccema 14C, 6.35 kz	Х	Χ	Χ	Χ
Kaccema 22RR, 11.34 kz	Χ	Χ		
Kaccema 50C, 22.68 kz			Χ	Χ

Innershield® NR®211 MP: 8ep. C-RU03-11/05/16

Innershield® NR®211 MP

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Литая сталь

GP240R EN 10213-2

Трибная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240, L290, L360 API 5LX X42, X46, X52 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355 EN 10025 yacmb 4 S275, S355

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ kг наплавленного металла
0,9	10	125	30	14	0,3	1,22
		230	90	16	0,6	1,22
		280	120	16,5	0,8	1,22
1,1	14	180	120	15	0,5	1,22
		280	160	17	1,0	1,22
		330	170	18	1,2	1,22
1,7	19	100	120	15	0,8	1,22
		190	190	18	1,5	1,22
		440	320	23	3,5	1,22
2,0	19	130	180	16	1,4	1,09
		190	250	18	2,2	1,09
		380	350	22	4,3	1,09
2,4	19	130	235	16	2,0	1,10
		140	250	18	2,3	1,10
		250	370	20	4,2	1,10

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

		Пространственные положения сварки					
Диаметр (мм)		PA/1G PB/2F	PC/2G	PF/3G на nogъем	PG/3G на cnyck PJ/5G на cnyck	PE/4G	
0,9	Скор. подачи проволоки (см/мин.)	180	180	150	230	230	
	Сварочный ток (А)	65	65	50	85	85	
	Напряжение (В)	15	15	14,5	16	16	
1,1	Скор. подачи проволоки (см/мин.)	230	230	200	280	280	
	Сварочный ток (А)	140	140	130	160	160	
	Напряжение (В)	16	16	16	17	17	
1,7	Скор. подачи проволоки (см/мин.)	440	250	190	300	300	
	Сварочный ток (А)	320	230	190	280	280	
	Напряжение (В)	23	19,5	18	21	21	
2,0	Скор. подачи проволоки (см/мин.)	330	190		230	190	
	Сварочный ток (А)	320	250		320	250	
	Напряжение (В)	21	18		19,5	18	
2,4	Скор. подачи проволоки (см/мин.)	230	180		230	140	
	Сварочный ток (А)	350	275		350	250	
	Напряжение (В)	19,5	19		19,ELINCO		
					— ELE	CTRIC	

THE WELDING EXPERTS

WVJ:

Innershield® NR®232

КЛАССИФИКАЦИЯ

 AWS A5.20
 E71T-8
 A-Nr
 1

 AWS A5.36
 E71T8-A2-CS3-H16
 F-Nr
 6

 EN ISO 17632-A
 T 42 2 Y N 2 H10
 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Самозащитная: не требует применения специализированного оборудования

Производительность наплавки до 3 кг/ч независимо от положения сварки

Высокая ударная вязкость при низких температурах

Идеально подходит для угловой сварки и заполняющих проходов

Пригодна как для однопроходной, так и многопроходной сварки

Диаметр 1,7 мм хорошо подходит для сварки загрязненных или загрунтованных пластин

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА DC -

 ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

 ABS
 BV
 DNV
 LR
 RINA
 TÜV
 NKK

 3SA.3YSAH15
 SA3YMH
 IIIYMSH15
 3S.3YSH15
 3YS
 +
 KSW53NH10

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Р	S	Αl
0,18	0,65	0,27	0,006	0,004	0,55

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел mekyчести	Предел прочности	Отн. цалинение	по шарпа (для)			
	Состояние	(МПа)	(МПа)	(%)	-20°C	-29°C		
Требования: AWS A5.20		мин. 400	480	22		27		
Средние значения	ПС	490	590	26	65	35		

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,7	1,8	2,0
Kaccema 14C, 6.12 kz	Х	Χ	Χ
Kaccema 50C, 22.68 kz	Χ	Χ	Χ

Innershield" NR" 232: 8ep. C-RU22-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Литая сталь

EN 10213-2 GP240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240, L290, L360, L415 API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2. P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2

P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355, S420 EN 10025 часть 4 S275, S355, S420

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
1,7	12-25	280	170	19	1,7	1,33
		430	250	21	2,7	1,33
		810	400	26	5,1	1,33
2,0	12-25	200	130	17	1,5	1,22
		430	250	21	2,9	1,22
		730	350	24	5,0	1,22
2,4	12-25	150	130	16	1,3	1,22
		330	250	21	2,8	1,22
		550	350	25	4,6	1,22

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр		Пространственные положения сварки						
(мм)		PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G		
1,7	Скорость подачи проволоки (см/мин.)	635	495		380	380		
	Сварочный mok (A)	310	275		225	225		
	Напряжение (В)	23	23		19,5	19,5		
1,8	Скорость подачи проволоки (см/мин.)	635	510	430	390	430		
	Сварочный mok (A)	355	290	255	240	255		
	Напряжение (В)	11	21	21	20	21		
2,0	Скорость подачи проволоки (см/мин.)	460	380		330	380		
	Сварочный mok (A)	315	285		250	285		
	Напряжение (В)	23	22		21	22		

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Разработана для полуавтоматической сварки стали толщиной 5 мм

Подходит kak для однопроходной, так и многопроходной сварки

Диаметр 1.7 мм рекомендуется для случаев, когда нужно произвести сварочный проход большой ширины (методом поперечного колебания

электрода), и сварки загрязненных поверхностей (маслом, ржавчиной, краски или грунтовки)

Диаметр 1.8 мм рекомендуется для случаев, когда нужно обеспечить наибольшую скорость сварки при однопроходном заполнении шва

Диаметр 2.0 мм рекомендиется для сварки в потолочном положении

КЛАССИФИКАЦИЯ

 AWS A5.20
 E71T-8
 A-Nr
 1

 AWS A5.36
 E71T8-A2-CS3-H16
 F-Nr
 6

 EN ISO 17632-A
 T 42 3 Y N 2 H10
 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Самозащитная: не требует применения специализированного оборудования

Благодаря новой формуле и технологии производства проволока обладает высокими сварочнотехнологическими свойствами

Мягкая дуга с большой глубиной проплавления позволяет производить качественные сварные швы с хорошим внешним видом шва

Высокая производительность наплавки во всех пространственных положениях

Высокая ударная вязкость

NR-233 была специально разработана для того, чтобы минимизировать порообразование, даже если проволока длительное время хранилась без упаковки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА DC -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (9	%l
ANNO LECTOR COCTABILITION OF THE LABOR (

С	Mn	Si	Р	S	Αl
0,16	0,65	0,21	0,010	0,003	0,60

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел mekuчести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)
	Состояние	(M∏a)	(M∏a)	[%]	-29°C
Требования: AWS A5.20		мин. 400	480	22	27
Средние значения	ПС	440	570	26	40

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,6	1,8
Пластиковая кассета, 5.7 кг	Χ	
Пластиковая kaccema. 11.3 kz	Χ	Х

Innershield" NR" 233: Bep. C-RU22-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Литая сталь

EN 10213-2 GP240R

Трубная сталь

ËN 10208-1 L210, L240, L290, L360 EN 10208-2 L240, L290, L360, L415 API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2. P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2

P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355 EN 10025 часть 4 S275, S355

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
1,6	13-32	380	220	17-19	1,9	1,26	
		510	245	19-21	2,5	1,31	
		640	270	21-23	3,0	1,35	
		760	295	23-25	3,5	1,35	
		890	315	25-27	4,3	1,31	
1,8	19,25	250	185	17-18	1,6	1,25	
		380	250	18-19	2,5	1,24	
		510	295	20-21	3,2	1,25	
		640	330	22-23	4,0	1,26	
		760	355	23-24	4,8	1,26	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Сварка на подъем угловых швов и швов с разделкой кромок Потолочная сварка угловых швов и швов с разделкой кромок

Сварка конструкций, эксплуатирующихся в сейсмически опасных районах

Сварка конструкций общего назначения

Сидостроение

W V J

Innershield® NR®207-H

КЛАССИФИКАЦИЯ

AWS A5.29 E71T8-K6 **A-Nr** 10 **F-Nr** 6 **9606 FM** 1

ОБШЕЕ ОПИСАНИЕ

Самозащитная: не требует применения специализированного оборудования

Предназначается для полуавтоматической заполняющей сварки труб на спуск

Высококачественная сварка во всех пространственных положениях

Высокие результаты испытаний на ударную бязкость и смещение раскрытия вершины трещины (СТОО)

Низкое содержание диффузионного водорода Н в наплавленном металле

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Αl	Ni
0,07	0,9	0,2	0,005	0,003	1,0	0,85

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]							
	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -29°С		
Требования: AWS A5.29		мин. 400	480-620	20	27		
Средние значения	ПС	420	535	25	110		

ВИДЫ УПАКОВКИ			
Диаметр (мм)	1,7		

Innershield* NR*207-H; 8ep. C-RU22-01/02/16

Kaccema 14C, 6.35 kz

Innershield® NR®207-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код Tun

Конструкционная сталь общего назначения

EN 10025 yacmb 2 S185, S235, S275, S355

Листы судостроительной стали

Mapku A, B, D, om AH32 go DH36 ASTM A131

Трубная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240, L290, L360, L415 API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1

EN 10217-1 P275T2, P355N

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355 EN 10025 часть 4 S275, S355

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Kг проволоки/ kг наплавленного металла
1,7	19	230	205	17,5	1,5	-
		270	220	18,5	1,8	-
		300	245	19,5	2,0	-

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Хорошо подходит для случаев, когда требуется низкое содержание водорода в металле шва Высокопроизводительная сварка

Производство конструкций общего назначения, если их механические свойства должны отвечать требованиям эксплуатации в арктических условиях

Полуавтоматическая сварка труб

VA)

Innershield® NR®208-H

КЛАССИФИКАЦИЯ

AWS A5.29 E91T8-G

A-Nr F-Nr

9606 FM 2

ОБШЕЕ ОПИСАНИЕ

Самозащитная: не требует применения специализированного оборудования

Предназначается для полуавтоматических заполняющих и облицовочных проходов по трубной стали X-80 на спуск Высокая ударная вязкость при низких температурах

6

Низкое содержание диффузионного водорода в наплавленном металле (HDM < 8 мл/100 г)

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

C	Mn	Si	Р	S	Αl	Ni
0,05	1,65	0,25	0,007	<0,003	0,85	0,8

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текичести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)	
	Состояние	(ЙПа)	[·] (M∏a)	³³ (%)	-30°C	
Требования: AWS A5.29		мин. 540	620-760	17		
Средние значения	ПС (1G)	585	650	26	115	

ВИЛЫ УПАКОВКИ

иетр (мм)	1,7	2,0
ema 14C, 6.35 kz	Χ	Χ

Innershield* NR*208-H; Bep. C-RU22-01/02/16

Innershield® NR®208-H

СВАРИВАЕМЫЕ МАТЕРИАЛЫ						
Класс прочности стали / Код	Tun					
Трубная сталь						
APĪ 5LX	X60, X70					
EN 10208-2	L 415, L445, L480, L550					

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
1,7	19	150	145	15,5	1,0	-
		205	180	17,5	1,3	-
		270	215	18,5	1,8	-
		370	255	20,5	2,4	-

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Температура предварительного и промежуточного подогрева зависит от качества стали Для сварки корневого шва стали класса от X-60 до X-80 рекомендуется проволока Innershield NR-204-H

W V J

Innershield® NR®305

КЛАССИФИКАЦИЯ

 AWS A5.20
 E70T-6
 A-Nr
 1

 AWS A5.36
 E70T6-A2-CS3-H16
 F-Nr
 6

 EN ISO 17632-A
 T 42 0 W N 3 H15
 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

NR-305 — это самозащитная порошковая проволока

Она не предназначена для внепозиционной сварки, но может применяться для сварки наклонных

поверхностей под углом максимум 15° на спуск и максимум 5° на подъем

Высокая производительность наплавки и скорость подачи

Простота в обращении

Рекомендуется для высокопроизводительной сварки на спуск

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC -

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS	BV	DNV
2SA,2YSA	SA2YMH	IIYMS

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Al
0,09	0,9	0,2	0,007	0,008	0,80

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

HEALTH IEERNE ALL THE FIRST HAD HEALTH OF OTHER HOUNT (195)								
	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -29°С			
Требования: AWS A5.20		мин. 400	480	22	27			
Средние значения	ПС	470	550	25	40			

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,7	2,0	2,4
Kaccema 50C. 22.68 kz	Х	X	X

Innershield* NR*305: 8ep. C-RU22-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код Тип

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Литая сталь

EN 10213-2 GP240R

Трубная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240, L290, L360, L415 API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2. P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 Сталь с мелкозернистой структурой

EN 10028-2 P235GH, P265GH, P295GH, P355GH

EN 10025 часть 3 S275, S355, S420 EN 10025 часть 4 S275, S355, S420

ΠΑΗΗΝΕ ΠΟ ΡΑΓΧΟΠΥ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
1,7	12-25	510	275	24	3,75	1,22	
		635	325	25	4,60	1,22	
		890	390	27	6,35	1,22	
2,0	19-25	510	360	22,5	4,50	1,22	
		635	410	25	5,90	1,22	
		1140	545	32,5	11,10	1,22	
2,4	38-65	405	330	21	5,00	1,23	
		610	425	24	7,55	1,23	
		1015	525	33	12,70	1,23	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственные положения сварки					
(мм)		PA/1G	PB/2F			
1,7	Скорость подачи проволоки (см/мин.)	635	635			
	Напряжение (В)	25	25			
2,0	Скорость подачи проволоки (см/мин.)	890	635			
	Напряжение (В)	25	24			
2,4	Скорость подачи проволоки (см/мин.)	710	610			
	Напряжение (В)	27	24			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Типовое применение включает мостостроение, судостроение, монтаж офшорных буровых сооружений и оборудования, сварку металлоконструкций и общее производство.

NR-305 можно использовать для одно- и много проходной сварки угловых и нахлесточных соединений, а также стыковых соединений с глубокой разделкой кромок в нижнем пространственном положении.

VA)

Innershield® NR®311

КЛАССИФИКАЦИЯ

 AWS A5.20
 E70T-7
 A-Nr
 1

 AWS A5.36
 E70T7-AZ-CS3
 F-Nr
 6

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Самозащитная: не требует применения специализированного оборудования

Большая глубина проплавления как в случае вертикальных стыковых соединений, так и узких зазоров Высокая скорость сварки

Высокая производительность наплавки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА DC -

 ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

 C
 Mn
 Si
 P
 S
 AI

 0,27
 0,4
 0,08
 0,007
 0,005
 1,5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	
Требования: AWS A5.20		мин. 400	480	22	
Средние значения	ПС	430	590	24	

- D1/	Halsi	MILL	ΛKΩ	ВКИ
- 121/		7 111	HIND	DIXI

Диаметр (мм)	2,0	2,4
Kaccema 14C, 6.35 kz	X	
Kaccema 50C, 22.68 kz		Χ

Innershield" NR" 311: 8ep. C-RU22-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код Tun

Конструкционная сталь общего назначения EN 10025 yacmb 2

S185, S235, S275, S355 Листы судостроительной стали

ASTM A131

Mapku A, B, D, om AH32 go DH36

Литая сталь EN 10213-2

GP240R

Трибная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240, L290, L360, L415 API 5I X X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2, P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2

P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

FN 10025 yacmn 3 S275, S355, S420

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
2,0	32	255	190	21	2,2	1,28
		405	275	25	3,6	1,28
		760	410	28	7,1	1,28

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр		Пространственные положения сварки					
(мм)		PA/1G	PB/2F	PC/2G	PG/3G на cnyck		
2,0	Скорость подачи проволоки (см/мин.)	610	510	410	380		
	Сварочный ток (А)	355	320	280	260		
	Напряжение (В)	26	26	25	25		
	I .						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Хорошо подходит для сварки горизонтальных стыковых соединений, например, вертикальных конструкций Пригоден для сварки угловых и нахлесточных соединений в горизонтальном нижнем или наклонном нижнем положении на cnuck

Также идобна для создания глибоких сварных швов с разделкой кромок. Глубина проплавления и особенно легкое отделение шлака позволяют создавать зазоры небольшой ширины и с небольшими углами скоса кромок и тем самым максимально сократить общий расход металла, необходимого для заполнения сварного соединения

MYJ.

Innershield® NR®400

КЛАССИФИКАЦИЯ

 AWS A5.29
 E71T8-K6
 A-Nr
 10

 F-Nr
 6
 F-Nr
 6

 EN ISO 17632-A
 T 42 6 1Ni Y N 2 H10
 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Самозащитная: не требует применения специализированного оборудования

Высокий предел прочности, превосходящий требования стандарта StE 355

Высокая ударная вязкость при -40°С

Проволока успешно прошла испытание на смещение раскрытия вершины трещины (STOD). Предназначается для сварки офшорных соорижений

Подходит для сварки во всех пространственных положениях и любых видов проходов

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА DC -

⊕ †

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

BV	LR	TU\
SA3YMHH	3S,3YSH15	+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

C	Mn	Si	Р	S	Αl	Ni	Cr	
0,06	0,74	0,17	0,004	0,002	0,74	0,75	0,13	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел текучести	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)	
	Состояние	(МПа)	(МПа)	[%]	-60°C	
Требования: AWS A5.29		мин. 400	480-620	20	27	
Средние значения	ПС	435	525	26	100	

ВИДЫ УПАКОВК*И*

Диаметр (мм)	2,0
Kaccema 14C, 6.35 kz	Χ
Kaccema 50C 22 68 kz	

Innershield* NR* 400: Bep. C-RU24-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Литая сталь EN 10213-2 GP240R

Трибная сталь

 EN 10208-1
 L210, L240, L290, L360

 EN 10208-2
 L240, L290, L360

 API 5LX
 X42, X46, X52

 EN 10216-1/
 P235T1, P235T2, P275T1

 EN 10217-1
 P275T2, P355N

Сталь для бойлеров и камер высокого давления

EN 10028-2 P235GH, P265GH, P295GH, P355GH

Сталь с мелкозернистой структурой

EN 10025 vacmb 3 S275, S355 EN 10025 vacmb 4 S275, S355

ПАННЫЕ ПО РАСХОПУ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
2,0	19	150	150	16,5	1,20	1,37
		230	225	19,5	1,85	1,37
		280	265	20,5	2,35	1,37

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Пространственные положения сварки						
	PA/1G PB/2F	PC/2G	PF/3G на подъем PF/5G на подъем	PE/4G		
Скорость подачи проволоки (см/мин.)	280	230	200	200		
Сварочный mok (A)	265	225	190	190		
Напряжение (В)	20	19	18	18		
	Сварочный mok (A)	PA/IG PB/2F Скорость подачи проволоки (см/мин.) 280 Сварочный ток (A) 265	PA/1G PB/2F PC/2G Скорость подачи проволоки (см/мин.) 280 230 Сварочный ток (A) 265 225	PA/1G PB/2F PC/2G PF/3G на подъем PF/5G на подъем Скорость подачи проволоки (см/мин.) 280 230 200 Сварочный ток (A) 265 225 190	PA/1G PB/2F PF/3G Ha подъем PF/5G на подъем PE/4G Скорость подачи проволоки (см/мин.) 280 230 200 200 Сварочный ток (A) 265 225 190 190	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Оборудование для морских нефтяных платформ, трубопроводы и резервуары-хранилища Производство общестроительных металлоконструкций, в том числе для мостостроения, судостроения и строительства барж

Кольцевая сварка труб большого сечения и диаметра с разделкой кромок

$V \nabla \cup V$

Innershield® NS®3M

КЛАССИФИКАЦИЯ

AWS A5.20	E70T-4	A-Nr	1
AWS A5.36	E70T4-AZ-CS3	F-Nr	6
EN ISO 17632-A	T 46 Z V N 3	9606 FM	1/2

ОБЩЕЕ ОПИСАНИЕ

NS-3ME — это самозащитная проволока с высокой скоростью наплавки для сварки горизонтальных поверхностей и работ в нижнем положении, когда к материалу не предъявляются особые требования к ударным нагрузкам

Рекомендуется для сварки конструкций большого сечения или с высокой склонностью к образованию трещин Используется для сварки стыков железнодорожных рельс

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА DC +

VIANIALIECIZIAŬ	ОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%	7.1
XUIVINI YELKINI	ULTAB HATIJIABJIEHHUTU METAJIJIA 19	

C	Mn	Si	Р	S	Αl	
0,23	0,45	0,25	0,006	0,006	1,40	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Состояние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	
Требования: AWS A5.20		460	530-670	22	
Средние значения	ПС	470	640	27	

ВИЛЫ УПАКОВКИ

Диаметр (мм)	2,0	2,4	3,0	
Kaccema 14C, 6.35 kz	Χ			
Kaccema 25RR, 12.5 kz	Χ			
Kaccema 50C, 22.68 kz	Χ	Χ	Χ	

Innershield* NS* 3M: 8ep. C-RU23-11/05/16

Innershield® NS®3M

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Koq Tun

Конструкционная сталь общего назначения

EN 10025 часть 2 S185, S235, S275, S355

Листы судостроительной стали

ASTM A131 Mapku A, B, D, om AH32 go DH36

Литая сталь

EN 10213-2 GP240R

Трибная сталь

EN 10208-1 L210, L240, L290, L360 EN 10208-2 L240, L290, L360, L415 API 5LX X42, X46, X52, X60 EN 10216-1/ P235T1, P235T2, P275T1 EN 10217-1 P275T2. P355N

Сталь с мелкозернистой структурой

EN 10025 yacmb 3 S275, S355, S420 EN 10025 yacmb 4 S275, S355, S420

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/ мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Kz проволоки/ kz наплавленного металла
2,0	50	500	250	29	5,0	1,18
		635	290	30	6,3	1,18
		760	320	31	7,6	1,18
2,4	70	280	250	28	3,8	1,16
		580	400	31	8,1	1,16
		700	450	32	10,0	1,16
3,0	70	380	400	28	7,7	1,23
		450	450	29	9,0	1,23
		570	550	31	12,0	1,23

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр			Пространс	твенные положения сварки
(мм)		PA/1G	PB/2F	
2,0	Скорость подачи проволоки (см/мин.)	635	635	
	Сварочный mok (A)	290	290	
	Напряжение (В)	30	30	
2,4	Скорость подачи проволоки (см/мин.)	580	580	
	Сварочный mok (A)	400	400	
	Напряжение (В)	31	31	
3,0*	Скорость подачи проволоки (см/мин.)	440	440	
	Сварочный mok (A)	445	445	
	Напряжение (В)	29	29	
3,0**	Скорость подачи проволоки (см/мин.)	760		
	Сварочный ток (А)	550		
	Напряжение (В)	37		

^{*} Вылет 70 мм - ** Вылет 95 мм

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Многопроходная сварка угловых и нахлесточных соединений

Однопроходная сварка угловых и нахлесточных соединений шириной от 4,5 до 9 мм (1F)

Использование угловых швов правильного размера позволит обеспечить достаточную прочность для создания устойчивых к образованию трещин соединений высокопрочных сталей

Сварка соединений профилей рельсовой стали на омедненных подкладках

$\Gamma \Delta W$

Cor-A-Rosta® 304L

КЛАССИФИКАЦИЯ

 AWS A5.22
 E308LT0-1/-4
 A-Nr
 8
 Mat-Nr
 1,4316

 ISO 17633-A
 T 19 9 L R C/M 3
 F-Nr
 6

9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Газозащитная порошковая нержавеющая проволока для сварки в нижнем горизонтальном положении

Стабильная дуга, низкий уровень разбрызгивания и легкое отделение шлака

Хорошая подаваемость проволоки и технологичность в использовании

Хороший внешний вид сварного шва

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+

M21 : Смешанный газ Ar+ (>15-25%) CO₂ C1 : Активный газ 100% CO₂ Pacxog газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	DNV	LRS	TÜV
M21	+		+
C1	+	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Защитный газ	С	Mn	Si	Cr	Ni	FN (no WRC 1992)
M21 /C1	0,03	1,3	0,7	19,5	10	8

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный	Cocmo-	Предел текичести	Предел прочности	Отн. цалинение		вязкость рпи (Дж)
	283	яние	(МПа)	(МПа)	(%)	+20°C	-110°C
Требования: AWS A5.22			не требуется	мин.520	мин. 35		
ISO 17633-А Средние значения	M21/C1	ПС	мин. 320 400	мин. 510 560	мин. 30 42	80	40

ВИДЫ УПАКОВКИ

Диаметр (мм) 1,2 Кассета S300, 15 kг X

Cor-A-Rosta* 304L : Bep. C-RU28-19/05/16

Cor-A-Rosta® 304L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерода	a (C <0,03%)			
	X2CrNi19-11		1,4306	(TP)304L CF-3	S30403 J92500
	X2CrNiN18-10		1,4311	(TP)304LN 302,304	S30453 S30400
Среднее содерх	кание углерода (C >0	,03%]			
	X4CrNi18-10	G-X5CrNi19-10	1,4301 1.4308	(TP)304 CF 8	S30409 J92600
Со стабилизац	ueŭ Ti, Nb		,		
	X6CrNiTi18-10		1,4541	(TP)321 (TP)321H	S32100 S32109
	X6CrNiNb18-10		1,4550	(TP)347 (TP)347H	S34700 S34709
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710

Диаметр	Пространсп	пвенные поло	жения сварки
(мм)	PA/1G	PB/2F	PC/2G
1,2	100-250A	100-250A	100-200A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для позиционной сварки более предпочтительна проволока Cor-A-Rosta P304L

Cor-A-Rosta® P304L

AWS A5.22 E308LT1-1/-4 A-Nr Mat-Nr 1,4316 ISO 17633-A T 19 9 L P C/M 2 F-Nr 6 9606 FM

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока из нержавеющей стали для позиционной сварки

Стабильная дуга, низкий уровень разбрызгивания и легкое отделение шлака

Хорошая подаваемость проволоки и технологичность в использовании

Хороший внешний вид сварного шва

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+ M21

: Смешанный газ Ar+ (>15-25%) CO : Активный газ 100% СО C1

Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV Защитный газ M21 +

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%

M21/C1

ПС

Защитный газ	С	Mn	Si	Cr	Ni	FN (no WRC 1992)
M21 /C1	0,03	1,3	0,7	19,5	10	8

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%] Упарная вязкость Отн. Предел Предел no Шарпи (Дж) Защитный Состоудлинение текцчести прочности +20°C -110°C (MΠa) [%] газ яние (M∏a) Требования: AWS A5.22 не требиется мин.520 мин. 35 мин. 320 мин. 510 мин. 30 ISO 17633-A

400

560

Диаметр (мм) 1,2 Kaccema S300, 15 kz

Средние значения

Cor-A-Rosta® P304L: Bep. C-RU26-19/05/16

80

42

40

Cor-A-Rosta® P304L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерода (С <	0,03%]			
	X2CrNi19-11		1,4306	(TP)304L CF-3	S30403 J92500
	X2CrNiN18-10		1,4311	(TP)304LN 302,304	S30453 S30400
Среднее содерх	kaние углерода (С >0,03%	6)			
	X4CrNi18-10	G-X5CrNi19-10	1,4301 1.4308	(TP)304 CF 8	S30409 J92600
Со стабилизац	ueŭ Ti, Nb		,		
	X6CrNiTi18-10		1,4541	(TP)321 (TP)321H	S32100 S32109
	X6CrNiNb18-10		1,4550	(TP)347 (TP)347H	S34700 S34709
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710

ОПТИМАЛЬН	НЫЕ РЕЖИМЬ	Ы СВАРКИ ЗАІ	полняющих	проходов	
Диаметр	Пр	остранствен	ные положен	ния сварки	
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	
1,2	100-250A	100-250A	100-200A	100-180A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для сварки в нижнем положении более предпочтительна проволока Cor-A-Rosta 304L

MVJ.

Cor-A-Rosta® 347

КЛАССИФИКАЦИЯ

AWS A5.22 E347T0-1/4 **A-Nr** 8 **Mat-Nr** 1,4551 **ISO 17633-A** T 19 9 Nb R C/M 3 **F-Nr** 6

9606 FM 5

ОБШЕЕ ОПИСАНИЕ

Газозащитная проволока из нержавеющей стали с рутиловым покрытием для сварки в нижнем положении

Предназначается для сварки стали класса 304 или ее эквивалентов со стабилизацией Ті или Nb

Очень высокая стойкость к воздействию кислотных сред, например, азотной кислоте

Высокая стойкость к межкристаллической коррозии

Легкое omgеление шлака и гладкая поверхность шва

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC + M21

: Смешанный газ Ar+ (>15-25%) СО₂ : Akmuвный газ 100% СО₃

C1 : Akm Pacxog zasa вный газ 100% LU₂ : 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%] FN (no WRC 1992) Защитный газ С Mn Si CrNb 0,05 M21 1,4 0,6 19,5 10 0,5 5

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)										
	Защитный газ	Состо- яние	Предел mekyчести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) +20°С				
Требования: AWS A5.22 ISO 17633-A Средние значения	M21	ПС	не требуется мин. 350 435	мин.520 мин. 550 600	мин. 30 мин. 25 42	90				

ВИДЫ УПАКОВКИ				
Диаметр (мм)	1,2			
Kaccema S300, 15 kz	X			

Cor-A-Rosta* 347 : Bep. C-RU26-01/02/16

Cor-A-Rosta® 347

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Со стабилизац	ueŭ Ti, Nb				
	X6CrNiTi18-10		1,4541	(TP)321 (TP)321H	S32100 S32109
	X6CrNiNb18-10		1,4550	(TP)347 (TP)347H	S34700 S34709
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710
Без стабилиза	ции				
	X4CrNi18-10 X2CrNi19-11	G-X5CrNi19-10	1,4301 1,4306 1,4308 1,4312	302 (TP)304 (TP)304L CF-8	S30400 S30403 J92600
			1,4512	(TP)304H	S30409

ОПТИМАЛЬНЫЕ РЕЖ	имы сварки :	ваполняющи	х проходов	
Диаметр (мм)	Пространсп РА/1G	копоп эвинэвп РВ/2F	кения сварки РС/2G	
1,2	100-250A	100-250A	100-200A	

Cor-A-Rosta® 316L

AWS A5.22 E316LT0-1/ -4 A-Nr Mat-Nr 1,4430 ISO 17633-A T 19 12 3 L R C/M 3 F-Nr 6

9606 FM 5

ОБШЕЕ ОПИСАНИЕ

PA/1G

Газозащитная порошковая нержавеющая проволока для сварки в нижнем положении Стабильная дуга, низкий уровень разбрызгивания и легкое отделение шлака

Хорошая подаваемость проволоки и технологичность в использовании

Хороший внешний вид сварного шва

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+

: Смешанный газ Ar+ (>15-25%) CO M21 Активный газ 100% СО, C1

Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	LRS	ΤÜ\
M21	+	+
C1	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Million IEEROIN CC		(11) 11 (12) 1		1-12 17 0 17				
Защитный газ	С	Mn	Si	Cr	Ni	Mo	FN (no WRC 1992)	
M21 /C1	0,03	1,3	0,5	19	12	2,7	8	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Зашитный	Cocmo-	Предел текучести	Предел прочности	Отн. идлинение		Вязкость nu (Дж)
	2a3	яние	(МПа)	(MΠa)	[%]	+20°C	-110°C
Требования: AWS A5.22 ISO 17633-A Средние значения	M21/C1	ПС	не требуется мин. 320 440	мин. 485 мин. 510 580	мин. 30 мин. 25 38	70	40

Диаметр (мм) 1,2 Kaccema S300, 15 kz

Cor-A-Rosta® 316L : 8ep. C-RU27-19/05/16

Cor-A-Rosta® 316L

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерода (С	:<0,03%)			
	X2CrNiMo17-12-2		1,4404	(TP)316L CF-3M	S31603 J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содерх	кание углерода (C >0,0:	3%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		G-X5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизац	ueŭ Ti, Nb				
·	X6CrNiMoTi17-12-2 X6CrNiMoNb17-12-2		1,4571 1,4580	316Ti 316Cb	S31635 S31640
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710

ОПТИМАЛЬН	ІЫЕ РЕЖИМІ	Ы СВАРКИ ЗАП	полняющих проходов
Диаметр	Прос	транственны	ıе положения сварки
[мм]	PA/1G	PB/2F	
1,2	100-250A	100-250A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для позиционной сварки более предпочтительна проволока Cor-A-Rosta P316L

\square

Cor-A-Rosta® P316L

КЛАССИФИКАЦИЯ

AWS A5.22 E316LT1-1/ -4 A-Nr 8 Mat-Nr 1,4430 ISO 17633-A T 19 12 3 L P C/M 2 F-Nr 6

9606 FM 5

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая нержавеющая проволока для позиционной сварки Стабильная дуга, низкий уровень разбрызгивания и легкое отделение шлака Хорошая подаваемость проволоки и технологичность в использовании Хороший внешний вид сварного шва

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАР<u>КИ (ISO/ASME)</u>

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC +

M21 : Смешанный газ Аг+ (>15-25%) CO₂ C1 : Активный газ 100% CO₂ Pacxog газа : 15-25 л/мин. ²

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	ABS	DNV	ΤÜV
M21	+	+	+
C1	+	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Защитный газ	С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)
M21 /C1	0,03	1,3	0,5	19	12	2,7	6

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел текучести	Предел прочности	Отн. удлинение	Ударная (по Шар	
	283	Состояние	(МПа)	(МПа)	(%)	+20°C	-110°C
Требования: AWS A5.22 ISO 17633-A Средние значения	M21/C1	ПС	не требуется мин. 320 440	мин. 485 мин. 510 580	мин. 30 мин. 25 38	70	40

ВИЛЫ УПАКОВКИ

Диаметр (мм)	1,2
Kaccema S200, 5 kz	Χ
Kaccema \$300, 15 kz	Χ

Cor-A-Rosta* P316L : Bep. C-RU26-19/05/16

Cor-A-Rosta® P316L

Классы стали	EN 10088-1/-2	EN 10213-4	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Очень низкое с	одержание углерода (С	:<0,03%)			
	X2CrNiMo17-12-2		1,4404	(TP)316L CF-3M	S31603 J92800
	X2CrNiMo18-14-3		1,4435	(TP)316L	S31603
	X2CrNiMoN17-11-2		1,4406	(TP)316LN	S31653
	X2CrNiMoN17-13-3		1,4429		
Среднее содерх	кание углерода (C >0,0:	3%)			
	X4CrNiMo17-12-2		1,4401	(TP)316	S31600
	X4CrNiMo17-13-3		1,4436		
		G-X5CrNiMo19-11	1,4408	CF 8M	J92900
Со стабилизац	ueŭ Ti, Nb				
·	X6CrNiMoTi17-12-2 X6CrNiMoNb17-12-2		1,4571 1,4580	316Ti 316Cb	S31635 S31640
		G-X5CrNiNb19-10	1,4552	CF-8C	J92710

Диаметр	Про	остранствен	іные положен	ия сварки
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем
1,2	100-250A	100-250A	100-200A	100-200A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для сварки в нижнем положении более предпочтительна проволока Cor-A-Rosta 316L

$\Gamma \Lambda V$

Cor-A-Rosta® 309L

КЛАССИФИКАЦИЯ

 AWS A5.22
 E309LT0-1/-4
 A-Nr
 8
 Mat-Nr
 1,4332

 ISO 17633-A
 T 23 12 L R C/M 3
 F-Nr
 6
 6
 9606 FM
 5

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с высоким содержанием CrNi для сварки в нижнем положении Предназначается для сварки нержавеющих и углеродистых сталей и наложения буферных слоев при плакировке Высокие сварочно-технологические характеристики и легкое отделение шлака Высокая истойчивость к возникновению хрупкости

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC +

М21 : Смешанный газ Ar+ (>15-25%) CO₂ C1 : Активный газ 100% CO₂ Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	LRS	ΤÜV
M21	+	+
C1	+	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный газ	С	Mn	Si	Cr	Ni	FN (no WRC 1992)	
M21 /C1	0,03	1,4	0,6	24	12,5	15	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Зашитный	Cocmo-	Предел текучести	Предел прочности	Отн. удлинение		вязкость onu (Дж)
	Sag	яние	(МПа)	(МПа)	(%)	+20°C	-20°C
Требования: AWS A5.22			не требуется	мин. 520	мин. 30		
ISO 17633-A			мин. 320	мин. 510	мин. 25		
Средние значения	M21/C1	ПС	445	560	36	45	40

ВИЛЫ УПАКОВКИ

Диаметр (мм)	1,2
Kaccema S200, 5 kz	Χ
Kaccema S300. 15 kz	Χ

Cor-A-Rosta* 309L : 8ep. C-RU29-19/05/16

Cor-A-Rosta® 309L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ			
Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Коррозиестой	кая плакированная сталь			
	X2CrNiN18-10	1,4311	(TP)304LN	S30453
	X2CrNi19-11	1,4306	(TP)304L	S30403
			CF-3	J92500
	X4CrNi 18-10	1,4301	(TP)304	S30400

Соединения разнородных металлов (низкоуглеродистой/низколегированной стали и нержавеющей стали CrNi или CrNiMo)

ОПТИМАЛЬН	ІЫЕ РЕЖИМІ	Ы СВАРКИ ЗА	полняющих	проходов
Диаметр	Просі	транственн	ые положения	сварки
(мм)	PA/1G	PB/2F	PC/G	
1,2	100-250A	100-250A	100-200A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для позиционной сварки более предпочтительна проволока Cor-A-Rosta P309L

Cor-A-Rosta® P309L

AWS A5.22 F309IT1-1/-4 A-Nr Mat-Nr 1.4332 ISO 17633-A T 23 12 L P C/M 2 F-Nr 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с высоким содержанием CrNi для позиционной сварки Для сварки нержавеющих и углеродистых сталей и наложения буферных слоев при плакировке стали Высокие сварочно-технологические характеристики и легкое отделение шлака Высокая устойчивость к возникновению хрупкости

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА/ЗАШИТНЫЙ ГАЗ (ISO 14175)

DC+

M21 : Смешанный газ Ar+ (>15-25%) CO. : Akmuвный газ 100% CO. ۲1

Расход газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	ABS	DNV	LRS	ΤÜV
M21	+	+	+	+
C1	+	+	+	

ΧΝΜΝΛΕΓΚΝΉ (UCLTAB Η ΔΙΙΠΑΒΊΕΗ Η ULU WELT UUT (%)

AVIIIIVI ILCIAVIVI CO	CIADIIA	ולטרולוור		IVIL IAVI	, I/L (/U)	
Защитный газ	C	Mn	Si	Cr	Ni	FN (no WRC 1992)
M21 /C1	0,04	1,3	0,6	24	12,5	15

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Зашитный	Cocmo-	Предел текучести	Предел прочности	Отн. удлинение	Ударная (по Шар	Зязкость nu (Дж)
	Sagamhola	яние	(МПа)	(МПа)	(%)	+20°C	-20°C
Требования: AWS A5.22			не требуется	мин. 520	мин. 30		
ISO 17633-A			мин. 320	мин. 510	мин. 25		
Средние значения	M21/C1	ПС	445	560	36	45	40

Диаметр (мм)	1,2
Kaccema S200, 5 kz	Χ
Kaccema S300. 15 kz	Χ

Cor-A-Rosta® P309L : 8ep. C-RU27-19/05/16

Cor-A-Rosta® P309L

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ			
Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Коррозиестой	ая плакированная сталь			
	X2CrNiN18-10	1,4311	(TP)304LN	S30453
	X2CrNi19-11	1,4306	(TP)304L	S30403
			CF-3	J92500
	X4CrNi18-10	1,4301	(TP)304	S30400

Соединения разнородных металлов (низкоуглеродистой/низколегированной стали и нержавеющей стали CrNi или CrNiMo)

ОПТИМАЛЬН	НЫЕ РЕЖИМЬ	ы сварки за	полняющих	проходов
Диаметр	Просі	транственн	ые положения	сварки
(мм)	PA/1G	PB/2F	PC/G	
1,2	100-250A	100-250A	100-200A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для сварки в нижнем положении более предпочтительна проволока Cor-A-Rosta 309L

Γ

Cor-A-Rosta® 309MoL

КЛАССИФИКАЦИЯ

AWS A5.22 E309LMoT0-1/-4 A-Nr 8 ISO 17633-A T 23 12 2 L R C/M 3 F-Nr 6 9606 FM 5

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с высоким содержанием CrNiMo для сварки в нижнем горизонтальном положении

Высокая коррозионная стойкость

Специально разработана для сварки соединений между нержавеющей и углеродистой сталью, а также наложения буферных слоев при плакировке стали

Максимальная толщина пластины при стыковой сварке около 12 мм

Хорошо nogxogum для ремонтных работ, требующих сварки стыков из разных или трудносвариваемых металлов

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC +

M21 : Смешанный газ Ar+ (>15-25%) CO₂ C1 : Активный газ 100% CO₂ Pacxoq газа : 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
Защитный газ	С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)		
M21 /C1	0,03	1,3	0,7	23	12,8	2,3	20		

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%) Ударная вязкость Предел Предел Отн. по Шарпи (Дж) Зашитный mekyvecmu прочности иалинение +20°C 283 Состояние ĺM⊓aì (M∏a) [%] Требования: AWS A5.22 не требиется мин. 520 мин. 25 ISO 17633-A мин. 350 мин. 550 мин. 25 Средние значения M21/C1 ПС 550 700 30 50

ВИДЫ УПАКОВКИ				
Диаметр (мм)	1,2			
Kaccema S300, 15 kz	Х			

Cor-A-Rosta* 309MoL : 8ep. C-RU28-19/05/16

Cor-A-Rosta® 309MoL

СВАРИВАЕМЫЕ МАТЕРИАЛЫ				
Классы стали EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS	
Коррозиестойкая плакированная сталь				
X2CrNiMo17-12-2	1,4404	(TP)316L	S31603	
		CF-3M	J92800	
X2CrNiMo18-14-3	1,4435	(TP)316L	S31603	
X2CrNiMoN17-11-2	1,4406	(TP)316LN	S31653	
X2CrNiMoN17-13-3	1,4429			
X4CrNiMo17-13-3	1,4436			
X6CrNiMoTi17-12-2	1,4571	316Ti	S31635	
X10CrNiMoTi17-3	1,4573	316Ti	S31635	
X6CrNiMoNb17-12-2	1,4580	316Cb	S31640	

Сварка разнородных соединений (между углеродистой/низколегированной сталью и нержавеющими сплавами CrNi или CrNiMo) толщиной не более 12 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Прос	транственн	ые положения
(мм)	PA/1G	PB/2F	PC/G
1,2	100-250A	100-250A	100-200A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для позиционной сварки более предпочтительна проволока Cor-A-Rosta P309MoL

M V J

Cor-A-Rosta® P309MoL

КЛАССИФИКАЦИЯ

AWS A5.22 E309LMoT1-1/-4 A-Nr 8 ISO 17633-A T 23 12 2 L P C/M 2 F-Nr 6 9606 FM 5

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока с высоким содержанием CrNi для позиционной сварки

Высокая коррозионная стойкость

Специально разработана для сварки соединений между нержавеющей и углеродистой сталью и наложения буферных слоев при плакировке стали

Максимальная толщина пластины при стыковой сварке около 12 мм

Хорошо nogxogum для ремонтных работ, требующих сварки стыков из разных или трудносвариваемых металлов

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC +

M21 : Смешанный газ Ar+ (>15-25%) CO₂ C1 : Активный газ 100% CO₂ Pacxoq газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитнь	ый газ	LRS
M21		
IVIZ I	ı	+
C1		+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
Защитный газ	С	Mn	Si	Cr	Ni	Мо	FN (no WRC 1992)		
M21 /C1	0,03	0,8	0,6	22,7	12,5	2,3	20		

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]								
	Защитный		Предел текичести	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)		
	283	Состояние	(МПа)	(МПа)	[%]	+20°C		
Требования: AWS A5.22			не требуется	мин. 520	мин. 25			
ISO 17633-A			мин. 350	мин. 550	мин. 25			
Средние значения	M21/C1	ПС	525	675	34	45		

ВИДЫ УПАКОВКИ		
Диаметр (мм)	1,2	
Kaccema S300, 15 kz	Χ	

Cor-A-Rosta* P309MoL : 8ep. C-RU27-19/05/16

Cor-A-Rosta® P309MoL

СВАРИВАЕМЫЕ МАТЕРИАЛЫ				
Классы стали EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS	
Коррозиестойкая плакированная сталь				
X2CrNiMo17-12-2	1,4404	(TP)316L	S31603	
		CF-3M	J92800	
X2CrNiMo18-14-3	1,4435	(TP)316L	S31603	
X2CrNiMoN17-11-2	1,4406	(TP)316LN	S31653	
X2CrNiMoN17-13-3	1,4429			
X4CrNiMo17-13-3	1,4436			
X6CrNiMoTi17-12-2	1,4571	316Ti	S31635	
X10CrNiMoTi17-3	1,4573	316Ti	S31635	
X6CrNiMoNb17-12-2	1,4580	316Cb	S31640	

Соединения между разнородными металлами (между углеродистой или низколегированной сталью и нержавеющими сплавами CrNi или CrNiMo) толщиной не более 12 мм

ОПТИМАЛЬН	НЫЕ РЕЖИМЬ	Ы СВАРКИ ЗА	полняющих	ПРОХОДОВ	
Диаметр	Пр	остранстве	нные положен	ния сварки	
[мм]	PA/1G	PB/2F	PC/G	PF/3G на подъем	
1,2	100-250A	100-250A	100-200A	100-200A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для сварки в нижнем положении более предпочтительна проволока Cor-A-Rosta 309MoL

VA)

Cor-A-Rosta® 4462

КЛАССИФИКАЦИЯ

AWS A5.22 E2209T0-1/-4 A-Nr 8 Mat-Nr 1,4462 ISO 17633-A T 22 9 3 N L R C/M 3 F-Nr 6

9606 FM 5

ОБШЕЕ ОПИСАНИЕ

Порошковая газозащитная проволока для сварки дуплексной нержавеющей стали в нижнем положении

Высокие сварочно-технологические характеристики

Предназначается для эксплиатации при рабочей температире до 250°C

Высокая стойкость к общей, питтинговой и механической коррозии

Высокий предел текучести: больше 500 МПа

Рекомендовано работать в защитном газе М21

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC+

M21 : Смешанный газ Ar+ (>15-25%) CO₂ C1 : Активный газ 100% CO₂

Расход газа : 15-25 л/мин. ¹

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ DNV

химический со	OCTAB H	АПЛАВЛ	ЕННОГО	МЕТАЛ	ЛА [%]			
Защитный газ	С	Mn	Si	Cr	Ni	Мо	N	FN (no WRC 1992)
M21	0.03	1.2	0.7	23	9.2	3.1	0.12	40

МЕХАНИЧЕСКИЕ ХАРАН	(ТЕРИСТИКИ І	НАПЛАВЛ	ЕННОГО МЕТАЛЛ	A (%)			
	Защитный	Cocmo-	Предел текичести	Предел прочности	Отн. цалинение	Ударная по Ша	і вязкость pnu (Дж)
	Sag	яние	(МПа)	(МПа)	(%)	-20°C	-50°C
Требования: AWS A5.22			не требуется	мин. 520	мин. 25		
ISO 17633-A			мин. 450	мин. 550	мин. 25		
Средние значения	M21/C1	ПС	630	800	29	50	40

ВИДЫ УПАКОВКИ			
Диаметр (мм)	1,2		
Kaccema S300, 15 kz	X		

Cor-A-Rosta* 4462 : Bep. C-RU28-19/05/16

Cor-A-Rosta® 4462

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ			
Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS
Дуплексная неј	ржавеющая сталь			
	X2CrNiMoN22-5-3	1,4462		S31803
		1,4417		S31500
	X3CrNiMoN27-5-2	1,4460		S31200
	X2CrNiN23-4	1,4362		S32304
	X2CrMnNi21-5-1	1,4162		S32101

Стыки из отличающихся соединений, например, между углеродистой и низколегированной сталью и дуплексной нержавеющей сталью

оптимальн	НЫЕ РЕЖИМЬ	Ы СВАРКИ ЗА	полняющих	проходов
Диаметр	Просі	транственн	ые положения	сварки
(мм)	PA/1G	PB/2F	PC/G	
1,2	100-250A	100-250A	100-200A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для позиционной сварки более предпочтительна проволока Cor-A-Rosta P4462 Максимальная погонная энергия сварки 2,5 кДж/мм Максимальная температура перед наложением следующего слоя 150°C

VA)

Cor-A-Rosta® P4462

КЛАССИФИКАЦИЯ

AWS A5.22 E2209T1-1/-4 **A-Nr** 8 **Mat-Nr** 1,4462

ISO 17633-A T 22 9 3 N L P M 2 F-Nr 6 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Порошковая газозащитная проволока для позиционной сварки дуплексных нержавеющих сталей

Высокие сварочно-технологические характеристики

Применение при рабочей температуре до 250°C

Высокая стойкость к общей, питтинговой и механической коррозии

Высокий предел текучести: больше 500 МПа

Рекомендовано работать в защитном газе М21

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА / ЗАЩИТНЫЙ ГАЗ (ISO 14175)

DC +

M21 : Смешанный газ Ar+ (>15-25%) СО₂

Pacxog газа : 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	LRS	
M21	+	
C1	+	

химическии сс	OCTAB HA	АПЛАВЛ	ЕННОГО	МЕТАЛ	ПА [%]				
Защитный газ	С	Mn	Si	Cr	Ni	Мо	N	FN (no WRC 1992)	
M21	0,03	1,2	0,7	23	9,2	3,1	0,12	40	

МЕХАНИЧЕСКИЕ ХАРАКТЕ	РИСТИКИ НА	ПЛАВЛЕН	НОГО МЕТАЛЛА (%	6]			
	Зашитный	Cocmo-	Предел текучести	Предел прочности	Отн. цалинение	Ударная по Шар	вязкость эпи (Дж)
	Sa3	яние	(MΠa)	(МПа)	(%)	-20°C	-50°C
Требования: AWS A5.22			не требуется	мин. 690	мин. 25		
ISO 17633-A			мин. 450	мин. 550	мин. 25		
Средние значения	M21	ПС	630	800	29	65	55

ВИДЫ УПАКОВКИ				
Диаметр (мм)	1,2			
Kaccema S300, 15 kz	Χ	-		

Cor-A-Rosta® P4462 : Bep. C-RU28-19/05/16

Cor-A-Rosta® P4462

СВАРИВАЕМЫЕ	МАТЕРИАЛЫ				
Классы стали	EN 10088-1/-2	Mat. Nr	ASTM/ACI A240/A312/A351	UNS	
Дуплексная неј	ржавеющая сталь				
	X2CrNiMoN22-5-3	1,4462		S31803	
		1,4417		S31500	
	X3CrNiMoN27-5-2	1,4460		S31200	
	X2CrNiN23-4	1,4362		S32304	
	X2CrMnNi21-5-1	1,4162		S32101	

Стыки из отличающихся соединений, например, между углеродистой и низколегированной сталью и дуплексной нержавеющей сталью

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ Диаметр (мм) Пространственные положения сварки 1,2 100-250A 100-250A 100-200A 130-180A

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для сварки в нижнем положении более предпочтительна проволока Cor-A-Rosta 4462 Максимальная погонная энергия сварки 2,5 кДж/мм Максимальная температура перед наложением следующего слоя 150°C

Lincore®33

КЛАССИФИКАЦИЯ

EN 14700 T Fe1

ОБЩЕЕ ОПИСАНИЕ

Образует прочную поддающуюся обработке наплавку или финишный слой для эксплуатации в условиях трения металла по металлу

Используется для наплавки на металлургическое оборудование, например, машин первичной флотации Предназначен для наплавки на углеродистую и низколегированную сталь

Оптимально подходит для практически полного восстановления геометрии изношенных деталей перед нанесением финишных слоев наплавки с более высокой устойчивостью к износу

Неограниченное число проходов

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

С	Mn	Si	Cr	Al
0,15	2,0	0,7	2,0	1,6

СТРУКТУРА

Микроструктура наплавки в основном представляет собой смесь феррита и бейнита

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

 Cnoŭ 1
 21-30 HRc (230-290HB)

 Cnoŭ 2
 26-32 HRc (260-300HB)

 Cnoŭ 3
 28-34 HRc (250-330HB)

Наплавка на низкоуглеродистую сталь большой толщины (12 мм)

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,1	1,6	2,0	2,8
Kaccema 14C, 6.35 kz			Χ	
Kaccema 22RR, 11.34 kz	Χ	Χ	Χ	
Kaccema 50C, 22.68 kz			Χ	Χ

Lincore* 33: Bep. C-RU23-01/02/16

Lincore®33

ПРИМЕНЕНИЕ

Lincore 33 образует устойчивую к образованию трещин износостойкую наплавку с показателем твердости 25-35 HRc в зависимости от материала и количества слоев. Эта проволока предназначена для нанесения финального слоя для последующей механической обработки или наращивания промежуточного слоя для другого твердосплавного покрытия. Особенно хорошо подходит для применения в условиях умеренного трения и износа, а также катания, скольжения и износа металли.

Типичное применение:

Наращивание: Режущие кромки и края ковшей экскаваторов Импелллеры и корпусы насосов Зубья земснарядов и ковшей экскаваторов Дробильные и измельчительные молоты Нанесение твердосплавного покрытия:

Колеса строительных кранов и шахтных вагонеток Тракторные катки, ролики, шарниры и шестерни Кабельные барабаны Направляющие ролики Прокатные валки

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Перед применением Lincore 33 с основы нужно удалить весь затвердевший материал, так как такие зоны особенно подвержены повышению хрупкости и образованию трещин.

В случае сплавов C/Mn предварительный подогрев и последующая термообработка обычно не требуются, однако в случае высокоуглеродистых материалов, структур сложной формы или конструкций под высокой нагрузкой может потребоваться предварительный подогрев до 260°C.

С помощью быстрорежущих и тведосплавных инструментов наплавку можно обработать до нужных размеров.

Эта проволока не имеет ограничений по объему наплавки.

ПАННЫЕ ПО РАСХОПУ

Диаметр (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Эффективность наплавки (%)	
1,1	5,1-12,7	80-150	25-31	1,5-3,9	80-85	
1,6	3,8-8,9	125-225	26-32	2,1-5,0	79-84	
2,0	3,2-6,4	200-325	23-29	3,1-6,1	87-86	
2,8	3,4-6,0	360-470	26-30	5,7-9,6		

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Wearshield® BU30

$\Gamma \Delta W$

Lincore® 40-0

КЛАССИФИКАЦИЯ

EN 14700 T Fe1

ОБЩЕЕ ОПИСАНИЕ

Наплавка с высокой твердостью для применения в условиях трения металла по металлу и умеренного истирания

Используется на конвейерных роликах и направляющих, колесах строительных кранов и прокатных валков Наносится на углеродистую и низколегированную сталь

Неограниченное число проходов при условии соблюдения температуры и процедур предварительного и промежуточного подогрева

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Al	Мо
0,2	1,5	0,7	3,5	1,8	0,4

СТРУКТУРА

Мартенситная

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

Cnoŭ 1 ca. 36 HRc (340HB) Cnoŭ 2 ca. 41 HRc (380HB)

ВИДЫ УПАКОВКИ

Lincore® 40-0: Bep. C-RU23-01/02/16

Lincore® 40-0

ПРИМЕНЕНИЕ

Эта проволока предназначается для покрытия углеродистых и низколегированных металлов наплавкой, стойкой к трению качения и скольжения и износу металла по металлу в условиях сильных ударов. Наплавка обладает показателем твердости около 40 HRc, который заполняет достаточно большую нишу между феррито-барнитной наплавкой проволоки Lincore 33 и мартенситной наплавкой Lincore 55, ориентированной на создание защиты от трения металлических деталей. Хотя эта проволока была разработана для применения в качестве единственного слоя наплавки, ее также можно использовать при напожении буферного слоя для наплавки с более высокими механическими характеристиками.

Типичное применение: Тракторные катки Колеса шахтных вагонеток Направляющие валики Звенья подвески ковшей экскаваторов Кулачки привода

дополнительная информация

Всю поверхность, на которую будет накладываться твердосплавное покрытие, предварительно нужно очистить от ржавчины, грязи, масла, смазки и любых других загрязнений. Также нужно удалить любое ранее наложенное твердосплавное покрытие, если при эксплуатации начала расти его хрупкость. Перед наложением твердосплавного покрытия также нужно устранить такие дефекты, как трещины, вмятины и т. п.

Холодные изделия нужно разогреть до 40°С. Крупные детали и изделия из стали с высоким легированием или содержанием углерода нужно разогреть до температуры 100-150°С.

Наплавка проволоки Lincore 40-О обычно отличается высокой устойчивостью к образованию усадочных трещин. Однако при наложении покрытия на материалы, которые сами по себе уязвимы к усадочным трещинам, нужно проявлять определенную осторожность. Например, сюда входит облицовка высокоуглеродистой или высоколегированной стали, деталей с уже нанесенным покрытием и конструкций под высоким напряжением. Облицовка тяжелых цилиндров, тяжелые детали и изделия сложной формы все можно назвать примерами случаев, когда высокое внутреннее напряжение может вызвать замедленное трещинообразование.

В таких случаях может потребоваться следующее:

- 1. Более высокая температура предварительного подогрева (150-260°С).
- 2. Более высокая межслойная температура.
- 3. Контролируемое плавное охлаждение между проходами и/или наложением слоев

Межслойная температура в диапазоне 150-200°С не оказывает значимого влияния на твердость наплавки Lincore 40-0. Образуемая наплавка поддается механической обработке твердосплавными инструментами и шлифованием.

|ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Эффективность наплавки (%)	
2,0	3,2-6,4	200-325	23-29	3,1-6,1	87-86	

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Wearshield® MM40

Lincore® 50

КЛАССИФИКАЦИЯ

EN 14700 T Fe8

ОБЩЕЕ ОПИСАНИЕ

Образует устойчивую к абразивному износу и умеренным ударным нагрузкам наплавку Проволока большого диаметра может использоваться для сварки под слоем флюса Наносится на низкоуглеродистую, среднеуглеродистую, низколегированную, марганцевую и нержавеющую сталь Толшина наплавки ограничена 4 слоями

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

химический состав наплавленного металла (%)

С	Mn	Si	Cr	Al	Мо	
2,2	1,2	1,0	11,0	0,6	0,5	

СТРУКТУРА

В состоянии после сварки микроструктура материала в основном представляет собой первичный аустенит с включениями аустенитно-карбидного эвтектического материала.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

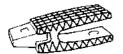
Средние значения твердости

Cnoŭ 1 34-41 HRc (320-380HB) Cnoŭ 2 44-53 HRc (415-530HB) Cnoŭ 3 48-56 HRc (460-584HB)

Наплавка на низкоуглеродистую сталь большой толщины (12 мм)

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,1	1,2	1,6	2,0	2,8
Kaccema 22RR, 11.34 kz	Х		Χ	Χ	
Kaccema 50C. 22.68 kz		Χ	Χ	Χ	Χ


Lincore® 50: 8ep. C-RU23-01/02/16

Lincore® 50

ПРИМЕНЕНИЕ

Проволока Lincore 50 производит устойчивую к истиранию и сильным ударам наплавку с твердостью 34-56 HRc в зависимости от состава и концентрации основного металла и числа слоев. Стойкость к истиранию и ударам и пригодность для последующей ковки делают Lincore 50 оптимальным выбором для создания защитного слоя на оборудовании для транспортировки абразивных материалов в условиях высокой, постоянно меняющейся загризки.

Типичное применение: валки дробилок; зубъя земснарядов; перегородки рудоспусков; резаки для угледобычи.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Перед наложением нового слоя с основы нужно удалить весь затвердевший материал и любое ранее нанесенное твердосплавное покрытие, так как такие зоны подвержены повышению хрупкости и образованию трещин. Поверхности с трещинами и глубокими вмятинами можно предварительно локально отремонтировать с помощью проволоки Wearshield BU30 или Wearshield 15CrMn.

При твердосплавном покрытии аустенитных поверхностей, например, нержавеющей или магниевой стали, предварительный подогрев не требуется, однако в случае марганцевой стали межслойную температуру нужно ограничить примерно до 260°С.

Для низколегированных и углеродистых сплавов обычно бывает достаточен подогрев до 200°C, но это зависит от толщины и состава материала.

Наплавка не noggaemcя обычной механической обработке, однако ей можно придать нужную форму шлифованием. Материал Lincore 50 не noggaemcя газовой резке. Для резки и создания отверстий в наплавке можно прибегнуть к плазменной или воздушно-дуговой резке угольным электродом. При этом для того, чтобы предотвратить образование трещин вдоль линии резки, может понадобиться предварительный подогрев до температуры, аналогичной подогреву перед сваркой.

Lincore 50 также можно использовать в условиях высокой коррозии, порообразования и разрушения, например, в химической, бумажно-целлюлозной, пищевой, стекольной и энергетической промышленности или изготовлении инстриментов.

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	
1,1	5,1-15,2	120-250	20-28	1,9-5,8	
1,6	3,8-8,9	175-365	23-33	2,7-7,9	
2,0	3,2-6,4	210-380	27-23	3,4-6,8	
2,8	2,0-3,3	315-450	26-29	3,9-6,4	

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Lincore 50 не имеет прямых эквивалентов, ближайшими по характеристикам являются электроды Wearshield® ABR и Wearshield® 44.

\square

Lincore® 55

КЛАССИФИКАЦИЯ

EN 14700 T Fe2

ОБЩЕЕ ОПИСАНИЕ

Образует наплавку с высокой устойчивостью к износу при качении или скольжении металла по металлу, а также умеренному истиранию

Наносится на углеродистую сталь, низколегированную сталь и марганцевую сталь

Неограниченное число проходов при условии соблюдения температуры и процедур предварительного и промежуточного подогрева

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Al	Мо	
0,45	1,4	0,55	5,3	1,4	0,8	

СТРУКТУРА

В состоянии после сварки микроструктура в основном представляет собой мартенсит с небольшими включениями аустенита

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

Слой 1 50 - 59 HRc Слой 2 50 - 59 HRc

Наплавка на низкоуглеродистую сталь большой толщины (12 мм)

ВИДЫ УПАКОВКИ

Диаметр (мм)	1,1	1,6	2,0	2,8
Kaccema 14C, 6.35 kz			Χ	
Kaccema 22RR, 11.34 kz	Χ	Χ	Χ	
Kaccema 50C, 22.68 kz			Χ	Χ

Lincore* 55: Bep. C-RU22-01/02/16

Lincore® 55

ПРИМЕНЕНИЕ

Lincore 55 производит мартенситную наплавку с небольшими включениями аустенита с твердостью 50-59HRc. Такая микроструктура в сочетании с устойчивостью к умеренному истиранию делает проволоку Lincore 55 особенно хорошо подходящей для применения в условиях скольжения, качения и истирания металла по металлу.

Типичное применение: валки дробилок; зубъя земснарядов; перегородки рудоспусков; резаки для угледобычи

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Перед наложением нового слоя нужно удалить весь затвердевший под механическими нагрузками материал и любую ранее нанесенную наплавку, так как такие зоны подвержены повышению хрупкости и образованию трещин.

Для предотвращения образования трещин при высокой нагрузке и/или большой толщине материала требуется предварительный подогрев до температуры 250°С. Межслойная температура в диапазоне 150-300°С не окажет никакого влияния на твердость материала.

Толщина наплавки на высокоуглеродистых или высоколегированных сталях, а также конструкциях под высокой нагрузкой или тяжелых изделиях обычно ограничивается двумя слоями из-за риска образования трещин. Для снижения такой вероятности рекомендуется повысить межслойную температуру и температуру предварительного подогрева и провести последующее медленное охлаждение.

Металл наплавки не noggaemcя механической обработке традиционными методами, однако ему можно придать нужную форму шлифованием.

Также наплавку можно смягчить, проведя отпуск стали на протяжении одного часа при 875°С с последующим медленным охлаждением (22-43 HRc при охлаждении на воздухе и 15-17 HRc при охлаждении в печи). Затем твердость можно восстановить подогревом до 875°С с последующим закаливанием в воде (50-59 HRc). После этого для восстановления характеристик прочности изделие нужно отпустить при 150-200°С на протяжении одного часа (54-59 HRc).

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Эффективность наплавки (%)	
1,1	5,1-12,7	85-165	25-31	1,6-4,3	80-85	
1,6	3,8-8,9	125-245	26-32	2,2-5,5	79-84	
2,0	3,2-6,4	190-330	24-30	3,2-6,2	87-86	
2,8	2,3-4,4	280-420	25-30	3,8-7,3		

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Wearshield® MM u Wearshield® MI(e)

$\Gamma \Delta W$

Lincore® 60-0

КЛАССИФИКАЦИЯ

EN 14700 T Fe15

ОБЩЕЕ ОПИСАНИЕ

Наплавка отличается высокой степенью легирования для эксплуатации в условиях абразивного износа и умеренных ударных нагрузок

Для эксплуатации при температуре до 704°C

Для нанесения на углеродистую, низколегированную, марганцевую и нержавеющую сталь, а также чугун Наплавка ограничена двумя слоями

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

химический состав наплавленного металла (%)

C	Mn	Si	Cr	Al	
4,2	1,6	1,3	25,4	0,6	

CTPYKTYPA

В состоянии после сварки микроструктура материала представляет собой основные карбиды в аустенитно-карбидной эвтектической матрице.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННО<u>ГО МЕТАЛЛА (%)</u>

Средние значения твердости

Слой 1 55 - 60 HRc Слой 2 58 - 60 HRc

Наплавка на низкоуглеродистую сталь большой толщины (12 мм)

ВИДЫ УПАКОВКИ

luaметр (мм)	1,	,6	2,0
accema 22RR, 11.34 kz)	Χ	Χ

Lincore® 60-0: Bep. C-RU23-01/02/16

Lincore® 60-0

ПРИМЕНЕНИЕ

Lincore 60-О образует наплавку из первичного карбида с твердостью 55-60HRc. Микроструктура первичного карбида делает проволоку Lincore 60-О идеально подходящей для применения в условиях сильного истирания.

Типичное применение: режущие края ковшей экскаваторов; валики дробилок; перегородки рудоспусков; экскаваторные ковши; зцбья рыхлителя

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

При сварке проволокой Lincore 60-О нужно использовать узкие валики. Поперечное колебание электрода не рекомендуется, так как широкие колебания обычно способствуют увеличению расстояния между усадочными трещинами, что может привести к расслаиванию наплавки. При облицовке аустенитных основ, например, нержавеющей и магниевой стали, предварительный подогрев не требуется, однако в случае марганцевых сплавов необходимо ограничить межслойную температуру до 260°С. В случае низколегированных и высокоуглеродистых сталей для предотвращения образования трещин в зоне термического воздействия может потребоваться предварительный подогрев до 200°С.

Металл наплавки не noggaemcя механической обработке и ковке и легко образует усадочные трещины. Толщина наплавки обычно ограничивается двумя слоями, так как избыточная наплавка может привести к дроблению и фрагментации материала.

В случаях, когда требуется больше двух слоев наплавки, рекомендуется создать промежуточные слои с помощью проволоки Lincore 33, Wearshield BU30 или RepTec 126.

Кроме этого, для предотвращения образования трещин можно провести предварительный подогрев до 650°C.

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)
1,1	5,1-12,7	125-210	21-27	1,9-4,7
1,6	5,1-11,4	240-350	28-33	3,4-7,5
2,0	3,24	250-400	25-32	3,4-6,9

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Conymcm8yющие продукты включают Wearshield® 60.

$\Gamma \Delta W$

Lincore® T&D

КЛАССИФИКАЦИЯ

EN 14700

T Fe8

ОБЩЕЕ ОПИСАНИЕ

Производит наплавку, аналогичную инструментальной стали Н12

Для наплавки на волоки и края из инструментальной стали или нанесения износостойкого покрытия на углеродистую или низколегированную сталь

Используется на углеродистой, низколегированной стали или инструментальной стали

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	Al	Мо	W
0,65	1,5	0,8	7,0	1,8	1,4	1,6

СТРУКТУРА

В состоянии после сварки микроструктура материала в основном представляет собой мартенсит с небольшими включениями карбидов.

После отпуска микроструктура преобразуется в отпущенный мартенсит со вторичными карбидами

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

После сварки 48 - 55 HRc Omnyck npu 540°C 55 - 65 HRc

Наплавка на низкоуглеродистую сталь большой толщины (12 мм)

ВИДЫ УПАКОВКИ

Lincore® T&D: Bep. C-RU24-01/02/16

Lincore® T&D

ПРИМЕНЕНИЕ

Lincore T&D производит наплавку из устойчивой к изнашиванию и образованию трещин инструментальной стали твердостью 48- 55 HRc.

Более того, эту твердость можно увеличить до 55-65 HRc, проведя отпуск металла. Эта проволока особенно хорошо подходит для применения в условиях сильного трения металла по металлу при высокой температуре (до 540°С). Идеально подходит для наплавки на изношенные металлические штампы, режущие инструменты или нанесения износостойких поверхностей на углеродистые и низколегированные сплавы.

Типичное применение: перфорационные штампы; лезвия ножниц

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Для предотвращения образования трещин требуется предварительный подогрев и межслойная температура 325°С или выше (до 540°С). Перед началом сварки важно "выдержать" материал при нужной температуре в течение определенного времени. После сварки изделие нужно накрыть и позволить постепенно остыть до комнатной температуры. После охлаждения нужно провести послесварочную тепловую обработку, чтобы отпустить мартенсит и сделать наплавку прочнее. Оптимальная комбинация твердости и прочности обычно достигается отпуском при температуре 540°С. Наплавка не поддается механической обработке традиционными методами, однако ей можно придать нужную форму шлифованием.

Нормализация в течение нескольких часов при 850°С с последующим плавным охлаждением позволит понизить твердость до 30 HRc. В таком случае наплавка будет легко поддаваться обработке. Чтобы провести повторную закалку, изделие нужно разогреть до 1200°С и выдерживать при этой температуре в течение нескольких часов. Это позволит рассеять все карбиды и гомогенизировать сталь. Затем проводится охлаждение на воздухе и отпуск.

Lincore T&D не noggaemcя газовой резке. Для резки и создания отверстий в наплавке можно прибегнуть к плазменной или воздушно-дуговой резке угольным электродом. При этом для того, чтобы предотвратить образование трещин вдоль линии резки, может понадобиться предварительный подогрев до температуры, аналогичной подогреву перед сваркой.

|ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	
1,6	3,8-8,9	170-300	22-26	2,4-5,4	

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Conymcm8ующие продукты включают Wearshield® T&D

Lincore® 15CrMn

КПАССИФИКАНИЯ

EN 14700 T Fe9

ОБЩЕЕ ОПИСАНИЕ

Производит аустенитный марганцевый наплавленный металл с высокой устойчивостью к образованию трещин Используется в качестве упрочняющегося под ударными нагрузками покрытия или для сварки соединений аустенитной марганцевой стали между собой или с углеродистой сталью

Может использоваться для наплавки перед нанесением износостойкого покрытия

Пригоден для сварки открытой дугой соединений между аустенитной марганцевой сталью и углеродистой, низколегированной, аустенитной марганцевой или нержавеющей сталью

Неограниченное число проходов при условии соблюдения температуры и процедур предварительного и промежуточного подогрева

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr
0.4	15.0	0.25	16.0

СТРУКТУРА

В состоянии после сварки микроструктура материала представляет собой мягкий аустенитный хромо-марганцевый сплав, быстро затвердевающий под механическими нагрузками.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

После наплавки 18 - 22 HRc (210-235 HB) После упрочнения 40 - 50 HRc (375-490HB)

ВИДЫ УПАКОВКИ

Lincore® 15CrMn Bep. C-RU23-01/02/16

Lincore® 15CrMn

ПРИМЕНЕНИЕ

Lincore 15CrMn производит высокопрочное аустенитную хромо-марганцевую наплавку. Стоит отметить, что материал проволоки имеет достаточное легирование, чтобы за один проход произвести аустенитную наплавку на обычную углеродистую сталь. Наплавка быстро затвердевает под механическими нагрузками, благодаря чему особенно хорошо подходит для применения в условиях долбления и резких ударов в сочетании с умеренным истиранием. Помимо облицовочной сварки высокая стойкость к образованию трещин этого состава делает Lincore 15CrMn идеальной проволокой для сварки соединений между марганцевыми сплавами или между марганцевыми и углеродистыми сплавами с минимальным риском образования продольных трещин. Сварка соединений под флюсом, однако, при этом не рекомендуется.

Типичное применение: Детали сеялок Молоты дробилок Детали из аустенитной марганцевой стали

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Перед наложением нового слоя нужно удалить весь затвердевший под механическими нагрузками материал и любую ранее нанесенную наплавку, так как такие зоны подвержены повышению хрупкости и образованию трещин. В случае аустенитных марганцевых материалов предварительный подогрев не требуется, однако для углеродистой и низколегированной стали может потребоваться предварительный подогрев до 150-200°С.

Для предотвращения перегрева основного материала рекомендуется создавать узкие валики сварного шва. Сварка с высоким тепловложением и межслойная температура выше 260°С могут вызвать дисперсионное уплотнение карбида марганца с последующим повышением хрупкости материала. Какого-либо определенного ограничения на число проходов не существует, но в любом случае сразу после каждого прохода рекомендуется проводить насекание сварного шва. Это позволит сократить внутреннее напряжение и, как следствие, снизить вероятность деформаций и образования трещин. Наплавка Lincore 15CrMn быстро затвердевает под механическими нагрузками, что затрудняет ее механическую обработку. Наилучшие результаты достигаются с применением твердосплавных, керамических и других высокопрочных режущих инструментов. Также можно провести шлифовку. В случае эксплуатации в условиях сильных ударов и истирания рекомендуется использовать проволоку Lincore 15CrMn в сочатении с одним проходом Wearshield 60 или Lincore 60-0.

Наплавка Lincore 15CrMn не noggaemcя газовой резке из-за высокого содержания хрома, но вместо нее можно прибегнуть к плазменной или воздушно-дуговой резке угольным электродом.

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производительность наплавки (кг/ч)	
2,0	3,2-8,9	210-380	26-32	3,3-9,7	
2,8	1,9-4,4	250-380	26-30	2,5-7,5	

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Conymcm8yющие продукты включают Wearshield® 15CrMn

$\Gamma \Delta W$

Lincore® 420

ОБЩЕЕ ОПИСАНИЕ

Металлопорошковая проволока, которая чаще всего используется для восстановления роликов машины непрерывного литья

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Cr	
0,2	1,2	0,5	12,0	

СТРУКТУРА

В состоянии после сварки микроструктура материала представляет собой мягкий аустенитный хромомарганцевый сплав, который быстро затвердевает под механическими нагрузками

MENALIMITECKIAE NADAKTEDIACTIAKIA HADDA DOEHHOEO META DOA (ok.)

Средние значения твердости

 Cnoŭ 1
 52 HRc

 Cnoŭ 2
 51 HRc

 Cnoŭ 3
 53 HRc

Наплавка на низкоуглеродистую сталь большой толщины (12 мм)

ВИДЫ УПАКОВКИ

Lincore® 420 Bep. C-RU24-01/02/16

Lincore®420

ПРИМЕНЕНИЕ

Lincore 420— это мартенситная нержавеющая облицовочная проволока, разработанная для образования стойкой к истиранию наплавки в условиях сильной коррозии.

Типичное применение:

Ролики машины непрерывного литья

дополнительная информация

Перед наложением нового слоя нужно удалить весь затвердевший под механическими нагрузками материал и любую ранее нанесенную наплавку, так как такие зоны подвержены повышению хрупкости и образованию трещин.

Поверхности с трещинами и глубокими вмятинами можно предварительно локально отремонтировать с помощью проволоки Wearshield® BU30 или Wearshield® 15CrMn.

Предварительный подогрев требуется только тогда, когда проводится сварка материала под высокой нагрузкой или металла на основе мартенситного нержавеющего сплава.

В зависимости от природы свариваемого материала может понадобиться предварительный подогрев и межслойная температура в quanaзоне 200-300°С.

В состоянии слабого разбавления микроструктура материала аналогична мартенситной нержавеющей стали AISI 420. Такая структура обеспечивает высокую устойчивость к истиранию в условиях высокой коррозии и сильных ударов. При более сильном разбавлении, когда наплавка производится на углеродистую или низколегированную сталь, материал наплавки сохраняет свою микроструктуру нержавеющего мартенсита. Но в таком случае пониженное содержание хрома может неблагоприятно сказаться на коррозионной устойчивости наплавки.

Из-за высокого содержания хрома наплавка Lincore 15CrMn не поддается газовой резке, но вместо нее для резки и создания отверстий в наплавке можно прибегнуть к плазменной или воздушно-дуговой резке угольным электродом.

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	
4,0	1,4-2,9	475-800	27-32	5,9-12,4	

Lincore® M

EN 14700

T Fe9

ОБЩЕЕ ОПИСАНИЕ

Наплавка с устойчивостью к сильным ударным нагрузкам и умеренному истиранию

Образует аустенитный марганцевый наплавленный металл, быстро затвердевающий под ударными нагрузками

Рекомендуется для наплавки и восстановления геометрии изделий из аустенитной марганцевой стали

Гарфильда, а также иглеродистой и низколегированной стали

Неограниченное число проходов при условии соблюдения температуры и процедур предварительного и промежуточного подогрева

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

C	Mn	Si	Cr	Ni
0,6	13,0	0,4	4,9	0,5

Мартенсит + феррит

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Средние значения твердости

После наплавки 18-28 Rc

После упрочнения 30-48 Rc

Диаметр (мм)	1,1	1,6	2,0	2,8
Kaccema 22RR, 11.34 kz	Χ	Χ	Χ	
Kaccema 50C, 22.68 kz			Χ	Χ
Бочка Speed Feed®, 272.2 kг				Χ

Lincore® M Bep. C-RU24-01/02/16

Lincore® M

ПРИМЕНЕНИЕ

Lincore M разработана для восстановления и наплавки на изделия из марганцевой, углеродистой и низколегированной стали.

Типичное применение: Молоты Детали землеройных машин Дробилки Било Ковши экскаваторов

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Перед наложением нового слоя нужно удалить весь затвердевший под механическими нагрузками материал и любую ранее нанесенную наплавку, так как такие зоны подвержены повышению хрупкости и образованию трещин.

В случае аустенитных марганцевых материалов предварительный подогрев не требуется, однако для углеродистой и низколегированной стали для предотвращения образований трещин в зоне термической обработки может потребоваться предварительный подогрев до 150-200°С.

Для предотвращения перегрева основного материала рекомендуется создавать узкие валики сварного шва. Сварка с высоким тепловложением и межслойная температура выше 260°С могут вызвать дисперсионное уплотнение карбида марганца с последующим повышением хрупкости материала. Какого-либо определенного ограничения на число проходов не существует, но в любом случае сразу после каждого прохода рекомендуется проводить насекание сварного шва. Это позволит сократить внутреннее напряжение и, как следствие, снизить вероятность деформаций и образования трещин. Наплавка Lincore М быстро затвердевает под механическими нагрузками, что затрудняет ее механическую обработку. Наилучшие результаты достигаются с применением твердосплавных, керамических и других высокопрочных режущих инструментов. Также можно провести шлифовку.

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	
1,1	5,1-12,7	80-185	22-26	1,5-4,4	
1,6	3,8-8,9	130-250	23-27	2,2-5,6	
2,0	3,2-6,4	240-360	24-29	2,9-6,2	
2,8	1,9-3,8	240-395	25-28	3,5-7,5	

СОПУТСТВУЮЩИЕ ПРОДУКТЫ

Conymcm8yющие продукты включают Wearshield® Mangjet(e)

МАТЕРИАЛЫ DЛЯ СВАРКИ ПОD ФЛЮСОМ

проволока сплошного се	чения
для сварки низкочглерод	ucmoŭ
стали	
L-60	527
L-61	
LNS 135	
L-50M	
Проволока сплошного се	чения
для сварки низколегиров	
стали	
L-70	531
LNS 140A	
LNS 133TB	
LNS 140TB	
LNS 150	
LNS 151	
LNS 160	
LNS 162	
LNS 163	
LNS 164	
LNS 165	
LNS 168	
LNS 175	
	34:

Порошковая проволока для
сварки углеродистой стали
LNS T55544
Проволока сплошного сечения
для сварки нержавеющей сталі
LNS 304L545
LNS 304H546
LNS 307547
LNS 309L548
LNS 316L549
LNS 318 550
LNS 347 551
LNS 4455552
LNS 4462 553
LNS 4500 554
LNS Zeron® 100X 555
Проволока сплошного сечения
для сварки никелевых сплавов
LNS NiCro 60/20 556
LNS NiCro 70/19 557
LNS NiCro Mo 60/16558

Сварочный флюс	
7615	6
780	6
781	6
7825	6
708GB	6
802	6
839	70
842-H5	72
85005	74
8605	76
888	78
9605	8
9805	8
995N	8
998N	8
P223	8
P230	9:
P240	94
P2000	91
P2007	
P2000S	

кпассификания

AWS A5.17	EL12	A-Nr	1
ISO 14171-A	S1	F-Nr	6
		9606 FM	1

ОБЩЕЕ ОПИСАНИЕ

Проволока общего назначения с низким содержанием углерода, марганца и кремния Обеспечивает низкую твердость металла шва и лучше всего подходит для применения в сочетании с активным флюсом серии 700

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ								
	GL	ΤÜV	BV	ABS	LR	DNV	RINA	
782		Χ						
860	Χ	Χ						
780		Χ	Х	Χ	Х	Х	Χ	
781		Χ						
761		Χ						

химичес	кий сост	ТАВ П	ІРОВОЛ
С	Mn		Si
0,09	0,5	(0,06

виды упаковки					
Диаметр (мм)	1,6	2,0	2,4	3,2	4,0
Каркасная kaccema, 15 kz	Χ				
Каркасная кассета В415, 25 кг	Χ	Χ	Χ	Χ	Χ
Каркасная kaccema B785, 100 kг				Χ	Χ
Деревянная kamyшka, 300 kг					Χ
Бочка Speed Feed®, 350 kг		Χ	Χ	Χ	Χ
Бочка Speed Feed®, 400 kг		Χ	Χ	Χ	Χ
Бочка Accutrak®, 600 kг		Χ	Χ		
Бочка Accutrak®,1000 kг		Χ	Χ	Χ	Χ

L-60: Bep. C-RU03-01/02/16

L-61

КЛАССИФИКАЦИЯ

 AWS A5.17
 EM12K
 A-Nr
 1

 ISO 14171-A
 S2Si
 F-Nr
 6

 9606 FM
 1

ОБЩЕЕ ОПИСАНИЕ

Эталон в области сварки под флюсом

Проволока общего назначения с низким содержанием углерода, марганца и кремния

Оптимальный выбор для широкого ряда задач одно- или многопроходной сварки под флюсом

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ										
	ABS	ΤÜV	BV	DNV	GL	LRS	RINA	RMRS	CRS	PRS
761	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
780		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
8500					Χ					
888		Χ								
860	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
P230	Χ	Χ				Χ	Χ			
781		Χ								

химический состав проволоки (%)

С	Mn	Si
0,1	1,0	0,25

Диаметр (мм) 1,6 2,0 2,4 3,2 4,0 4,8 Каркасная кассета В415, 25 кг X X X X X X

Каркасная кассета В785, 100 кг Χ Χ Χ Χ Бочка Speed Feed®, 200 kг Χ Деревянная kamywka, 300 kz Χ Χ Χ Χ Бочка Speed Feed®, 350 kг Χ Бочка Speed Feed®, 400 kг Χ Χ Χ Бочка Speed Feed®, 600 kг Χ Χ Бочка Accutrak®, 600 kг Χ Χ Χ Бочка Accutrak®, 1000 kг Χ Χ Χ Χ Розетта для подъема краном, 1000 кг Χ Χ

L-61: Bep. C-RU03-01/02/16

Χ

AWS A5.17	EM12	A-Nr	1
ISO 14171-A	S2	F-Nr	6
		9606 FM	1

ОБЩЕЕ ОПИСАНИЕ

Проволока общего назначения с низким содержанием углерода и кремния и средним содержанием марганца Обеспечивает низкую твердость металла шва и лучше всего подходит для применения с активным флюсом серий 700 и 800

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

	GL	TÜV	
782		Χ	
860	Χ	Χ	
761		Χ	
780		Χ	
P230		Χ	

химический состав проволоки (%)

С	Mn	Si
0,1	1,0	0,10

ВИЛЫ УПДКОВКИ

Диаметр (мм)	2,4	3,2	4,0	4,8
Kapkacнaя kaccema B415, 25 kг	Χ	Χ	Χ	
Деревянная катушка, 300 кг	Χ	Χ		
Бочка Speed Feed®, 400 kг			Χ	
Бочка Accutrak®,1000 kг			Χ	
Розетта для подъема краном, 1000 kz		Χ	Χ	Χ

L-50M (LNS 133-U)

КЛАССИФИКАЦИЯ

AWS A5.17	EH12K	A-Nr	1
ISO 14171-A	S3Si	F-Nr	б
		9606 FM	1

ОБЩЕЕ ОПИСАНИЕ

Проволока общего назначения с низким содержанием углерода и кремния и высоким содержанием марганца Подходит как для однодуговой, так и многодуговой сварки

Обладает более высокими механическими характеристиками по сравнению с проволокой класса ЕМ12К

ОДОБРЕН	ИЯ СЕРТИ	ФИКАЦИОН	ІНЫХ АГЕН	НТСТВ			
	ABS	ΤÜV	BV	DNV	LRS	RINA	CRS
782	Χ		Χ	Χ		Χ	
8500	Χ		Χ	Χ	Χ		
P230		Χ	Χ	Χ	Χ		
P240	Χ	Χ	Χ	Χ	Χ		Χ
780		Χ					
781	Χ		Χ	Χ	Χ	Χ	

ХИМИЧЕ	СКИЙ СОСТ	АВ ПРОВОЛО	КИ [%]					
С	Mn	Si						
0,1	1,6	0,25						

виды упаковки	ы упаковки								
Диаметр (мм)	1,6	2,0	2,4	3,2	4,0				
Каркасная кассета, 15 кг В415	Χ	Χ							
Каркасная кассета В415, 25 кг	Χ	Χ	Χ	Χ	Χ				
Каркасная кассета В785, 100 кг					Χ				
Деревянная kamywka, 300 kz	Χ		Χ		Χ				
Бочка Speed Feed®, 350 kг		Χ							
Бочка Speed Feed®, 400 kг		Χ	Χ	Χ	Χ				
Бочка Accutrak®, 600 kг			Χ						
Бочка Accutrak®, 1000 kг	Χ								
Розетта для подъема краном, 1000 kz			Χ		Χ				

L-50M Bep. C-RU03-01/02/16

AWS A5.17

EA1 A-Nr 2 Mat-Nr 1,5424 ISO 14171-A S2 Mo F-Nr 6 9606 FM 1/3

Проволока с содержанием Мо 0,5% для сварки низколегированной стали с высокими требованиями к ударной вязкости при одно- или двухпроходной сварке

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ										
	ABS	ΤÜV	BV	DNV	GL	LRS	RINA	RMRS	PRS	
761	Х	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	
780		Χ				Χ			Χ	
8500	Χ				Χ			Χ		
860		Χ	Χ	Χ	Χ	Χ				
P230	Χ		Χ		Χ	Χ	Χ	Χ		
P223		Χ								

ХИМИЧЕ	СКИЙ СОСТ	АВ ПРОВОЛ	ОКИ (%)
С	Mn	Si	Мо
0,1	0,9	0,10	0,5

Диаметр (мм)	2,0	2,4	3,2	4,0	4,8
Каркасная kaccema B415, 25 kг	Χ	Χ	Χ	Χ	Χ
Каркасная кассета В785, 100 кг			Χ		Χ
Бочка Speed Feed®, 350 kг	Χ		Χ	Χ	
Бочка Speed Feed®,400 kг			Χ	Χ	
Бочка Speed Feed®, 600 kг				Χ	
Розетта для подъема краном, 1000 kz			Χ		

LNS 133TB

классификация

AWS A5.13	EG	A-Nr	-
ISO 14171-A	SZ	F-Nr	6
		9606 FM	1

ОБШЕЕ ОПИСАНИЕ

Легированная титаном и бором проволока, предназначенная для одно- и двухпроходной сварки при высоких требованиях к ударной вязкости металла шва. Особенно высокие результаты по механическим свойствам достигаются в сочетании с трубным флюсом

Не предусматривает термообработку после сварки

химичес	ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ [%]					
С	Mn	Si	Ti	В		
0,08	1,55	0,25	0,15	0,015		

виды упаковки		
Диаметр (мм)	3,2	4,0
Каркасная кассета В415, 25 кг	Χ	X
Металлическая катушка, 350 кг		X
Бочка Speed Feed®, 350 kг	Χ	X
Бочка Speed Feed®, 400 kг	Χ	X
Бочка Speed Feed®, 600 kг	Χ	X
Бочка Accutrak®,1000 kг	Χ	X
Розетта для подъема краном, 1000 kг	Χ	X

LNS 133TB Ben, C-RU01-01/02/16

LNS 140A

AWS A5.23	EA2	A-Nr	2	Mat-Nr	1,5424
ISO 14171-A	S2 Mo	F-Nr	6		
ISO 24598-A	S Mn	9606 FM	1/3		

Проволока с содержанием Мо 0,5% для сварки стали 16Мо3 и ее аналогов с высокими требованиями к ударной вязкости при двухпроходной сварке

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ										
	ABS	ΤÜV	BV	DNV	GL	LRS	RINA	RMRS	PRS	
761	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
780		Χ				Χ			Χ	
8500	Χ				Χ			X		
860		Χ	Χ	Χ	Χ	Χ				
P230	Χ	Χ	Χ		Χ	Χ	Χ	Χ		

химический состав проволоки (%)

C	Mn	Si	Мо
0,1	1,0	0,10	0,5

ВИДЫ УПАКОВКИ						
Диаметр (мм)	1,6	2,0	2,4	3,2	4,0	4,8
Kapkacнaя kaccema, 15 kг B415		Χ	Χ			
Kapkacнaя kaccema B415, 25 kг		Χ	Χ	Χ	Χ	Χ
Kapkacнaя kaccema B785, 100 kг				Χ	Χ	
Бочка Speed Feed ^{®,} 250 kг				Χ		
Деревянная катушка, 300 кг		Χ	Χ	Χ		
Металлическая катушка, 350 кг					Χ	
Бочка Speed Feed®, 350 kг		Χ		Χ	Χ	Χ
Бочка Speed Feed®, 400 kг				Χ	Χ	
Бочка Speed Feed®, 600 kг					Χ	
Бочка Accutrak®, 600 kг		Χ				
Бочка Accutrak®,1000 kг				Χ	Χ	
Розетта для подъема краном, 1000 кг	Χ		Χ	Χ	Χ	

LNS 140A Bep. C-RU04-01/02/16

LNS 140TB

КЛАССИФИКАЦИЯ

AWS A5.23 EA2TiB **A-Nr** 2 **ISO 14171-A** S2MoTiB **F-Nr** 6

9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Легированная титаном и бором проволока, предназначенная для одно- и двухпроходной сварки при высоких требованиях к ударной вязкости металла шва. Особенно высокие результаты по механическим свойствам достигаются в сочетании с трубным флюсом

Не предусматривает термообработку после сварки

химический состав проволоки [%]							
C	Mn	Si	Мо	Ti	В		
0,06	1,1	0,20	0,5	0,13	0,02		

ВИДЫ УПАКОВКИ					
Диаметр (мм)	2,4	3,2	3,5	4,0	4,8
Каркасная кассета В415, 25 кг	Χ	Χ		Χ	Χ
Каркасная кассета В785, 100 кг				Χ	
Деревянная катушка, 300 кг		Χ			
Бочка Speed Feed®, 300 kг					Χ
Металлическая kamyшka, 350 kг				Χ	Χ
Бочка Speed Feed®, 350 kг		Χ		Χ	
Бочка Speed Feed®, 400 kг				Χ	
Бочка Speed Feed®, 600 kг		Χ		Χ	
Бочка Accutrak®,1000 kг	Χ		Χ	Χ	
Розетта для подъема краном, 1000 kz			Χ	Χ	

LNS 140TB 8ep. C-RU04-01/02/16

AWS A5.23	EB2	A-Nr	3	Mat-Nr	1,7339
ISO 24598-A	S Cr Mo1	F-Nr	6		
		9606 FM	3		

ОБЩЕЕ ОПИСАНИЕ

Проволока 1,25% Ст / 0,5% Мо для сварки жаропрочной стали Максимальная рабочая температура 550°С Используется с основными флюсами, например, 8500, Р240, 888 или 800-Н

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

	TUV
780	Χ
860	Χ

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

				_	_
C	Mn	Si	Мо	Cr	Р
0,13	0,8	0,15	0.5	1.2	<0.010

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

2,0	2,4	3,2	4,0
Х	Χ	Χ	Χ
Χ	Χ		
Χ			
		Χ	
	X		X X X

LNS 150 Bep. C-RU03-01/02/16

классификация

AWS A5.23	EB3	A-Nr	4	Mat-Nr	1,7339
ISO 24598-A	S Cr Mo2	F-Nr	6		
		9606 FM	3		

ОБЩЕЕ ОПИСАНИЕ

Проволока 2,5% Cr / 1% Мо для сварки жаропрочных марок стали, например, 10CrMo 9-10 Максимальная температура эксплуатации 600°С

Используется с основными флюсами, например, 8500, P240, 888 или MIL800-H

При сварке элементов теплообменников может использоваться с активными флюсами, например, 780, 781, 782

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

	TÜV
780	X

химический состав проволоки (%)

C	Mn	Si	Mo	Р	Cr
0,10	0,6	0,12	1,0	<0,010	2,5

BNUPLAUVKUBKN

Диаметр (мм)	2,0	2,4	3,2	4,0	
Каркасная kaccema B415, 25 kг	Χ	Χ	Χ	Χ	
Бочка Speed Feed®, 400 kг				Χ	
Бочка Accutrak®,1000 kг			Χ		

LNS 151 Bep. C-RU03-01/02/16

AWS A5.23	ENi1	A-Nr	10
ISO 14171-A	S2 Ni1	F-Nr	6
		9606 FM	1/2

ОБЩЕЕ ОПИСАНИЕ

Проволока с содержанием никеля 1%, которая применяется при требованиях по ударной вязкости при температуре до -60°C

Наилучшие показатели механических свойств достигаются при многопроходной сварке

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

	100
P230	Х
P240	Х

TÜ\/

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

C	Mn	Si	Ni
0,10	1,1	0,15	1,0

виды упаковки

2,4	3,2	4,0
X	Χ	Χ
		Χ
	2,4 X	2,4 3,2 X X

LNS 160 Bep. C-RU03-01/02/16

КЛАССИФИКАЦИЯ

AWS A5.23	ENi2	A-Nr	10
ISO 14171-A	S2 Ni2*	F-Nr	6
* самый близк	ий класс	9606 FM	1/2

ОБШЕЕ ОПИСАНИЕ

Проволока с содержанием никеля 1%, которая применяется при требованиях по ударной вязкости при температуре до -60°C

Наиличшие показатели механических свойств достигаются при многопроходной сварке

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

	ΤÜV
P230	Χ
P240	Χ

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Ni
0,10	1,1	0,15	2.2

ΒΝΠΡΙ ΛΠΨΚυΒΚή

51.A5.71				
Диаметр (мм)	2,0	2,4	3,2	4,0
Каркасная кассета В415, 25 кг		Χ	Χ	Χ
Деревянная катушка, 300 кг	Χ			

LNS 162 Bep. C-RU03-01/02/16

AWS A5.23 FG A-Nr 10 ISO 14171-A S2 Ni1Cu F-Nr 6 9606 FM 2

ОБШЕЕ ОПИСАНИЕ

Проволока для сварки под флюсом с содержанием меди и никеля. Предназначена для сварки изделий из стали, устойчивой к атмосферному воздействию, например, марки Cor-Ten

Коррозионная стойкость и однообразие цвета металла шва

В большинстве случаев используется с флюсом 960, 860 или Р230

Может использоваться для сварки стыковых и тавровых соединений в один или несколько проходов

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ΤÜV

860 Χ

VIANALALIECIZIAĂ	COCTAD EDODOGOVIA	0/1
ХИМИЧЕСКИИ	СОСТАВ ПРОВОЛОКИ (%J

С	Mn	Si	Ni	Cu	Cr	S	Р
0,11	1,0	0,25	0,7	0,5	макс. 0,2	макс. 0,2	макс. 0,2

Диаметр (мм)	2,0	2,4	3,2	4,0
Каркасная кассета В415, 25 kг	Χ	Χ	Χ	Χ
Бочка Speed Feed®, 350 kг		Χ		
Бочка Speed Feed®, 400 kг	Χ	Χ	Χ	Χ

Hackoльko нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNS 163 Bep. C-RU03-01/02/16

КЛАССИФИКАЦИЯ

AWS A5.23	EF3	A-Nr	10
ISO 14171-A	S3 Ni1Mo	F-Nr	6
		OGNG EM	7

ОБЩЕЕ ОПИСАНИЕ

Проволока с легированием Ni и Mo, предназначена для получения высоких показателей предела прочности и ударной вязкости

Наилучшие nokasameли механических свойств gocmuzalomcя npu многопроходной сварке Coomветствует требованиям NACE

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

	TUV
P230	Χ
P240	Χ

химический состав проволоки (%)

C	Mn	Si	Ni	Mo
0,10	1,75	0,10	0.9	0.5

ΒΝΠΡΙ ΛΠΨΚυΒΚΛ

Диаметр (мм)	2,4	3,2	4,0	
Каркасная кассета В415, 25 кг	Χ	Χ	Χ	
Деревянная kamyшka, 300 kг			Χ	
Бочка Speed Feed®, 350 kг	Χ		Χ	
Бочка Speed Feed®. 400 kг		Χ	Χ	

LNS 164 Bep. C-RU03-01/02/16

AWS A5.23	ENi5	A-Nr	10
ISO 14171-A	SZ	F-Nr	6
		9606 FM	2

Проволока с легированием Ni и Mo, предназначена для получения высоких показателей предела прочности и ударной вязкости

Наилучшие показатели механических свойств достигаются при многопроходной сварке

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

	ΤÜV	ABS	DNV	LRS	
P240	Χ	Χ	Х	Χ	

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

C	Mn	Si	Ni	Mo
0,08	1,4	0,20	1.0	0.2

ВИДЫ УПАКОВКИ

Диаметр (мм)	2,0	2,4	3,2	4,0	4,8
Каркасная кассета В415, 25 кг	Χ	Χ	Χ	Χ	Χ
Каркасная кассета В785, 100 кг				Χ	
Бочка Speed Feed®, 400 kг			Χ		
Бочка Accutrak®,1000 kг				Χ	

КЛАССИФИКАЦИЯ

ISO 26304-A S 3Ni2,5CrMo **F-Nr** 6

9606 FM 2

ОБЩЕЕ ОПИСАНИЕ

Низколегированная проволока сплошного сечения для сварки высокопрочных марок стали (Re>690 МПа) В сочетании с основным флюсом гарантирует высокие показатели ударной вязкости при температуре вплоть до -40°C

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

LRS

P240 X

CUCTAR UBURUUUKN [a	

С	Mn	Si	Ni	Mo	Cr	
0,10	1,6	0,15	2.3	0.6	0.7	

ВИДЫ УПАКОВКИ

Диаметр (мм)	2,5	3,2	4,0	5,0	
Каркасная кассета В415, 25 кг	Χ	Χ	Χ	Χ	
Розетта, 1000 kг		Χ	Χ		

LNS 168 Bep. C-RU02-01/02/16

AWS A5.23	ENi3	A-Nr	10
ISO 14171-A	S2Ni3	F-Nr	6
		9606 FM	1

Проволока с содержанием никеля 3,5% для сварки сталей, работающих при криогенных температурах

химический состав проволоки (%)

С	Mn	Si	Ni			
0,08	1,0	0,1	3,5			

DVILLDI FITANUDINI							
Диаметр (мм)	3,2	4,0					
Каркасная кассета В415. 25 кг	Χ	Χ					

LNS 175: Bep. C-RU02-01/02/16

LNS T55

КЛАССИФИКАЦИЯ

AWS A5.17 EC1 H4 A-Nr 1
ISO 14171-A TZ F-Nr 6
9606 FM 1/2

ОБЩЕЕ ОПИСАНИЕ

Нелегированная порошковая проволока с покрытием основного типа для сварки под флюсом. Высокая производительность наплавки по сравнению с проволоками сплошного сечения эквивалентного диаметра При использовании с флюсом Р230 обеспечивает высокую ударную вязкость наплавленного металла при низкой температуре.

химиче	ский сост	АВ ПРОВОЈ	ПОКИ (%)		
С	Mn	Si	Р	S	
0,06	1,5	0,6	<0,020	0,015	

ВИДЫ УПАКОВКИ	
Диаметр (мм)	2,8
Каркасная кассета В415, 25 kг	Χ
Металлическая катушка, 250 кг	Χ

LNS T55: 8ep. C-RU02-01/02/16

LNS 304L

AWS A5.9	ER308L	A-Nr	8	Mat-Nr	1,4316
ISO 14343-A	S 19 9 L	F-Nr	6		
		9606 FM	5		

Проволока из низкоуглеродистой аустенитной нержавеющей стали для сварки стали типа 304L или, в некоторых случаях, muna 321

Рекомендуется для использования в сочетании с флюсами Р2000 и Р2007

LRS

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ ABS

P2000	Х		
P2NN7	Χ	Χ	X

ΤÜV

химический состав проволоки (%)

С	Mn	Si	Cr	Ni	Мо
0,015	1,8	0,4	20	10	0.1

Диаметр (мм)	2,0	2,4	3,2	4,0
Каркасная kaccema B415, 25 kz	X	X	X	Х

Hackoльko нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNS 304L: 8ep. C-RU03-01/02/16

LNS 304H

КЛАССИФИКАЦИЯ

AWS A5.9	ER308H	A-Nr	8	Mat-Nr	1,4948
ISO 14343-A	S 19 9 H	F-Nr	6		

9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока из высокоуглеродистой аустенитной нержавеющей стали для применения при высокой температуре (до 730°C)

Подходит для работы со сталью muna 304

Рекомендуется для использования в сочетании с флюсами Р2000 и Р2007

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

C	Mn	Si	Ni	Cr
0,05	1,2	0,6	10,5	20,1

		DEVI

виды ликовки			
Диаметр (мм)	2,4	3,2	
Kankacнaя kaccema B415 25 k2	X	Χ	

LNS 304H: Bep. C-RU02-01/02/16

AWS A5.9	ER307*	A-Nr	8	Mat-Nr	1,4370
ISO 14343-A	S 18 8Mn	F-Nr	6		
* самый близ	кий класс	9606 FM	5		

ОБЩЕЕ ОПИСАНИЕ

Проволока из нержавеющей стали для сварки трудносвариваемых сталей с высоким содержанием марганца, например, бронепластин и разнородных соединений

Наплавленный металл поддается механическому уплотнению

Рекомендуется для использования в сочетании с флюсами Р2000 и Р2007

химический состав проволоки (%)

ΒV				

Диаметр (мм)	2,4	3,2	4,0			
Каркасная кассета В415, 25 кг	Χ	Χ	Χ			

Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNS 307: Bep. C-RU03-01/02/16

LNS 309L

КЛАССИФИКАЦИЯ

AWS A5.9	ER309L	A-Nr	8	Mat-Nr	1,4332
ISO 14343-A	S 23 12 L	F-Nr	6		

9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока из низкоуглеродистой аустенитной нержавеющей стали, предназначенная для сварки разнородных соединений

Рекомендуется для использования в сочетании с флюсами Р2000 и Р2007

ОПОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

	TÜV	ABS	LRS
P2000S	Χ		Χ
P2007	Χ	Χ	Χ

химический состав проволоки (%)

С	Mn	Si	Ni	Cr	Мо	
n n1	18	0.4	13.8	23.4	N N7	

ВИЛЫ УПАКОВКИ

эт.дз. т				
Диаметр (мм)	2,0	2,4	3,2	4,0
Каркасная кассета В415, 25 kz	Х	Χ	Χ	X

LNS 309L: 8ep. C-RU03-11/05/16

SAW

LNS 316L

КЛАССИФИКАЦИЯ

TO II TECHTONII	· · · · · · · · · · · · · · · · · · ·				
AWS A5.9	ER316L	A-Nr	8	Mat-Nr	1,4430
ISO 14343-A	S 19 12 3 L	F-Nr	6		
		9606 FM	5		

UPILIEE UDINCAHNI

Низкоуглеродистая проволока из нержавеющей стали для сварки сталей типа 316L и схожих марок Рекомендуется для использования в сочетании с флюсами P2000 и P2007

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ TÜV ABS LRS P2000 X X P2007 X X

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)										
С	Mn	Si	Cr	Ni	Мо					
0,015	1,75	0,4	18,5	12	2,75					

ВИДЫ УПАКОВКИ				
Диаметр (мм)	2,0	2,4	3,2	4,0
Kankacная kaccema B415, 25 kг	X	X	X	Х

LNS 316L: Bep. C-RU03-01/02/16

AWS A5.9	ER318	A-Nr	8	Mat-Nr	1,4576
ISO 14343-A	S 19 12 3 Nb	F-Nr	6		

9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока из стабилизированной нержавеющей стали для сварки стали 316Ті и схожих с ней марок Рекомендуется для использования в сочетании с флюсами Р2000 и Р2007

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

T	١W
	v

P2000 Χ

химический состав проволоки (%)

С	Mn	Si	Ni	Cr	Мо	Nb	
0,04	1,7	0,4	11,3	19,5	2,6	0,5	

Диаметр (мм)	2,0	2,4	3,2	4,0
Каркасная kaccema B415, 25 kz	Χ	Χ	Χ	X

LNS 318; Bep. C-RU02-01/02/16

AWS A5.9	ER347	A-Nr	8	Mat-Nr	1,4551
ISO 14343-A	S 19 9 Nb	F-Nr	6		

9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока из стабилизированной нержавеющей стали для сварки сталей типа 321 и 347 и схожих с ними марок Рекомендуется для использования в сочетании с флюсами Р2000 и Р2007

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

TII	W
	v

P2000 Χ

химический состав проволоки (%)

_	14	c:	NI:	۲.,		NII.
L	Mn	SI	Ni	Lr	Mo	Nb
0.03	16	0.4	9.7	10.5	0.1	0.6
0,03	1,0	0,4	5,7	19,5	U,I	0,0

ВИДЫ УПАКОВКИ

Диаметр (мм)	2,4	3,2	4,0
Каркасная кассета В415, 25 kг	Х	Χ	Χ
Бочка Speed Feed, 300 kг	Χ		

LNS 347: Bep. C-RU04-11/05/16

КЛАССИФИКАЦИЯ

A-Nr 9 Mat-Nr 1,4455 ISO 14343-A S 20 16 3 Mn L F-Nr 6 9606 FM 5

ОБЩЕЕ ОПИСАНИЕ

Проволока из полностью аустенитной нержавеющей стали

Предназначается для использования в условиях криогенных температур или для сварки немагнитных нержавеющих сталей

Рекомендиется для использования в сочетании с флюсами Р2000, Р2007 и Р7000

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

	ΤÜV
P2000	Х

химиче	ский сост	АВ ПРОВОЛ	ЮКИ (%)				
С	Mn	Si	Cr	Ni	Мо	N	
0,01	7,0	0,4	20	16	2,7	0,16	

виды упаковки			
Диаметр (мм)	2,4	3,2	
Kankachag kaccema B415 25 k2	Χ	Χ	

LNS 4455; Bep. C-RU02-01/02/16

AWS A5.9	ER2209	A-Nr	9	Mat-Nr	1,4462
ISO 14343-A	S 22 9 3 N L	F-Nr	6		
		9606 FM	5		

ОБЩЕЕ ОПИСАНИЕ

Проволока из дуплексной нержавеющей стали для сварки сталей типа 1.4462 и схожих с ними Рекомендуется для использования в сочетании с флюсами Р2000 и Р2007

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ ΤÜV ABS LRS P2000S Χ Χ P2007 Χ Χ

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)								
С	Mn	Si	Ni	Cr	Mo	N		
0,015	1,6	0,5	8,6	23	3,1	0,16		

ВИДЫ УПАКОВКИ			
Диаметр (мм)	2,4	3,2	
Каркасная кассета В450, 25 кг	X	Χ	

LNS 4462: 8ep. C-RU02-01/02/16

AWS A5.9	ER385	A-Nr	9	Mat-Nr	1,4519
ISO 14343-A	G 20 25 5 Cu L	F-Nr	6		
		9606 FM	5		

ОБЩЕЕ ОПИСАНИЕ

Проволока из полностью аустенитной нержавеющей стали

Предназначается для использования в условиях криогенных температур или сварки немагнитных нержавеющих сталей

Рекомендуется для использования в сочетании с флюсами Р2000, Р2007 и Р7000

ХИМИЧЕ	ский сост	АВ ПРОВОЈ	10КИ (%)		
_			_	 	

C	Mn	Si	Cr	Ni	Mo	Cu
0,01	1,8	0,3	20	25,2	4,6	1,5

виды упаковки

диаметр (мм)	2,4	
Каркасная кассета В450, 25 кг	X	

LNS 4500: Bep. C-RU02-01/02/16

LNS Zeron® 100X

AWS A5.9 ER2594 A-Nr 8 ISO 14343-A S 25 9 4 N L F-Nr 6 9606 FM 5

Проволока из супердуплексной нержавеющей стали для сварки стали Zeron 100 и схожих с ней марок Рекомендуется для использования в сочетании с флюсами Р2000, Р2007 или Р7000

химичес	кий сост	АВ ПРОВОЛ	ОКИ (%)						
С	Mn	Si	Ni	Cr	Mo	N	Cu	W	
0,02	0,7	0,3	9,3	25	3,7	0,23	0,6	0,6	

ВИДЫ УПАКОВКИ		
Диаметр (мм)	1,6	2,4
Kankachag kaccema B415, 25 kz	Χ	Χ

LNS Zeron® 100X: 8ep. C-RU02-01/02/16

LNS NiCro 60/20

КЛАССИФИКАЦИЯ

 AWS A5.14
 ERNiCrMo-3
 A-Nr
 Mat-Nr
 2,4831

 ISO 18274
 G 20 25 5 Cu L
 F-Nr
 43

 9606 FM
 6

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения на основе Ni для сварки никелевых сплавов

Высокая устойчивость к различным типам коррозии

Также используется для сварки сплавов с содержанием никеля 9%

Рекомендуется для применения с флюсом Р2007

химиче	СКИЙ СОСТА	∕В ⊔ЬОВО\	ЮКИ (%)				
С	Mn	Si	Cr	Ni	Мо	Nb	Fe
0,05	0,02	0,1	22	65	8,7	3,7	0,1

ВИДЫ УПАКОВКИ				
Диаметр (мм)	1,6	2,0	2,4	
Каркасная кассета B450, 25 kг	Χ	Χ	Χ	

LNS NiCro 60/20: 8ep. C-RU02-01/02/16

LNS NiCro 70/19

ERNiCr-3 **AWS A5.14** A-Nr Mat-Nr 2,4806

ISO 18274 S Ni 6082 (NiCr20Mn3Nb) F-Nr 43

9606 FM 6

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения на основе никеля для сварки высоколегированных сплавов, например, типа 600 и 601 Высокая устойчивость к окислению при высокой температуре

Рекомендуется для применения с флюсом Р2007

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Cr	Ni	Nb	Fe
0.03	3.1	0.08	20.5	72.5	2.6	0.8

ВИДЫ УПАКОВКИ

Hackoльko нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

LNS NiCro 70/19: 8ep. C-RU01-01/02/16

LNS NiCroMo 60/16

AWS A5.14 ERNiCrMo-4 A-Nr Mat-Nr ISO 18274

S Ni 6276 (NiCr15Mo16Fe6W4) F-Nr 43 **9606 FM** 6

ОБЩЕЕ ОПИСАНИЕ

Проволока сплошного сечения на основе Ni для сварки CrMoW никелевых сплавов

Чрезвычайно высокая стойкость k коррозионным средам с содержанием серной кислоты и хлоридов

Также используется для сварки сплавов с содержанием никеля 9%

Рекомендуется для применения с флюсом Р2007

ANWINGECRININ	Í СОСТАВ ПРОВОЛОКИ (°	77.1

С	Mn	Si	Ni	Cr	Mo	W	Fe
0,006	0,5	0,04	58	16	16	3,6	5,8

		OBKI	

Диаметр (мм)	1,6	2,4	
Каркасная кассета В415, 25 кг	Χ	Χ	

LNS NiCroMo 60/16: 8ep. C-RU02-01/02/16

761/761-CG

классификация					
Флюс	Флюс / проволока				
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : MΠ	ISO 14171-A : 2Π	
S A CS/MS 1 88 AC H5	761 / L-60	F7A2-EL12	S 38 2 CS/MS S1		
	761 / L-61	F7A2-EM12K	S 42 2 CS/MS S2Si	S 4T 0 CS/MS S2Si	
	761 / LNS 140A	F9A0-EA2-G	S 50 0 CS/MS S2Mo	S 4T 2 CS/MS S2Mo	
	761 / L-70	F9A0-EA1-G	S 50 0 CS/MS S2Mo	S 4T 2 CS/MS S2Mo	

ОБЩЕЕ ОПИСАНИЕ

Возможность сварки на высоких токах

Активный флюс для сварки с ограничением по числу проходов

Высокая стойкость к образованию трещин в металле шва

Пригоден для работ по ржавым / загрязненным поверхностям (на высоких токах)

Подходит для сварки низкокачественных сталей

Для сварки по ржавым и загрязненным поверхностям в большинстве случаев рекомендуются более крупнозернистые флюсы

одобрения	СЕРТИФИН	КАЦИОНН	ЫΧ AΓEH ⁻	тств						
Mapka npo- волоки	ABS	BV	CRS	DNV	PRS	GL	LRS	RINA	RMRS	ΤÜV
L-60										~
LNS 135										✓
L-61	3YM/2YT	3YM/2YT	3YM/2YT	2YT	3YM/2YT	3YM/2YT	3YM/2YT	3YM/2YT	2YT	✓
LNS 140A (L-70)	3Y40M/3Y40T	3Y40M/3Y40T		3Y40M/3Y40T	3Y40M/2Y40T	3Y40M/3Y40T	3Y40M/3Y40T	3Y40M/3Y40T	3Y40M/3Y40T	~

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]							
Марка проволоки	С	Mn	Si	Р	S	Мо	
L-60	0,05	1,5	0,7	<0,03	<0,025		
L-61	0,08	1,7	0,9	<0,03	<0,025		
LNS 140A (L-70)	0,06	1,7	0,8	<0,03	<0,025	0,4	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Марка проволоки	Кол-во проходов*	Предел mekyчести	Предел прочности	Отн. удлинение	Ударная вязкость по Шарпи (Дж)		
	проходов	(МПа)	[.] (МПа)	[%]	0°C	-20°C	
L-60	МΠ	380	500	28	80	50	
L-61	МΠ	440	530	28	100	50	
	2Π	>420	>540		65		
LNS 140A (L-70)	МΠ	480	600		80	40	
	2Π	>440	>540		100	55	

^{*} МП: многопроходная сварка - 2П: двухпроходная сварка

761/761-CG: Bep. C-RU25-01/02/16

761/761-CG

СВАРИВАЕМЫЕ МАТЕРИАЛ	Ы			
Von	Тип / Классы стали	С огран	ичением і	по числу проходов
Kog	Turi / Kildeeti ciridilu	L-60	L-61	LNS 140A (L-70)
Листы судостроительной	стали			
	om A go D, om A (H) 32 go D(H) 36	✓	•	✓
Конструкционная сталь об	щего назначения			
EN 10025 часть 6	500 A			✓
EN 10025 часть 3/часть 4	om S275 go S420, N,M	✓	~	>
EN 10149	om S315 go S420, MC	✓	~	✓
	om S315 go S420, NC	✓	✓	>
	S460, MC u NC			✓
EN 10025 часть 2	S185-S355, E295-E360, JR(G1 u G2), J0, J2 (G3 u G4)	✓	✓	✓
Сталь для бойлеров и камер	р высокого давления			
EN 10028	om P235 go P420, GH N, NH, M, Q u QH	✓	~	✓
	om P235 go P460, GH, N, NH, M, Q u QH	✓	~	✓
	P500, GH, N, NH, M, Q u QH, P235 S, P265 S	✓	~	✓
	om A37 go A52, CP, AP	✓	✓	✓

ХАРАКТЕРИСТИКИ ФЛЮСА

Pog moka DC/AC Основность (по Бонижевскому) 0,8

Скорость кристаллизации Низкая, вязкий шлак

Насыпная плотность (кг/дм³) 1,2

Размер зерна (ISO 14174) 761 : 1 -16 / 761-CG : 1 - 20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Проволока	Особенности
L-60	Предотвращает возникновение дефектов из-за органических включений
L-61	Высокие механические характеристики
LNS 140A (L-70)	При двухпроходной сварке обеспечивает высокие показатели ударной вязкости без необходимости в термообработке

Типовое применение

Нормальные угловые швы, сварка с большой глубиной проплавления Двухпроходная сварка стыковых соединений пластин средней и большой толщины

Флюсовая поддержка, модифицированная серия для дуговой сварки

ВИДЫ УПАКОВКИ

Упаковка	Вес нетто (кг)
Mewok	25
Стальная бочка	250
Ynakoßka Big Bag	500 / 1000

780/780-CG/780-FG

Dлюс	Флюс / проволока					
SO 14174		AWS A5.17 / A5.23	ISO 14171-A : MΠ	ISO 14171-A : 2Π		
A AR/AB 1 78 AC H5	780 / L-60	F7A0-EL12	S 42 0 AR/AB S1	S 4T 0 AR/AB S1		
	780 / L-61	F7A2-EM12K	S 42 0 AR/AB S2Si	S 4T 2 AR/AB S2Si		
	780 / LNS 140A	F8A2-EA2-G		S 4T 2 AR/AB S2Mo		
	780 / L-70	F8A2-EA1-G		S 4T 2 AR/AB S2Mo		

ОБЩЕЕ ОПИСАНИЕ

Активный флюс для сварки с ограничением по числу проходов

Предназначается для общих сварочных работ, в том числе для полуавтоматической сварки

Высокая скорость сварки по загрязненным поверхностям

Высокая стойкость к образованию пор при сварке ржавых и загрунтованных поверхностей

Легкое omgеление шлака, хороший внешний вид шва

Также доступны варианты флюса с мелко- и крупнозернистой грануляцией

Для высокоскоростной угловой сварки более предпочтителен мелкозернистый состав

Хорошо подходит для сварки поворотных стыков при низком напряжении тока

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ										
Марка проволоки	BV	ABS	LRS	DNV	GL	RINA	PRS	RMRS	CRS	ΤÜV
L-60 LNS 135	A2YT	2YT	2YT	2YT	3YT	2YT				Y
L-61 L-50-M (LNS 133U)	АЗҮТ		2YM/3YT	2YM/3YT	3YT	3YT	2YM/3YT	3YT	3YT	¥
LNS 140A (L-70)			3YT				3YT			>
LNS 150 LNS 151										Y

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)							
Марка проволоки	С	Mn	Si	Р	S	Мо	
L-60	0,07	1,4	0,6	<0,03	<0,025		
L-61	0,07	1,6	0,7	<0,03	<0,025		
LNS 140A (L-70)	0,07	1,6	0,6	<0,03	<0,025	0,4	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел текучести	Предел прочности	Отн. цалинение		я вязкость Ipnu (Дж)	
Марка проволоки	Состояние*	(МПа)	(МПа)	(%)	0°C	-20°C	
L-60	МΠ	>420	510	28	50		
L-61	2Π	>420	>540	28		50	
LNS 140A (L-70)	2Π	>420	>550	25		60	

^{*} МП: многопроходная сварка - 2П: двухпроходная сварка

780/780-CG//780-FG: Bep. C-RU24-01/02/16

780/780-CG/780-FG

СВАРИВАЕМЫЕ МАТЕРИАЛЬ						
1/0.0	_ ,,,		С ограничением по числу проходов			
Kog	Tun / Классы стали	L-60	L-61	LNS 140A (L-70)		
Листы судостроительной	стали					
	om A go D, om A (H) 32 go D(H) 36	✓	~	✓		
Конструкционная сталь об	щего назначения					
EN 10025 часть 6	500 A			✓		
EN 10025 часть 3/часть 4	om S275 go S420, N,M	~	~	✓		
EN 10149	om S315 go S420, MC	~	~	✓		
	om S315 go S420, NC	~	~	✓		
	S460, MC u NC			✓		
EN 10025 часть 2	S185—S355, E295—E360, JR(G1 u G2), J0, J2 (G3 u G4)	✓	~	✓		
Сталь для бойлеров и каме	р высокого давления					
EN 10028	om P235 go P420, GH N, NH, M, Q u QH	~	v	✓		
	om P235 go P460, GH, N, NH, M, Q u QH	v	v	✓		
	P500, GH, N, NH, M, Q u QH, P235 S, P265 S	~	•	✓		
	om A37 go A52, CP, AP	✓	✓	✓		

ΧΔΡΔΚΤΕΡИСТИКИ ΦΠЮΓΔ

 Род тока
 DC/AC

 Основность (по Бонижевскому)
 0,7

 Скорость кристаллизации
 Высокая

 Насыпная плотность (кг/qм²)
 1,4

Размер зерна (ISO 14174) 780 : 1 - 20 / 780-CG : 2 - 20 / 780-FG :

1 - 16

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ Проволока Собенности 1-60 Предотвращает возникновение дефектов из-за органических включений 1-61 Высокие механические характеристики 1-61 LNS 140A (1-70) При двухпроходной сварке обеспечивает высокие показатели ударной вязкости без необходимости в термообработке

ВИДЫ УПАКОВКИ					
Вес нетто (kz)					
25					
25					
250					
500 / 1000					

SAW

классификация							
Флюс	Флюс / проволока						
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : 2Π				
S A ZS 1 87 AC H5	781 / L-60	F7A0-EL12					
	781 / L-61	F7A0-EM12K	S 4T 0 ZS S2Si				
	781 / L-50M (LNS 133U)		S 4T 2 ZS S3Si				
	761 / LNS 140A		S 4T 2 ZS S2Mo				

UPILIEE UUNCVHNE

Активный флюс для сварки с ограничением по числу проходов

Очень высокая скорость сварки листового металла

Высокая ударная вязкость при двухпроходной сварке

Высокая скорость и правильная форма шва при сварке таврового соединения

Блестящий и гладкий сварной шов

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ							
Марка проволоки	BV	ABS	LRS	DNV	RINA	TÜV	
L-50M (LNS 133U)	A3Y40T	3Y400T	3Y40T	3Y40T	3Y40T	~	
L-60						✓	
L-61						✓	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)							
Марка проволоки	С	Mn	Si	Р	S	Мо	
L-61	0,05	1,3	0,9	<0,03	<0,02		
L-50M (LNS 133U)	0,06	1,6	1,0	<0,03	<0,02		
LNS 140A (L-70)	0,06	1,3	0,9	<0,03	<0,02	0,4	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текучести	Предел прочности	Ударная вязкость no Шарпи (Дж)
Марка проволоки	Состояние*	(MΠa)	(МПа)	-20°C
L-61	2Π	>420	>540	50
L-50M(LNS 133U)	2Π	>450	>560	60
LNS 140A (L-70)	2Π	>490	>580	65

^{*} МП: многопроходная сварка - 2П: двухпроходная сварка

781: Bep. C-RU25-01/02/16

781

СВАРИВАЕМЫЕ МАТЕРИАЛЬ						
1/00	Tun /Vanasus amagus	С ограни	С ограничением по числу проходов			
Kog	Tun / Классы стали	L-60	L-61	LNS 140A		
Листы судостроительной	стали					
	om A go D, om AH32 go DH40	✓	✓	>		
	om A go E, om AH32 go EH40			✓		
Конструкционная сталь об	іщего назначения					
EN 10025 часть 6	500 u 500 A	✓	✓	✓		
	500 u 550 A u AL			>		
EN 10025 часть 3/часть 4	om S275 go S460 N/M	✓	✓	✓		
	om S275 go S460, любое качество			>		
EN 10149	om S315 go S600 MC u NC	✓	✓	✓		
EN 10025 часть 2	om S185 go S360, любое качество	✓	✓	✓		
Сталь для бойлеров и каме	р высокого давления					
EN 10028	om P235 go P460, (GH, N NH, M, ML1)	✓	✓	✓		
	om P235 go P460, любое качество			>		
EN 10207	om P235 go P275 S	✓	✓	>		
A36-601 u NF A36-605	om A37 go A52 (CP, AP)	✓	>	>		
	om A37 go A52 (CP, AP, FP)			✓		

ХАРАКТЕРИСТИКИ ФЛЮСА

 Pog moka
 DC/AC

 Основность (по Бонижевскому)
 0,7

Скорость кристаллизации Высокая, жидкотекучий шлак

Насыпная плотность (kz/gм³) 1,5 Размер зерна (ISO 14174) 1-16

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Проволока	Особенности
L-60	Высокая скорость сварки по чистым поверхностям
L-61	Очень высокая скорость сварки

ВИДЫ УПАКОВКИ

Ynako8ka	Вес нетто (кг)
Meшok Sahara ReadyBag™ (SRB) Стальная бочка	25 25 250

782/782-FG

КЛАССИФИКАЦИЯ				
Флюс		Флюс /	проволока	
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : MΠ	ISO 14171-A : 2Π
S A AR/AB 176 AC H5	782 / L-60		S 42 A AR/AB S1	S 4T A AR/AB S1
	782 / LNS 135	F7AZ-EM12		S 4T 0 AR/AB S2
	782 / L-61	F7AZ-EM12K	S 46 0 AR/AB S2Si	S 4T 0 AR/AB S2Si
	782 / L-50M (LNS133U) 761 / LNS 140A (L-70)		S 46 0 AR/AB S3Si S 46 0 AR/AB S2Mo	S 5T 2 AR/AB S3Si S 5T 2 AR/AB S2Mo

ОБЩЕЕ ОПИСАНИЕ

Активный флюс для сварки с ограничением по числу проходов

Правильная форма шва и оптимальное смачивание кромок

Высокая скорость сварки тонкостенных изделий

Сварка стыковых и угловых соединений одной или несколькими дугами

Идеально подходит для сварки тонкостенных труб, особенно при использовании варианта с мелкозернистым составом

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ					
Марка проволоки	BV	ABS	DNV	RINA	ΤÜV
L-50M (LNS 133U)	3Y40T	3Y400T	4Y40T	3Y40T	
LNS 135					✓

химический сост	ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)					
Марка проволоки	С	Mn	Si	Р	S	Мо
L-60	0,07	1,0	0,6	<0,03	<0,025	
LNS 135	0,07	1,15	0,7	<0,03	<0,025	
L-61	0,07	1,15	0,8	<0,03	<0,025	
L-50M (LNS 133U)	0,06	1,7	1,0	<0,03	<0,025	
LNS 140A (L-70)	0,07	1,2	0,7	<0,03	<0,025	0,4

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Марка проволоки	Состояние*	Предел текучести	Предел прочности	Ударная вязкость по Шарпи (Дж)
		(МПа)	[.] (МПа)	0°C -20°C
L-60	2Π	>420	>520	45
LNS 135	2Π	>420	>520	55
L-61	2Π	>420	>520	60
L-50M (LNS 133U)	2Π	>460	>550	65 50
LNS 140A (L-70)	2Π	>460	>600	70 50

^{*} МП: многопроходная сварка - 2П: двухпроходная сварка

782/782-FG: Bep. C-RU25-01/02/16

782/782-FG

СВАРИВАЕМЫЕ МАТЕРИА	лы			
1/0 ~	Tim ///accordance	С ограничением по числу проходов		
Kog	Tun / Классы стали	LNS 135	L-61	
Листы судостроительн				
	A, om AH32 go AH40		✓	
Конструкционная сталь	общего назначения			
EN 10149	om S315 go S460 MC	✓	✓	
EN 10025 часть 2	om S185 go S355, JR(G1 u G2)	✓	✓	
	om S185 go S355, JR(G1 u G2), J10		✓	
	om E2956 go E360	✓	✓	
Сталь для бойлеров и ка	мер высокого давления			
EN 10028	om P235 go 275 GH		✓	
	om P355 go P460M		~	
A36-601 u NF A36-605	om A37 go A52 (CP)		✓	

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC / AC

 Основность (по Бонижевскому)
 0,4

 Скорость кристаллизации
 Высокая

 Насыпная плотность (кг/дм³)
 1,4

Размер зерна (ISO 14174) 782 : 1 - 20 / 782-FG : 1 - 16

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Проволока	Особенности
LNS 135	Низкая твердость
L-61	Высокие механические характеристики
L-50M (LNS 133U)	Очень высокая скорость сварки

Типовое применение

Тавровые и нахлесточные соединения;

- колеса грузовых автомобилей;
- газовые баллоны;
- · угловая сварка труб;
- котельные трубы.

ВИДЫ УПАКОВКИ

Упаковка	Вес нетто (кг)	
Мешок Стальная бочка Упаковка Big Bag	25 250 500 / 1000	

708GB

классификация				
Флюс		ΦлІ	ос / проволока	
ISO 14174		AWS A5.23	ISO 14171-A	
S A AR 1 99 AC H10	708GB / L-60 708GB / L-61	F7A0 - EL12 F7A0 - EM12K	S 42 0 AR S1 S 42 0 AR S2Si	

ОБШЕЕ ОПИСАНИЕ

Керамический флюс с содержанием марганца и кремния

Высокие сварочно-технологические свойства, легкое отделение шлака, сопротивляемость образованию пор и трещин и хороший внешний вид шва

Подходит для сварки соединений без скоса кромок, а также угловых и нахлесточных соединений

Рекомендуется для сварки с ограничением по числу проходов

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Марка проволоки	С	Mn	Si	Р	S
L-60	0,08	1,4	0,75	0,023	0,02
L-61	0,09	1,6	0,90	0,023	0,02

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Mapka прово- локи	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) -18°C
L-60	ΜΠ	470	570	33	30
L-61	ΜΠ	570	645	30	50

ТИПИЧНОЕ ПРИМЕНЕНИЕ

Обычно используется для сварки газовых баллонов, колес грузовых автомобилей, профильных материалов, соединительных накладок и изделий небольшого диаметра

СВАРИВАЕМЫЕ МАТЕРИАЛЫ					
Код	Tun / Классы стали	С ограничением по числу проходов L-61			
Газовые баллоны					
EN 10120	P245NB	✓			
	P265NB	✓			
	P310NB	✓			
	P355NB	✓			

ΒΝΩΡΙ ΛΩΦΚΟΒΚΝ

Ynakoßka	Вес нетто (кг)
Bag	25

708GB: Bep. C-RU03-24/06/16

Hackonьko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

802

классификация		
Флюс	Флюс / проволока	
ISO 14174 S A CS 1 55 DC H5	Порошковая проволока для наплавки Проволока сплошного сечения для наплавки	не имеет классификации AWS и EN не имеет классификации AWS и EN

ОБЩЕЕ ОПИСАНИЕ

Нейтральный флюс для наплавки порошковыми проволоками Lincore 102W, 423L и 423Cr и др.

Проволоки Lincore образуют наплавленный слой с содержанием кремния до 0,2%, легированный ванадием, ниобием, титаном и хромом.

Легкое отделение шлака и хороший внешний вид шва

Подходит для наплавки на пластины и опорные ролики

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
Марка проволоки	С	Mn	Si	Cr	Ni	Мо	V	W	
LINCORE 102W	0,28	1,5	0,4	6,5		1,0	0,15	1,0	
LINCORE 423L	0,15	1,2	0,4	11,5	2,0	1,0	0,15		
LINCORE 423Cr	0,15	1,2	0,4	13,5	2,0	1,0	0,15		

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Послесварочная термообработка в течение двух часов при

Марка проволоки	ПС	426°C	482°C	538°C	593°C	649°C	
LINCORE 102W	51	50	50	51	40	35	
LINCORE 423L	43	42	46	38	33	32	
LINCORE 423Cr	46	45	46	38	34	32	

Твердость: HRc c 6 слоями наплавки

ВИДЫ УПАКОВКИ	
Ynako8ka	Вес нетто (кг)
Mewok Sahara ReadyBag™ (SRB) Стальная бочка	25 25 200

802: Bep. C-RU23-01/02/16

Флюс 839

ISO 14174: S A FB 1 66 AC H5

Флюс/Проволока AWS A5.17/A5.23 839/L60 F6A2-EL12 839/LNS135 F6A4-EM12

839/L-61 F7A5-EM12K / F6P6-EM12K 839/L-50M F7A6-EH12K / F7P8-EH12K

839/LNS140A F7A4-FA2-A2

839/LNS164 F9A0-EF3-F3 / F9P4EF3-F3

ОБЩЕЕ ОПИСАНИЕ

Основный флюс с легким отделением шлака

Рекомендуется для многопроходной сварки углеродистой и низколегированной стали

Пригоден для однодуговой и тандемной сварки

Высокая стойкость к образованию пористости при сварке загрунтованных поверхностей

Также пригоден для сварки нержавеющей стали 308L, 309L, 316L и 307

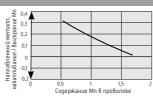
ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

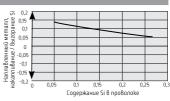
Марка проволоки	С	Mn	Si	Р	S	Мо	Ni
L-60	0,04	0,85	0,2	<0,01	<0,01		
LNS 135	0,05	1,2	0,2	<0,015	<0,01		
L-61	0,07	1,2	0,3	<0,015	<0,01		
L-50M	0,07	1,7	0,3	<0,015	<0,01		
LNS 140A	0,06	1,2	0,2	<0,015	<0,01	0,45	
LNS 164	0,07	1,7	0,3	<0,015	<0,01	0,45	0,80

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Марка прово-	Состояние*	Предел текучести	Предел прочности	Отн. цалинение		Ударная вязкость по Шарпи (Дж)					
локи		(МПа)	. (M∏a)	[%]	-20°C	-40°C	-50°C	-60°C			
L-60	ПС	390	470	30	100						
LNS 135	ПС	410	490		100	50					
L-61	ПС	440	530	29	130	80					
	CH	400	510	31		115	65				
L-50M	ПС	470	570	258		100					
	CH	415	520	29		140		110			
LNS 140A	ПС	460	560	26		80					
LNS 164	ПС	650	710	20	50						
	CH	590	670	24	100	65					

ПС: После сварки - СН: после снятия напряжения


839: Ben. C-RU03-18/06/15


839

СВАРИВАЕМЫЕ МАТЕ	Риалы									
					ОѕонМ	проходна	я свар	ka		
Kog	Tun / Классы стали	L-60	LNS 135	L-61	L-50M	(LNS 133U)	LNS 1	40A (L-70)	LNS 16	54 (L-84
		ПС	ПС	ПС	ПС	CH	ПС	CH	ПС	CH
Листы судостроит	ельной стали							r		
	om A go D	~	~	~	v		~			
	AH(32),DH(36), DH(40)	✓			V	✓	~	✓		
Конструкционная с	таль общего назначения					,				
EN 10025 часть 2	S185, S235, S275	~	v	~	V	V				
	S355	✓	~	•	✓	✓	~	✓	~	V
Литая сталь										
EN 10213-2	GP240R	✓	~	~	✓					
Трубная сталь										
EN 10208-2	L210, L240, L290	✓	✓	✓	✓	✓				
	L360	~	~	~	~	~	~	~		
	L415				V		~	~		
	L445, L480						~	~		
API 5LX	X42, X46	~	~	~	V	~				
	X52	~	~	~	V	~	~	~		
	X56, X60				~		~	~	~	~
	X65, X70						~	~	~	~
EN 10216-1/10217-1	P235, P275	~	~	~	V	V				
	P355	~	~	V	V	~	~	V	~	~
Сталь для бойлеров	и камер высокого давления	1								
EN 10028-1	P235GH, P265GH, P295GH	~	V	~	✓	~	~	~		
	P355GH	~	~	~	V	V	~		~	~
Сталь с мелкозерни	cmoŭ cmpykmypoŭ					`				
EN 10025 4. 3 / 4. 4	S275	~	~	~	•	V				
	S355	~	~	~	~	~	~	~	~	~
	S420				~		~	~	~	~
	S460						~		~	~
Сталь с высоким пр	еделом текучести									
EN 10025 часть 6	S460, S500						~		_	

ХАРАКТЕРИСТИКИ ФЛЮСА

Род тока Основность (по Бонижевскому) Скорость кристаллизации Насыпная плотность (kz/gм³) Размер зерна (ISO 14174) DC/AC 2,4 Средняя 1,2 2-20

ВИДЫ УПАКОВКІ

Ynakoßka	Вес нетто (kz)
Mewok	25

Lincolnweld® 842-H™

ΟΠΟΕΡΕΗΜЯ ΓΕΡΤΜΦΜΚΔΙΙΜΟΗΗΜΙΧ ΔΓΕΗΤΓΤΒ

классификация									
Флюс	Флюс / провол	Флюс / проволока							
ISO 14174	AWS A5.17 / A5.23								
S A FB 1 55 AC H4	Lincolnweld® 842-H™ / L-61	F7A6/F6P8-EM12K-H4							
	Lincolnweld® 842-H™ / L-50M (LNS 133U)	F7A8/F7P8-EH12K-H4							
	Lincolnweld® 842-H™ / LNS 164 (LA 84)	F9A8/ F9P8-EF3-F3-H4							
	Lincolnweld® 842-H™ / LNS 165 (LA 85)	F8A8/ F8P8-ENi5-Ni5-H4							
	Lincolnweld® 842-H™ / LNS 140A	F8A4/ F7P4-EA2-A2-H4							

ОБЩЕЕ ОПИСАНИЕ

Специально предназначен для применения в области офшорных сооружений, где особенно важны технологичность, высокая ударная вязкость и содержание диффизионного водорода

Сверхнизкое содержание диффузионного водорода в наплавленном металле — менее 3 мл/100 гр. наплавленного металла как на постоянном, так и переменном токе

Высокая ударная вязкость по Шарпи, в некоторых случаях превышающая 160 Дж при -60°С после заполняющих и облицовочных проходов

Подходит для сварки на постоянном и переменном токе — имеет высокую допустимую токовую нагрузки при одно- и многодуговой сварке

Высокие сварочно-технологические характеристики и легкое отделение шлака

OHOD: 1111111111111	ogosi Elimiteet in omitagnormisista Eliters											
Марка проволоки	Α	BS	DNV	I	LR	GL	ΤÜV	DB				
L-50M (LNS 133U)	5YQM42	0 H5 (AC)	V YM42 H5 (AC) 5Y42M	H5 (AC)	6Y42M H5 (AC)	✓	✓				
LNS 164 (LA 84)	5YQM55	0 H5 (AC)	V YM55 H5 I	(AC) 5Y55N	l H5 (AC)	6Y55M H5 (AC)	✓					
LNS 165 (LA 85)	5YQM50	0 H5 (AC	V YM50 H5	(AC) 5Y50N	1 H5 (AC)	6Y50M H5 (AC)	✓					
ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)												
Марка проволоки	C	Mn	Si	Р	S	Мо	Ni					
L-61	0,09	1,0	0,20	<0,02	<0,01	5						
L-50M (LNS 133U)	0,10	1,5	0,30	<0,02	<0,01	5						
LNS 164 (LA 84)	0,10	1,6	0,25	<0,02	<0,01	5 0,5	0,8					
LNS 165 (LA 85)	0,06	1,35	0,2	<0,02	<0,01	5 0,2	0,9					
LNS 140A (L70)	0,06	0,9	0,2	<0,02	<0,01	5 0,4						

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел текучести	Предел прочности	Отн.		вязкость inu (Дж)		
Марка проволоки	Состояние	(МПа)	прочностти (МПа)	удлинение (%)	-40°C	-51°C	-60°C	
L-61	ПС	430	520	33		300		
	CH	360	480	38			350	
L-50M (LNS 133U)	ПС	480	580	31			190	
	CH	420	550	32			160	
LNS 164 (LA 84)	ПС	640	710	25			140	
	CH	610	690	27			120	
LNS 165 (LA 85)	ПС	530	610	29			185	
	CH	530	620	30			150	
LNS 140A (L70)	ПС	470	550	27	90			
	CH	440	530	30	80			

ПС: После сварки - СН: после снятия напряжения

Lincolnweld® 842-H™: 8ep. C-RU02-01/02/16

Lincolnweld® 842-H™

СВАРИВАЕМЫЕ МАТ	ЕРИАЛЫ									
	- ///			Многоп	роходна	я сварка				
Kog	Tun / Классы стали	L-61	L-50M (L	NS 133U)	LNS 164	(LA 84)	LNS 16	5 (LA 85)	LNS 140	A (L 70)
	Cilialiu	ПС	ПС	CH	ПС	CH	ПС	CH	ПС	СН
Листы судострои	тельной стали									
	om A go E	~	~	~						
	AH(32),DH(36), EH(36)	~	V	~	•	✓	-	-	~	•
Конструкционная	сталь общего назнач	ения		,		,		,		
EN 10025 часть 2	S185, S235, S275	~	~	~						
	S355	~	V	~	✓	✓	-	V	~	V
Литая сталь						,				
EN 10213-2	GP240R	~	V	~						
Трубная сталь										
EN 10208-2	L210, L240, L290	~	~	~						
	L360	~	~	~	~	~	~	~	~	~
	L415		~				~	~	~	~
	L445, L480						~	~		
API 5LX	X42, X46	~	~	~						
	X52	~	~	~	~	~	~	~	~	~
	X56, X60		~		~	~	~	~	~	~
	X65, X70				~	~	~	~		
EN 10216-1/10217-1	P235, P275	~	~	~						
	P355	~	V	~	✓	✓	~	~	~	~
Сталь с мелкозерн	ucmoŭ cmpykmypoŭ					,		,		
EN 10025 4. 3 / 4. 4	S275	~	~	~						
	S355	~	~	~	~	~	~	~	~	~
	S420		~		~	~	~	~	~	~
	S460				~	~	~	~	~	
	S500				~	~	~			

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC/AC

 Основность (по Бонижевскому)
 2,3

 Скорость кристаллизации
 Средняя

 Насыпная плотность (kz/gм³)
 1,3

 Размер зерна (ISO 14174)
 2 - 20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Глубокие зазоры
Низкотемпературная эксплуатация
Высокопрочные конструкции
Одно- и многодуговые системы
Морские и береговые сооружения
Ядерная промышленность

ВИЛЫ УПАКОВКІ

 Упаковка
 Вес нетто (кг)

 Пластиковое ведро
 22,7

8500

классификация										
Флюс	Флюс / проволока									
ISO 14174	AWS A5.17 / A5.23 ISO 14171-A : ΜΠ ISO 14171-A : 2Π									
S A FB 1 54 AC H5	8500 / L-61	F7A6/F6P8-EM12K	S 38 4 FB S2Si	S 4T 0 FB S2Si						
	8500 / L-50M (LNS 133U)	F7A6/F7P8-EH12K	S 42 6 FB S3Si	S 4T 2 FB S3Si						
	8500 / LNS 140A	F8A6-EA2-A2	S 46 4 FB S2Mo							
	8500 / LNS 160	F7A8/P8-ENi1-Ni1	S 42 5 FB S2Ni1*							
	8500 / LNS 162	F7A8/P8-ENi2-Ni2	S 42 6 FB S2Ni2*							
	8500 / LNS 165 (LA85)	F8A8/F7P8-ENi5-Ni5	S 50 6 FB SZ							
	8500 / LNS T55		S 50 5 FB TZ							

^{*} самый близкий класс

ОБШЕЕ ОПИСАНИЕ

Основный флюс для сварки углеродистых и низколегированных сталей

Имеет высокие сварочно-технологические свойства при разных режимах сварки

Высокие механические характеристики

Высокая ударная вязкость по всему объему наплавленного металла

Высокие результаты испытания на критическое раскрытие вершины трещины

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ								
Марка проволоки	BV	ABS	LRS	DNV	GL	RMRS		
L-61					3YM/2YT			
L-50M (LNS 133U) LNS 140A (L-70)	A3YT/A5YM	3YT/5YM 3YM	5Y40M/3Y40T	5Y40M/3Y40T	3Y40M/4Y40T	3YM/4YT		

ХИМИЧЕСКИЙ СОСТА	В НАПЛАІ	вленного	МЕТАЛЛА	\ [%]				
Марка проволоки	С	Mn	Si	Р	S	Mo	Ni	
L-61 L-50M (LNS 133U)	0,08 0,07	1,0 1,4	0,2 0,3	<0,02 <0,02	<0,015 <0,015			
LNS 140A (L-70) LNS 160 LNS 162	0,08 0,07 0,08	0,9 1,0 1,0	0,2 0,1 0,1	0,03 0,02 0,02	<0,025 0,015 0,015	0,4	1,0 2,0	
LNS 165 (LA 85) LNS T55	0,07 0,08	1,3 1,7	0,2 0,7	0,02 <0,015	0,015 <0,015	0,2	0,9	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел mekyчести	Предел прочности	Отн. цалинение		Ударная вязкость no Шарпи (Дж)			
Марка проволоки	Состояние*	(M∏a)	(МПа)	(%)	-20°C	-40°C	-60°C		
L-61 L-50M (LNS 133U)	МП МП СН	430 440 >420	510 540 >500	28 28 30	150	100 110 150	50		
LNS 140A (L-70) LNS 160	МП ПС	440 430	540 510	28 30		55 150	50		
LNS 162	CH NC CH	400 470 450	510 560 530	30		150 150 150	50 50 50		
LNS 165 (LA 85)	ПС СН	530 480	600 580	25 30		120 120	50 50		
LNS T55	ПС CH	530 500	620 570		120	80 70			

^{*}MП: многопроходная сварка - 2П: двухпроходная сварка - ПС : После сварки - СН: после снятия напряжения

SAW

8500

СВАРИВАЕМЫЕ МАТЕРИАЛЫ														
		Многопроходная сварка												
Koq	Tun / Классы стали	L-61	L-50M	(LNS 133U)	LNS 14	10A (L-70)	LNS	160	LNS	162	LNS	165	LNS	T55
		ПС	ПС	СН	ПС	СН	ПС	СН	ПС	СН	ПС	СН	ПС	СН
Листы судострои	Листы судостроительной стали													
	om A go E	~	V	✓									~	~
	AH(32),DH(36), EH(36)	~	~	~	~	~	>	~	~	~	~	~	~	~
Констрикционная сталь общего назначения														
EN 10025 4. 2	S185, S235, S275	~	~	✓									~	~
	S355	~	~	~	~	~	>	~	~	V	~	~	~	~
Литая сталь				,		•							•	
EN 10213-2	GP240R	~	V	•									~	~
Трубная сталь				,		•			•				•	
EN 10208-2	L210, L240, L290	~	V	✓									~	~
	L360	~	~	~	~	~	>	~	~	~	V	~	~	~
	L415		~		~	~					~	~	~	~
	L445, L480										V	~		
API 5LX	X42, X46	~	~	~										
	X52	~	~	~	~	~	>	~	~	V	V	~	~	~
	X56, X60		~		~	~					~	~	~	~
	X65, X70										~	~		
EN 10216-1/10217-1	P235, P275	~	~	~									~	~
	P355	~	~	~	~	~	>	~	~	V	V	~	~	~
Сталь для бойлеров и камер высокого давления														
EN 10028-1	P235GH, P265GH, P295GH	~	·	✓	~	~								
Сталь с мелкозернистой стриктурой														
EN 10025 4. 3/4	S275	~	V	✓									•	~
	S355	~	~	~	~	~	>	~	~	~	~	v	V	~
	S420		~		~	~					V	~	V	~
	S460										V	~		

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC/AC

 Основность (по Бонижевскому)
 2,8

 Скорость кристаллизации
 Средняя

 Насыпная плотность (кг/gм²)
 1,3

 Размер зерна (ISO 14174)
 2 - 20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Глубокие зазоры Низкотемпературная эксплуатация Высокопрочные конструкции Одно- и многодуговые системы Морские и береговые сооружения Ядерная промышленность

ВИДЫ УПАКОВК

Упаковка	Вес нетто (кг)
Mewok	25
Sahara ReadyBag™ (SRB)	25
Стальная бочка	250

классификация											
Флюс		Флюс / проволока									
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : MΠ	ISO 14171-A : 2Π							
S A AB 156 AC H5	860 / L-60	F6A2-EL12	S 35 2 AB S1								
	860 / LNS 135	F6A2-EM12	S 35 2 AB S2	S 3T 0 AB S2							
	860 / L-61	F7A2-EM12K	S 38 2 AB S2Si	S 3T 0 AB S2Si							
	860 / L-50M (LNS 133U)	F7A2/F7P2-EH12K	S 42 2 AB S3Si								
	860 / L-70	F7A2-EA1-A2	S 42 2 AB S2Mo	S 4T 2 AB S2Mo							
	860 / LNS 140A	F7A2-EA2-A2	S 42 2 AB S2Mo	S 4T 2 AB S2Mo							
	860 / LNS 163	F7A4-EG-G	S 42 4 AB S2Ni1Cu								
	860 / LNS T55	F7A2/F7P4-EC1	S 50 3 AB SZ								

ОБШЕЕ ОПИСАНИЕ

Универсальный нейтральный керамический флюс

Высокая ударная вязкость при сварке многопроходным (проволоками L-60/L-61/L-50M) и двухпроходным методом (проволокой LNS 140A)

Высокая стойкость к образованию трещин

1ФИКАЦИОІ	ННЫХ АГЕ	НТСТВ						
BV	ABS	LRS	DNV	GL	RMRS	RINA	CRS	ΤÜV
								~
				3M/3T				~
A3YM/A2YT	YM/2YT	3YM/2YT	3YM/2YT	3YM/2YT	3YM/2YT	3M/3YM/2YT	3YM/2YT	~
A3YTM		3Y40M/3YT	3Y40TM	3YM/2YT				~
								~
								J
	BV A3YM/A2YT	BV ABS A3YM/A2YT YM/2YT	A3YM/A2YT YM/2YT 3YM/2YT	BV ABS LRS DNV A3YM/A2YT YM/2YT 3YM/2YT 3YM/2YT	BV ABS LRS DNV GL A3YM/A2YT YM/2YT 3YM/2YT 3YM/2YT 3YM/2YT	BV ABS LRS DNV GL RMRS A3YM/A2YT YM/2YT 3YM/2YT 3YM	BV ABS LRS DNV GL RMRS RINA A3YM/A2YT YM/2YT 3YM/2YT 3YM/2Y	BV ABS LRS DNV GL RMRS RINA CRS A3YM/A2YT YM/2YT 3YM/2YT 3YM/3T 3YM/2YT 3YM/2YT

ХИМИЧЕСКИЙ СОСТА	ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)											
Марка проволоки	С	Mn	Si	Р	S	Мо						
L-60	0,05	1,0	0,25	<0,025	<0,020							
LNS 135	0,06	1,3	0,3	<0,025	<0,020							
L-61	0,10	1,2	0,3	<0,025	<0,020							
L-50M (LNS 133U)	0,07	1,7	0,5	<0,025	<0,020							
LNS 140A (L-70)	0,05	1,3	0,3	<0,025	<0,020	0,4						
LNS T55	0,06	1,8	0,7	<0.020	<0,015							

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел	Предел	Отн.		вязкость pnu (Дж)	
Марка проволоки	Состояние*	текучести (МПа)	прочности (МПа)	удлинение (%)	0°C	-20°C	
L-60	ПС	360	480	30	80	50	
LNS 135	ПС	390	490	33	100	50	
L-61	ПС	430	510	32	100	60	
	CH	400	505	32		115	
L-50M (LNS 133U)	ПС	460	530	28	120	80	
	CH	420	520			115	
LNS 140A (L-70)	ПС	520	570	26		70	
	CH	510	580	30		50	
LNS T55	ПС	520	610			70	
	CH	470	560			70	
LNS 163	ПС	460	540	27	_	55	
* 50 5 0 1	CII					-	R60-Ren C-R1124-01/02/16

^{*} ПС : После сварки - СН: после снятия напряжения

				Мі	ногопро	ходная с	варка			
Koq	Tun / Классы стали	L-60	LNS 135	L-61	L-50M	[LNS 133U]	LNS 14	OA (L-70)	LNS	T
_		ПС	ПС	ПС	ПС	СН	ПС	СН	ПС	CI
Листы судостроитель	ной стали					•		•		
	om A go D	-	✓	~	-		~			
	AH(32),DH(36), DH(40)	~			~	~	~	~	~	V
Конструкционная стал	ь общего назначения									
EN 10025 часть 2	S185, S235, S275	~	~	~	~	~				
	S355	~	~	~	~	~	V	~	~	
Литая сталь										
EN 10213-2	GP240R	~	~	~	~	•				
Трубная сталь										
EN 10208-2	L210, L240, L290	~	✓	~	~	•				
	L360	~	~	~	~	~	~	~	~	•
	L415				~		~	~	~	•
	L445, L480						~	~		
API 5LX	X42, X46	~	✓	v	~	y				
	X52	~	~	~	~	~	~	~	~	•
	X56, X60				~		V	~	~	•
	X65, X70						~	~		
EN 10216-1/10217-1	P235, P275	~	~	~	~	~				
	P355	~	~	~	~	~	~	~	~	V
Сталь для бойлеров и к	амер высокого давления									
EN 10028-1	P235GH, P265GH, P295GH	/	✓	~	V	~	~	-	~	·
	P355GH	~	~	~	✓					
Сталь с мелкозернисто	ой структурой					,		,		
EN 10025 часть 3/4	S275	~	~	~	V	~				
	S355	~	✓	~	*	~	~	~	~	٧
	S420				V		~	~	v	V
	S460						~			
Сталь с высоким преде	пом текучести			,	,	,		,		
EN 10025 часть 6	S460, S500						,			

ХАРАКТЕРИСТИКИ ФЛЮСА

Род тока DC/AC
Основность (по Бонижевскому) 1,1
Скорость кристаллизации Высокая
Насыпная плотность (кг/дм²) 1,4
Размер зерна (ISO 14174) 1 - 16

ВИДЫ УПАКОВКІ

Ynakoßka	Вес нетто (kz)
Mewok Sahara ReadyBag™ (SRB) Ynako8ka Big Bag	25 25 1000

КЛАССИФИКАЦИЯ										
Флюс		Флюс / проволока								
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : ΜΠ							
S A FB 1 66 AC H5	888 / L-61	F7A6-EM12K	S 38 5 FB S2Si							
	888 / L-50M (LNS 133U)	F7A8/F6P8-EH12K	S 42 6 FB S3Si							
	888 / LNS 140A	F8A4-EA2-A2	S 46 4 FB S2Mo							
	888 / L-70	F8A4-EA1-A2	S 46 4 FB S2Mo							
	888 / LNS 160	F7A8/P8-ENi1-Ni1	S 42 5 FB S2Ni1*							
	888 / LNS 162	F7A8/F7P8-ENi2-Ni2	S 42 6 FB S2Ni2*							
	888 / LNS 164	F9A6/F9P4-EF3-F3	S 50 4 FB S3Ni1Mo							
	888 / LNS 165	F8A6/F7P8-ENi5-Ni5	S 50 4 FB Sz							
	888 / LNS 150	F7P6-EB2-B2	S 50 2 FB CrMo1							
	888 / LNS 151	F8P6-EB3-B3								
	888 / LA-100	F10A4-EM2-M2	S 50 4 FB SZ							

Основный флюс для сварки углеродистых и низколегированных сталей

Легкое отделение шлака при сварке в изкощелевию разделки

Высокие механические характеристики и результаты испытания на критическое смещение раскрытия вершины трещины

При использовании проволок LNS150 и LNS151 фактор Брускато обычно не превышает 10 частей на млн.

Идеально nogxogum gля многодуговой сварки Поставляется только в ynakoвке Sahara ReadyBag™

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Марка проволоки	ΤÜV
L-61	V

ХИМИЧЕСКИЙ СОСТА	АВ НАПЛ	АВЛЕН⊦	ЮГО МЕ	ТАЛЛА [%	5)					
Марка проволоки	С	Mn	Si	Р	S	Ni	Мо	Cr	Фактор Брускато	
L-61	0,08	1,05	0,37	<0,02	<0,015					
L-50M (LNS 133U)	0,07	1,45	0,55	<0,02	<0,015					
LNS 140A (L-70)	0,07	1,0	0,35	<0,02	<0,015		0,4			
LNS 160	0,07	1,2	0,4	<0,02	<0,015	0,95				
LNS 162	0,07	1,1	0,4	<0,02	<0,015	2,1				
LNS 164	0,08	1,7	0,5	<0,02	<0,01	0,9	0,5			
LNS 165	0,06	1,50	0,5	<0,02	<0,015	0,97	0,2			
LNS 150	0,069	0,90	0,5	<0,02	<0,015		0,56	1,34	<10 частей на млн.	
LNS 151	0,062	0,85	0,3	<0,02	<0,015		0,93	2,15	<10 частей на млн.	
I Λ-100	0.06	160	0.7	<0.02	<0.01E	1 Ω	0.42	0.08		

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел	Предел	Отн.	Ударная вязкость по Ша		nь no Шарг	рпи (Дж)		
Марка проволоки	Состояние*	mekyчести (МПа)	прочности (МПа)	удлинение (%)	-20°C	-40°C	-50°C	-60°C		
L-61	ПС	415	515	31		135	100			
L-50M (LNS 133U)	ПС	480	580	29			90	70		
	CH	430	550	31		105		65		
LNS 160	ПС	470	550	26		115				
	CH	410	510	27		160		120		
LNS 162	ПС	500	580	25		100		55		
	CH	440	550	25		160		120		
LNS 164	ПС	650	750	21		65		30		
	CH	610	700	23		65		30		
LNS 165	ПС	530	620	26		70		40		
	CH	495	595	27				70		
LNS 150	CH	420	580	26	100					
LNS 151	CH	530	645	23						
LA-100	ПС	680	760	25		50	888: вер. (:-RU26-01/02/16		

ПС: После сварки - СН: после снятия напряжения

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

SAW

888

СВАРИВАЕМЫЕ М	IATEDIA GLI														
. BAPVIBAENIBIE N	АТЕРИАЛЫ						Aug zon = c	voguag =0	anka						
Класс прочности	Tun	Многопроходная сва L-61 L-50M (LNS 133U) L-70 LNS 164 LNS 165					 			LA 101					
стали / Код	Tull		ΠC -60°C												
Листы судостроит	ельной стали			,		,			,						
	om A go E	~	-	-											
	AH(32),DH(36), EH(36)	>	~	~		~	~	~			~	V	~	~	
Конструкционная	сталь общего назна	ачения										•			
EN 10025 часть 2	S185, S235, S275	~	~	~											
	S355	>	~	~		V	~	~			~	>	~	>	
Литая сталь															
EN 10213-2	GP240R	~	V	✓											
Трубная сталь															
EN 10208-2	L210, L240, L290	>	~	~											
	L360	>	~	~		~	~	~			~	~	~	v	
	L415		~			~	~	~							
	L445, L480					~	~	~							
EN 10216-1/10217-1	P235, P275	>	~	~											
	P355	~	~	~		~	~	~			~	V	~	~	
Сталь для бойлеро	рв и камер высокого	давлени	Я	,								,		,	
EN 10028-1	P235GH, P265GH, 295GH	>	~	~											
FN 10028-2	16 Mo 3				~										
(высокотемп. сталь)	13CrMo 4-5								~	~					
	10CrMo 9-10								~	~					
EN 10028-4/10222-3 (низкотемп. сталь)	11MnNi5-3, 13MnNi						~	~			~	~	~	~	~
	истой структурой			ſ				ſ				r		,	
EN 10025 часть 3/4	S275	~	~	~											
	S355	>	~	~		~	~	~			~	~	~	~	
	S420		~			~	~	~					~	~	
	S460		I	l		· •	~	~						l	
	ределом текучест	u	1	r			ı	1	1			,		,	
EN 10025 часть 6	S460, S500					V	~	~			~	~	~	~	

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 AC / DC

 Основность (по Бонижевскому)
 2,3

 Скорость кристаллизации
 Высокая

 Размер зерна (ISO 14174)
 2 - 20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Бойлеры и камеры высокого давления

Офшорные конструкции

Башни ветрогенераторов

Изготовление строительных металлоконструкций

ВИДЫ УПАКОВКІ

Упаковка Вес нетто (кг)

Sahara ReadyBag[™] (SRB) 25

классификация				
Флюс		Флюс / п	роволока	
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : MΠ	ISO 14171-A : 2Π
S A AB 1 66 AC H5	960 / L-61	F7A2-EM12K	S 38 2 AB S2Si	S 3T 2 AB S2Si
	960 / L-50M (LNS133 U)	F7A2-EH12K	S 38 2 AB S3Si	S 3T 2 AB S3Si
	960 / LNS 163	F7A4-EG-G	S 42 4 AB S2Ni1Cu	

ОБЩЕЕ ОПИСАНИЕ

Нейтральный флюс общего назначения

Может использоваться в качестве «универсального флюса» цеха

Высокое качество полуавтоматической сварки под слоем флюса

Высокие сварочно-технологические характеристики (отделение шлака, смачиваемость, форма шва)

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)					
Марка проволоки	С	Mn	Si	Р	S
L-61	0,07	1,3	0,4	<0,03	<0,025
L-50M(LNS 133U)	0,07	1,6	0,6	<0,03	<0,025

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел	Предел	Отн.	Ударная вязкос	ть по Шарпи (Дж)
Марка проволоки	Состояние*	mekyчести (МПа)	прочности (МПа)	удлинение (%)	-20°C	-40°C
L-61	ПС	420	510	28	50	
L-50M(LNS 133U)	ПС	430	530	28	70	
LNS 163	ПС	460	540	27		55

^{*} ПС: После сварки

960: 8ep. C-RU24-01/02/16

СВАРИВАЕМЫЕ МАТЕ	РИАЛЫ					
1/	T (1/22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Многопроходная сварка		Двухпроходная сварка		
Kog	Tun / Классы стали	L-61	L-50M (LNS 133U)	L-61	L-50M (LNS 133U)	
Листы судостроительной стали						
	om A go E	~	✓	✓	✓	
	AH(32),DH(36), EH(36)	V	•	✓	✓	
Конструкционная сп	паль общего назначения					
EN 10025 часть 2	S185, S235, S275	✓	✓	✓	✓	
	S355	✓	✓	✓	✓	
Литая сталь						
EN 10213-2	GP240R	✓	✓	✓	✓	
Трубная сталь						
EN 10208-2	L210, L240, L290	v	✓	✓	✓	
	L360	v	✓	✓	✓	
	L415		✓			
API 5LX	X42, X46	v	✓	✓	✓	
	X52	v	✓	✓	✓	
	X56, X60		✓			
EN 10216-1/10217-1	P235, P275	v	✓	✓	✓	
	P355	✓	✓	✓	✓	
Сталь для бойлеров	и камер высокого давления					
EN 10028-1	P235GH, P265GH, P295GH	*	✓	✓	✓	
	P355GH	~	✓	✓	✓	
Сталь с мелкозернис	стой структурой					
EN 10025 часть 3/4	S275	~	v	✓	V	
	S355	~	✓	✓	V	
	S420		✓			

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC / AC

 Основность (по Бонижевскому)
 1,0

 Скорость кристаллизации
 Высокая

 Насыпная плотность (кг/дм³)
 1,4

 Размер зерна (ISO 14174)
 1 -16

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Проволока	Особенности
L-61	Общие сварочные работы
L-50M(LNS 133U)	Загрязненные пластины

Типовое применение

Сварка стыковых соединений (одно- или многопроходная) Угловая сварка

ВИДЫ УПАКОВКИ

Упаковка	Вес нетто (кг)
Mewok	25
Sahara ReadyBag™ (SRB)	25

SAW

КЛАССИФИКАЦИЯ				
Флюс		Флюс / г	троволока	
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : MΠ	ISO 14171-A : 2Π
S A AR/AB 1 57 AC H5	980 / L-61	F7A2-EM12K	S 38 2 AR/AB S2Si	S 3T 2 AR/AB S2Si
	980 / L-50M (LNS 133U)	F7A2-EH12K	S 38 2 AR/AB S3Si	S 4T 2 AR/AB S3Si

ОБЩЕЕ ОПИСАНИЕ

Чрезвычайно легкое отделение шлака, в том числе в узких зазорах Многоцелевой сварочный флюс Подходит для полуавтоматической сварки под слоем флюса Может использоваться в качестве "универсального флюса"

ХИМИЧЕСКИЙ СОСТАВ	НАПЛАВЛЕ	нного ме	%) АППАТ		
Марка проволоки	С	Mn	Si	Р	S
L-61	0,06	1,5	0,3	<0,02	<0,02
L-50M(LNS 133U)	0,07	1,7	0,4	<0,02	<0,02

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел	Предел	Отн.	Ударная вязкость по Шарпи (Дж)
Марка проволоки	Состояние*	текучести (МПа)	прочности (МПа)	удлинение (%)	-20°C
L-61	МΠ	420	520	29	50
L-50M(LNS 133U)	МΠ	460	550	29	60

^{*} МП: многопроходная сварка

980: Bep. C-RU25-01/02/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ							
1/0.0	Tun / Классы стали	Многопроходная сварка					
Kog	тип / Классы стали	L-61	L-50M (LNS 133U)				
Листы судостроительной	Листы судостроительной стали						
	om A go E	✓	✓				
	AH(32),DH(36), EH(36)	✓	✓				
Конструкционная сталь об	щего назначения						
EN 10025 часть 2	S185, S235, S275	✓	✓				
	S355	✓	✓				
Литая сталь							
EN 10213-2	GP240R	✓	✓				
Трубная сталь							
EN 10208-2	L210, L240, L290	✓	✓				
	L360	~	✓				
	L415		✓				
API 5LX	X42, X46	✓	✓				
	X52	~	✓				
	X56, X60		✓				
EN 10216-1/10217-1	P235, P275	~	✓				
	P355	~	✓				
Сталь для бойлеров и камер	высокого давления						
EN 10028-1	P235GH, P265GH, P295GH	✓	✓				
	P355GH	~	✓				
Сталь с мелкозернистой сп	пруктурой						
EN 10025 часть 3/часть 4	S275	~	✓				
	S355	~	✓				
	S420		~				

ΧΑΡΑΚΤΕΡИСТИКИ ΦΛΙЮСΑ

 Род тока
 DC / AC

 Основность (по Бонижевскому)
 0,6

 Скорость кристаллизации
 Высокая

 Насыпная плотность (кг/дм³)
 1,4

 Размер зерна (ISO 14174)
 1 -16

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Проволока	Типовое применение
L-61 L-50M(LNS 133U)	Бюджетное сочетание Оптимальные рабочие характеристики Обеспечивает высокую ударную вязкость наплавленного материала при многопроходной сварке
	· · · · · · · · · · · · · · · · · · ·

ВИДЫ УПАКОВК

Ynako8ka	Вес нетто (кг)	
Mewok	25	

995N

КЛАССИФИКАЦИЯ					
Флюс		Флюс / n	роволока		
ISO 14174		AWS A5.23	ISO 14171-A : 2Π		
S A AB 1 67 AC H5	995N / LNS 140A		S 4T 2 AB S2Mo		
	995N / LNS 140TB (LA-81) 995N / LNS 133TB	F9TA6-G-EA2TiB F9TA6-G-EG	S 5T 5 AB S2MoTiB		

ОБЩЕЕ ОПИСАНИЕ

Нейтральный керамический флюс для продольной многодуговой сварки труб

Возможность сварки труб из стали высоких классов прочности вплоть до Х80

Высокие сварочно-технологические характеристики и правильная форма сварного шва

Наиличшие результаты достигаются при сварке труб толщиной более 12 мм

Ограниченное содержание азота в наплавленном металле обеспечивает высокую ударную вязкость при сварке труб проволокой с содержанием Ti и B

Очень низкое содержание диффузионного водорода в наплавленном металле

химический сос	ТАВ НАПЛАВЛЕННОІ	O META	АЛЛА [%]							
Основной металл	Марка проволоки	С	Mn	Si	Р	S	Мо	Ti	В	N
X65	LNS 140A (L-70)	0,07	1,45	0,3	<0,025	<0,025	0,2	-	-	0,005
X80	LNS 140TB (LA-81)	0,06	1,6	0,35	<0,025	<0,025	0,2	0,015	0,002	0,004

Примечание: химический состав стыковых соединений труб зависит от состава основного металла. Процесс: двухдуговая сварка на постоянном/переменном токе пластин из стали класса прочности X65 толщиной 12,7 мм.

МЕХАНИЧЕСКИЕ ХА	АРАКТЕРИСТИ	ІКИ НАПЛАВЛ	1ЕННОГО МЕ	ТАЛЛА (%)					
Марка проволоки	Состояние*	Предел текучести	Предел прочности	Отн. цалинение		Ударная (по Шар	Вязкост nu (Дж)	b	Твердость
		(МПа)	(МПа)	[%]	-20°C	-40°C	-50°C	-60°C	
Процедура 1 LNS 140A (L-70) LNS 140TB (LA-81)	2∏ 2∏	580 630	680 700	30 27	95 115	65 75	50		230 235
Процедура 2 LNS 140TB (LA-81) Процедура 3	2Π	600	720	25	100	65		45	220-235
LNS 133TB	2Π	600	700	27		120		90	

Примечание: механические качества стыковых соединений труб зависят от хим. состава основного металла.

Процедура 1: двухдуговая сварка стали класса прочности Х65 толщиной 12,5 мм;

Процедура 2: многодуговая сварка (4-5 дуг) стали класса прочности Х65 толщиной 19-25 мм;

Процедура 3: тестовая пластина AWS

* 2П: двухпроходная сварка

995N: Bep. C-RU25-15/07/15

995N

СВАРИВАЕМЫЕ МАТЕР	НАЛЫ			
1/	T / 1/	Двухг	проходная сварка	
Kog	Tun / Классы стали	LNS 140TB (LA-81)	LNS 140A (L-70)	LNS 133TB
Листы судостроите.	пьной стали			
	om A go E	✓	✓	✓
	om A 32 go FH40	Y	~	>
Конструкционная ст	аль общего назначения			
EN 10137	om 500 go 550 A u AL	✓	✓	>
EN 10025 часть 3/4	om S275 go S460, любое качество	✓	✓	>
EN 10149	om S315 go S650, любое качество	y	✓	>
EN 10025 часть 2	om S185 go S355, любое качество	✓	✓	>
	om E295 go E360	✓	✓	~
Сталь для бойлеров и	і камер высокого давления			
EN 10028	om P235 go P460G, любое качество	✓	✓	✓
	om P235 go P275		~	>
	om А37 go А52, любое качество	✓	>	~
	om PF24 go PF36, любое качество	✓	✓	>
	om P265 go P460, любое качество	✓	✓	>
	om A37 go A52, CP	Y	Y	>
	om X42 go X70	Y	~	>
	om X42 go X80	✓		>

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC / AC

 Основность (по Бонижевскому)
 1,3

 Скорость кристаллизации
 Средняя

 Насыпная плотность (кг/дм²)
 1,0

 Размер зерна (ISO 14174)
 2 -20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для обеспечения максимальной скорости сварки и высоких механических свойств наплавленного металла с каждой стороны рекомендуетсяпровести один проход с применением одно- или многодуговой системы.

		вки

упаковка	вес нетто (кг)
Mewok Sahara ReadyBag™ (SRB) Ynako8ka Big Bag	25 25 500 / 600 / 1000

998N/998N-P

классификация			
Флюс		Флюс /	проволока
ISO 14174		AWS A5.23	ISO 14171-A : 2Π
S A AB 1 67 AC H5	998N / LNS 140A		S 4T 2 AB S2Mo
	998N / LNS140TB (LA-81)	F9TA6-G-EA2TiB	S 5T 5 AB S2MoTiB
	998N / LNS133TB	F9TA6-G-EG	

ОБЩЕЕ ОПИСАНИЕ

Предназначается для продольной многодиговой сварки триб. Также пригоден для спиральной сварки

Возможность сварки труб из стали высоких классов прочности вплоть до Х80

Обеспечивает высокую стойкость к подрезам при высокоскоростной сварке

Подходит для сварки труб со стенками любой толщины (от 6 до 50 мм)

Ограниченное содержание азота в наплавленном металле обеспечивает высокую ударную вязкость при сварке триб проволоками с содержанием Ті и В

Высокая устойчивость к образованию дефектов поверхности

Очень низкое содержание диффизионного водорода в наплавленном металле

998N-Р — это вариант 998N с более крипным зерном, который позволяет снизить расход флюса

химически	ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
Осн. металл	Марка проволоки	С	Mn	Si	Р	S	Мо	Ti	В	N
X65	LNS 140TB (LA-81)LNS	0,067/0,076	1,41/1,51	0,28/0,34	0,017/0,020	0,003/0,004	0,22/0,27	0,024/0,034	0,0028/0,0036	0,005/0,01
X80	140TB (LA-81)	0,045/0,06	1,6/1,64	0,35/0,4	0,016/0,017	0,004/0,005	0,3/0,35	0,031/0,034	0,0029/0,0032	0,005/0,006

Примечание: химический состав стыковых соединений триб зависит от состава основного металла.

Процедура 1: трехдуговая сварка пластин X65 толщиной 15,9 мм;

Процедира 2: двихдуговая сварка пластин из стали класса прочности Х80 толщиной 12,7 мм.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел	Предел	Отн.	У	дарная (по Шар			
Марка проволоки	Состояние*	текучести (МПа)	прочности (МПа)	удлинение (%)	-20°C	-40°C	-50°C	-60°C	Твердость
Процедура 1 LNS 140A (L-70) LNS 140TB (LA-81)	ПС ПС	570 610	680 700	27 27	115	75	50		230 235
Процедура 2 LNS 140TB (LA-81)	ПС	640	730	24	160	120	90	70	220-235
Процедура 3 LNS 133TB	2Π	610	730	26			120	80	

Примечание: механические качества стыковых соединений труб зависят от химического состава материала основы

Процедира 1: двихдиговая сварка стали класса прочности Х65 толщиной 12,5 мм;

Процедура 2: многодуговая сварка (4-5 дуг) стали класса прочности Х65 толщиной 19-25 мм;

Процедира 3: тестовая пластина AWS

* ПС : После сварки

998N: Bep. C-RU24-01/02/16

998N/998N-P

СВАРИВАЕМЫЕ МАТЕ	РИАЛЫ			
1/00	Tun / Классы стали	Двухі	проходная сварка	
Kog	Tutt/ Kildeebi ettidilu	LNS 140TB (LA-81)	LNS 140A (L-70)	LNS 133TB
Листы судостроите	ельной стали			
	om A go E	✓	✓	✓
	om A 32 go FH40	✓	✓	✓
Конструкционная сп	паль общего назначения			
EN 10137	om 500 go 550 A u AL	✓	✓	✓
EN 10025 часть 3/4	om S275 go S460, любое качество	✓	✓	~
EN 10149	om S315 go S650, любое качество	✓	✓	~
EN 10025 часть 2	om S185 go S355, любое качество	✓	✓	>
	om E295 go E360	✓	✓	✓
Сталь для бойлеров	и камер высокого давления			
EN 10028	om P235 go P460G, любое качество	✓	✓	y
	om P235 go P275	✓	✓	~
	om A37 go A52, любое качество	✓	✓	y
	om PF24 go PF36, любое качество	✓	✓	✓
	om P265 go P460, любое качество	✓	✓	~
	om A37 go A52, CP	✓	✓	y
	om X42 go X70	✓	✓	~
	om X42 go X80	✓		

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC / AC

 Основность (по Бонижевскому)
 1,3

 Скорость кристаллизации
 Высокая

 Насыпная плотность (kг/gм³)
 1,3

 Размер зерна (ISO 14174)
 2 -20

ВИДЫ УПАКОВКИ

YnakoBka	Bec нетто (kz)
Mewok	25
Sahara ReadyBag™ (SRB)	25
Стальная бочка	200
Ynakoßka Big Bag	500 / 600 / 1000

классификация			
Флюс		Флюс /	проволока
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : 2Π
S A AB 1 67 AC H5	P223 / L-61	F7A4-EM12K	S 4T 2 AB S2Si
	P223 / L-50M (LNS 133U)	F7A5-EH12K	S 4T 2 AB S3Si
	P223 / LNS 140A	F8A4-EA2-A2	S 4T 4 AB S2Mo
	P223 / LNS 133TB	F8TA4-G-EG	

ОБЩЕЕ ОПИСАНИЕ

Основный керамический флюс

Высокая ударная вязкость при двух- или многодуговой сварке

Низкое содержание диффузионного водорода

Идеально подходит для продольной и спиральной сварки труб

Возможность применения в системах с 1-3 дугами

Также доступен в варианте с мелкозернистым составом, предназначенным для сварки тонких материалов и обеспечения максимальной скорости сварки

ХИМИЧЕСКИЙ СОСТА	В НАПЛАІ	ВЛЕННОГ	О МЕТАЛЛА	\ [%]				
Марка проволоки	С	Mn	Si	Р	S	Мо	Ni	
L-61	0,08	1,4	0,2	<0,02	<0,015			
L-50M (LNS 133U)	0,07	1,7	0,3	<0,02	<0,015			
LNS 140A (L-70)	0,08	1,4	0,2	0,03	<0,025	0,4		
LNS 160	0,07	1,3	0,25	0,02	0,015		1,0	
LNS 162	0,08	1,3	0,25	0,02	0,015		2,0	
LNS 165 (LA-85)	0,07	1,5	0,3	0,02	0,015	0,2	0,9	
LNS T55	0,08	1,7	0,7	<0,015	<0,015			

Примечание: химический состав стыковых соединений труб зависит от состава основного металла.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Manka nnoßo		Предел	Предел	Ударна	я вязкость no Шарпи (Дж)	
Mapka npoвo- лоku	Состояние*	текучести (МПа)	прочности (МПа)	-20°C	-40°C	
L-61	2Π	450	550	60		
L-50M (LNS 133U)	2Π	470	570	80		
LNS 140A (L-70)	2Π	500	600		50	
LNS 133TB	2Π	510	610		60	

^{* 2}П: двухпроходная сварка

P223: Bep. C-RU23-11/05/16

СВАРИВАЕМЫЕ МАТЕРИАЛЬ					
l/a m	Tun / //	Двухпроходная сварка			
Kog	Tun / Классы стали	LNS 140A (L-70)	LNS 133TB		
Конструкционная сталь об	щего назначения				
EN 10025 часть 6	500A	✓	✓		
EN 10025 часть 3/часть 4	om S275 go 460 N, NL	>	✓		
EN 10149	om S315 go S500MC u NC	Y	✓		
EN 10025 часть 2	S185, S235, S275, S355	✓	✓		
Трубная сталь					
API 5LX	om X42 go X70	 	✓		
Сталь для бойлеров и камер	о высокого давления				
EN 10028-1	om P235 go P460, любое качество	✓	✓		
EN 10207	om P235 go P275 S u SL	✓	✓		
A36-601 u NF A36-605	om A37 go A52 CP, AP u F	✓	✓		
EN 10222	Р285 и Р420, любое качество	~	✓		
Пластины для офшорных к	онструкций				
A36-212	om PF 24 go PF 36, любое качество	 	✓		

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC / AC

 Основность (по Бонижевскому)
 1,6

 Скорость кристаллизации
 Высокая

 Насыпная плотность (kz/gм³)
 1,2

 Размер зерна (ISO 14174)
 2 -20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Одно- и многодуговая сварка

Продольная и спиральная сварка труб

ВИДЫ УПАКОВК*И*

Упаковка	Вес нетто (кг)
Mewok Sahara ReadyBag™ (SRB) Ynako8ka Big Bag	25 25 500
Ynakoßka Big Bag	600
Ynako8ka Big Bag	100

КЛАССИФИКАЦИЯ								
Флюс	Флюс / проволока							
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : ΜΠ	ISO 14171-A : 2Π				
S A AB 1 67 AC H5	P230 / LNS 135	F7A4/F7P6-EM12	S 38 4 AB S2	S 4T 2 AB S2				
	P230 / L-61	F7A4/F6P5-EM12K	S 38 4 AB S2Si					
	P230 / L-50M (LNS 133U)	F7A5/F7P5-EH12K	S 46 5 AB S3Si					
	P230 / LNS 140A	F8A4-EA2-G	S 46 4 AB S2Mo	S 4T 4 AB S2Mo				
	P230 / L-70	F8A4-EA1-G	S 46 4 AB S2Mo	S 4T 4 AB S2Mo				
	P230 / LNS 160	F7A8/F7P8-ENi1-Ni1	S 46 4 AB S2Ni1*					
	P230 / LNS 162	F7A8/F7P8-ENi2-Ni2	S 46 6 AB S2Ni2*					
	P230 / LNS T55	F7A4/F7P5-EC1	S50 4 AB Tz					

Основный керамический флюс

Низкое содержание диффузионного водорода Совместимость со многими марками сварочных проволок

Высокая ударная вязкость при двух- или многодуговой сварке Большой выбор проволок позволяет получить соединение для эксплуатации в широком диапазоне температур — от -40 до +400°C

UUUEDERING CEDTINUMA VIINURRIA VLERTCE

одобрения серти	ФИКАЦИОП	IDDIA AI ED	IILID						
Марка проволоки	BV	ABS	LRS	DNV	GL	RMRS	RINA	ΤÜV	
L-61		4YTM	4YTM				4YTM	Χ	
L-50M (LNS 133U)	A4YM/A3YT		4Y40M/3Y40T	4YM				Χ	
LNS 140A (L-70)	A4YTM	4YTM/2YT	4YM		4Y40TM	3YTM	4YTM	Χ	
LNS 135								Χ	
LNS 160								Χ	
LNS 162								Χ	
LNS T55								Χ	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Марка проволоки	С	Mn	Si	Р	S	Mo	Ni	
L-61	0,06	1,4	0,4	<0,03	<0,02			
LNS 135	0,07	1,4	0,25	<0,03	<0,02			
L-50M (LNS 133U)	0,08	1,8	0,5	<0,03	<0,02			
LNS 140A (L-70)	0,07	1,4	0,3	<0,03	<0,02	0,5		
LNS 160	0,07	1,4	0,3	<0,03	<0,02		1,1	
LNS 162	0,08	1,2	0,3	<0,03	<0,02		2,1	
LNS T55	0,07	1,8	0,8	0,02	0,015			

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Марка проволоки	Cocmognie*	Предел текичести	Предел прочности	Отн. цалинение	Ударна	ая вязкосі	ть по Шарпи (Дж)
- парка просолока	Cocinozitae	(МПа)	(МПа)	(%)	-20°C	-40°C	-60°C
LNS 135 L-61	ПС ПС СН	400 450 400	500 520 490	30 30 30	50 100 140	90	
L-50M (LNS 133U)	ΠC CH	480 480 460	580 540	30 30 28	140	80 80 70	
LNS 140A (L-70)	MΠ 2Π	540	620 620	28	70	60	
LNS 160	UC CH	490 430	570 550	28 28		120 140	45 75
LNS 162 LNS T55	ΠC CH ΠC	500 460 540	590 570 630	28 28 28	90	120 150 60	50 80
LINO 100	CH	520	610	28	80	50	

[📩]MП: многопроходная сварка 🕝 2П: двухпроходная сварка 🧸 ПС : После сварки 🧸 СН: после снятия напряжения Насколько нам известню, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

СВАРИВАЕМЫЕ МАТЕРИАЛ	Ы							
1/00	Tun / Классы стали	Многопроходная сварка						
Kog	тип / Классы стали	LNS 135	L-61	L-50M (LNS 133U)	LNS 140A (L-70)			
Листы судостроительной	Листы судостроительной стали							
	om A go D	>	✓	✓	>			
	AH(32),DH(40)	>	✓	✓	>			
Конструкционная сталь о	бщего назначения							
EN 10025 часть 6	500A				>			
EN 10025 4. 3/4. 4	om S275 go 460 N, NL	>	~	>	>			
	om S275 go 420 N, NL, M u ML		•	✓	>			
	om S275 go 460 N, NL, M u ML			✓	>			
EN 10149	S315 u S355 MC u NC	*	~	y	>			
	om S315 go S420MC u NC		~	✓	>			
	om S315 go S460MC u NC			✓	>			
	om S315 go S500MC u NC				✓			
Сталь для бойлеров и каме	ер высокого давления							
EN 10028-2	P295GH, P355GH, 16Mo3	✓	v					
EN 10022-2	17Mo3, 14Mo6	✓	~					

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC (+/-)/AC

 Основность (по Бонижевскому)
 1,6

 Скорость кристаллизации
 Высокая

 Насыпная плотность (kz/gм³)
 1,2

 Размер зерна (ISO 14174)
 2 -20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Подходит для использования в качестве универсального флюса Высокие сварочно-технологические характеристики при одно- и двухдуговой сварке Очень высокие механические характеристики при эксплуатации в условиях низкой температуры с применением двух- и многопроходной сварки.

виды упаковки

Ynako8ka	Вес нетто (kг)
Mewok	25
Sahara ReadyBag™ (SRR)	25

классификация										
Флюс		Флюс / проволока								
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A / ISO 26304	ISO 21952-A						
S A AB 1 67 AC H5	P230 / LNS 150	F8P2-EB2-B2R		S CrMo1						
	P230 / LNS 151	F9PZ-EB3-B3R		S CrMo2						
	P230 / LNS 163		S 38 4 AB S2 NiCu							
	P230 / LNS 164	F9A6-EF1*-F3	S 50 4 AB S3NiMo1							
	P230 / LNS 168		S 69 4 AB S3Ni2,5CrMo							

ОБЩЕЕ ОПИСАНИЕ

Основный керамический флюс

Низкое содержание диффузионного водорода

Совместимость со многими марками сварочных проволок

Высокая ударная вязкость при двух- или многодуговой сварке

Большой быбор проволок позволяет создавать наплавленный металл для эксплуатации в широком диапазоне температур — от -40 до +400°C

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ								
Марка проволоки	ΤÜV							
LNS 164	V							

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]									
Марка проволоки	С	Mn	Si	Р	S	Мо	Ni	Cr	Cu
LNS 150	0,08	1,1	0,3	<0,02	<0,01	0,5		0,9	
LNS 151	0,12	0,8	0,3	<0,02	<0,01	1,0		2,6	
LNS 163	0,07	1,1	0,6	<0,02	0,02		0,7		0,7
LNS 164	0,07	1,5	0,3	<0,02	<0,01	0,5	1,0		
LNS 168	0,09	1,7	0,4	<0,02	<0,02	0,4	2,4	0,25	

MEXAHUYECKUE XAPAKTEPUCTUKU HATITABITEHHOLO WETAULU [%]

		Предел	Предел Предел Отн. Ударная вязкость по					
Марка проволоки	Состояние*	mekyчести (МПа)	прочности (МПа)	удлинение (%)	0°C	-20°C	-40°C	
LNS 150	CH	535	620	25	70	90**	60**	
LNS 151	CH	560	640	24		30		
LNS 163	ПС	450	600	20	60	70		
LNS 164	ПС	630	710	22	90	80	50	
	CH	630	710	24	70	60	35	
LNS 168	ПС	710	840	20		65	мин. 47	

^{*} CH: после снятия напряжения - ПС: После сварки - **CH = 2 ч/720°C

P230-2: Bep. C-RU25-11/05/16

СВАРИВАЕМЫЕ МАТЕРИАЛЫ										
Kog	Tun / Классы стали	LNS 150	LNS 151	LNS 168						
Трубная сталь										
EN 10208-2	L415			~						
	L445, L480			✓						
API 5LX	X56, X60			✓						
	X65, X70			>						
Gaz de France	X63			✓						
Сталь для бойлеров и камер выс	окого давления									
EN 10028-2	13CrMo 4-5	✓	~							
Выcokomемпературная сталь	10CrMo 9-10	v	~							
EN 10028-4/10222-3	13MnNi6-3									
Низкотемпературная сталь	11MnNi5-3									
Сталь с мелкозернистой струкг	пурой									
EN 10025 часть 3/часть 4	S420			~						
EN 10025 часть 6	S460			~						
Сталь с высоким пределом теку	чести									
EN 10025 часть 6	S460, S690				~					

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC / AC

 Основность (по Бонижевскому)
 1,6

 Скорость кристаллизации
 Высокая

 Насыпная плотность (k2/gм³)
 1,2

 Размер зерна (ISO 14174)
 2 -20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Подходит для использования в качестве универсального флюса цеха

Высокие сварочно-технологические характеристики при одно- и двухдуговой сварке

Очень высокие механические характеристики при эксплуатации в условиях низкой температуры с применением двух- и многопроходной сварки.

ВИЛЫ УПАКОВКИ

Ynakoßka	Bec нетто (kг)
Mewok	25
Sahara ReadyBag™ (SRB)	25

Флюс		Флюс /	проволока	
ISO 14174		AWS A5.17 / A5.23	ISO 14171-A : ΜΠ	
S A FB 1 55 AC H5	P240 / L-61 (LNS129)	F7A6-EM12K	S 42 4 FB S2Si	
	P240 / L-50M (LNS133U)	F7A8/P8-EH12K	S 42 6 FB S3Si	
	P240 / LNS 160	F7A10/P10-ENi1-Ni1	S 46 6 FB S2Ni1*	
	P240 / LNS 162	F7A10/P10-ENi2-Ni2	S 46 6 FB S2Ni2*	
	P240 / LNS 165 (LA-85)	F8A8/P8-ENi5-Ni5	S 50 6 FB Sz	
	P240 / LNS 150 (LA-92)	F8P2-EB2-B2R		
	P240 / LNS 151 (LA-93)	F9P0-EB3-B3R		
	P240 / LNS 168	F10A5-EM2-M2	S 69 4 FB S3NiCr2.5Mo	

ОБЩЕЕ ОПИСАНИЕ

Высокоосновный фтористый керамический флюс

Достаточная ударная вязкость для применения на офшорных конструкциях

Стабильно высокие результаты испытания на критическое раскрытие вершины трещины при использовании с проволоками с добавлением Cr и Ni

Низкое содержание диффизионного водорода в наплавленном металле

Пригоден для одно- и многодуговой сварки

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

одоэ: <u>-</u>						
Марка проволоки	BV	ABS	LRS	DNV	CRS	ΤÜV
L-50M (LNS 133U)	A5YM	5YM	5YM	5YM	5YM	~
LNS 162						✓
LNS 160						✓
LNS 164		=\/4<14	=\/.=\	51/4614		✓
LNS 165 LNS 168		5Y46M	5Y46M	5Y46M		•
LINO 100			4Y69			

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

7.0.1										
Марка проволоки	С	Mn	Si	Р	S	Мо	Ni	Cr		
L-61	0,08	1,0	0,35	< 0,010	< 0,010					
L-50M (LNS 133U)	0,08	1,6	0,35	< 0,020	< 0,015					
LNS 160	0,08	1,0	0,25	< 0,020	< 0,015		1,0			
LNS 162	0,08	1,01,3	0,25	< 0,020	< 0,015		2,2			
LNS 165	0,08	1,2	0,35	< 0,020	< 0,015	0,15	0,9			
LNS 150	0,08	0,7	0,3	< 0,015	< 0,010	0,15		1,1		
LNS 151	0,10	1,5	0,3	< 0,015	< 0,010	1,0		2,5		
LNS 168	0,08		0,4	< 0,015	< 0,015	0,4	2,4	0,3		

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел mekyчести	Предел прочности	Отн. цалинение	Ударна	я вязкост	Зязкость по Шарпи (Дж)		
Марка проволоки	Состояние*	(M∏a)	(МПа)	(%)	-20°C	-40°C	-50°C	-60°C	
L-61	ПС	440	530	30	115	75			
L-50M (LNS 133U)	ПС	460	560	28				40	
	CH	420	540	28				40	
LNS 160	ПС	470	550	28				80	
	CH	430	490	32				100	
LNS 162	ПС	480	560	26				100	
	CH	460	530	30				140	
LNS 165	ПС	520	600	25				60	
	CH	510	580	24				60	
LNS 150	CH	520	610	24				100	
LNS 151	CH	550	640	24				50	
LNS 168	ПС	720	800	20			55		

ПС : После сварки - СН: после снятия напряжения

P240: Bep. C-RU276-11/05/16

СВАРИВАЕМЫЕ МАТЕРИА.	UPI						
1/	T / //	1	Многоп	роходна	ая сварк	a	
Kog	Tun / Классы стали	L-50M (LNS 133U)	LNS 160	LNS 162	LNS 165	LNS 150	LNS 151
Листы судостроительн	ой стали						
	om A go E	✓	>	~	•		
	om AH32 go EH40	→	>	~	~		
Конструкционная сталь	общего назначения						
EN 10025 4. 6 (A 36-204)	500 A u AL				•		
EN 10025 4. 3/4. 4	om S275 go S460, любое качество	>	>	~	~		
EN 10149 (A36-231)	S315 u S355 MC u NC	✓	>	~	~		
	om S315 go S500 MC u NC				~		
EN 10025 часть 2	om S185 go E360, любое качество	✓	~	•	~		
Сталь для бойлеров и ка	мер высокого давления						
EN 10028 (A 36-205)	om P235 go P460, любое качество	✓	~	~	~		
EN 10207 (A36-220)	om P235 go P275, любое качество	>	>	>	~		
A36-601 u NF A36-605	om A37 go A52, любое качество	>	>	~	~		
EN 10028-2	13CrMo 4-5					>	~
(высокотемп. сталь)	10CrMo 9-10					~	~
Сталь для транспортир	овки опасных материалов						
A 36-215	om P265 go P460, любое качество	✓	~	~	~		
Низкотемпературная ст	таль						
A 36-215	om P285 go P420, любое качество	✓	~	•	~		

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC / AC

 Основность (по Бонижевскому)
 3,0

 Насыпная плотность (kz/gm³)
 1,1

 Размер зерна (ISO 14174)
 2 -20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Бойлеры и камеры высокого давления

Офшорные конструкции

Конструкции для ядерной промышленности

Эксплуатация в условиях низких температур

Высокопрочные конструкции

ВИДЫ УПАКОВКИ

Ynako8ka	Bec нетто (ka	2]
----------	---------------	----

Sahara ReadyBag™ (SRB) 25

КЛАССИФИКАЦИЯ						
Флюс			Про	волока		
ISO 14174		ISO 14343-A	AWS A5.9/A5.9M		ISO 18274	AWS A5.14/ A5.14M
S A AF 2 64 DC H5	LNS 304L	S 19 9 L	ER308L	LNS NiCro 60/20	S Ni 6625	ERNiCrMo-3
	LNS 309L	S 24 12 L	ER309L	LNS NiCroMo 60/16	S Ni 6276	ERNiCrMo-4
	LNS 316L	S 19 12 3 L	ER316L	LNS NiCro 70/19	S Ni 6082	ERNiCr-3
	LNS 4462	S 22 9 3 N L	ER2209			
	LNS 318	S 19 12 3 Nb	ER318			
	LNS 347	S 19 9 Nb	ER347			
	LNS Zeron® 100X	S 25 9 4 N L	ER2594			
	LNS 4455	S 20 16 3 Mn L	ER316LMn			
	LNS 4500	S 20 25 5 Cu L	ER385			
	LNS 304H	S 19 9 H	ER308H			
	LNS 307	S 18 8 Mn	ER307*			

ОБЩЕЕ ОПИСАНИЕ

Флюс для сварки нержавеющей стали

Очень легкое отделение шлака

Huskuŭ расход флюса Самый расход флюса Самый распространенный флюс для сварки дуплексных и стабилизированных марок стали

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Марка проволоки	TÜV	
LNS 304L	✓	
LNS 316L	✓	
LNS 318L	✓	
LNS 347	✓	
LNS 4455	✓	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)											
Марка проволоки	С	Mn	Si	Cr	Ni	Мо	N	Nb	Cu	W	FN
LNS 304L LNS 309L LNS 316L LNS 4462 LNS 318 LNS 347	0,015 0,015 0,015 0,015 0,04 0,03	1,5 1,5 1,5 1,5 1,5 1,4	0,5 0,5 0,5 0,5 0,5 0,5	19 23 18 22 19	10 13 12 8 11 10	2,5 3,0 2,5	0,1	0,5 0,6			08-10 10-20 08-10 40-60 08-10 08-10
LNS Zeron [®] 100X LNS NiCro 60/20 LNS 4455 LNS 4500	0,03 0,006 0,025 0,03	0,6 0,1 6 1,5	0,5 0,4 0,5 0,6	25 21,5 18,5 19	9,5 64,5 15 25	3,6 8,7 2,6 4,1	3,8 0,15	0,2	0,7 1,2	0,6 0,8	30-60

МЕХАНИЧЕСКИЕ?	МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
Марка проволоки	loлoku Состояние*	Предел	Предел	Отн.	Ударн	ая вязко	сть no l	Шарпи (Дж)		
		текучести (МПа)	прочности (МПа)	удлинение (%)	+20°C	-20°C	-40°C	-196°C		
LNS 304L	ПС	380	550	35		80				
LNS 309L	ПС	425	580	33			80			
LNS 316L	ПС	425	560	33				50		
LNS 4462	ПС	550	800	27			50			
LNS Zeron® 100X	ПС	670	880	21		70	45			
LNS NiCro 60/20	ПС	520	780	40				100		
LNS 347	ПĊ	470	620	30	90			35		
LNS 4455	ПĊ	360	640	30						
LNS 310	ПĊ	440	600	28			P20	00: 8ep. C-RU25-10/01/16		

ПС: После сварки

Насколько наи известно, бее сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

СВАРИВА	ЕМЫЕ МАТЕРИА∫	І Ы			
AISI	Mat.nr.	EN 10088-1/2	ASTM/ACI	UNS	Проволока
304L	1,4306	X2CrNi19-11	(TP) 304L	S30403	LNS 304L
304LN	1,4311	X2CrNiN18-10	(TP) 304LN	S30453	LNS 304L
316LN	1,4406	X2CrNiMoN17-11-2	(TP) 316LN	S31653	LNS 316L
316L	1,4404	X2CrNiMo17-12-2	(TP) 316L	S31603	LNS 316L
316L	1,4435	X2CrNiMo18-14-3	(TP) 316L	S31603	LNS 316L
316LN	1,4429	X2CrNiMoN17-13-3			LNS 316L
304	1,4301	X4CrNi18-10	(TP) 304	S30409	LNS 304L
321	1,4541	X6CrNiTi18-10	(TP) 321	S32100	LNS 304L/347
316	1,4401	X4CrNiMo17-12-2	(TP) 316	S31600	LNS 316L
316	1,4436	X4CrNiMo17-13-3			LNS 316L
347	1,4550	X6CrNiNb18-10	(TP) 347	S34700	LNS 304L/347
318	1,4580	X6CrNiMoNb17-12-2	316Cb	S31640	LNS 316L/318
318	1,4583	X10CrNiMoNb18-12(DIN)			LNS 316L/318
317LN	1,4439	X2CrNiMoN17-13-5	316LN	S31726	4439Mn
	1,4539	X1NCriMoCu25-20-5			4500
	1,3952	X2CrNiMoN18-14-3(DIN)			4455
	1,4462	X2CrNiMoN22-5-3			4462
			Zeron® 100	S32760	LNS Zeron® 100 X
	2,4856	NiCr22Mo9Nb(DIN)		N06625	LNS NiCro 60/20
	1,5637	12Ni14 (DIN)			LNS NiCro 60/20
	1,5680	12Ni19 (DIN)			LNS NiCro 60/20
	1,5662	X8Ni9 (DIN)			LNS NiCro 60/20

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC

 Основность (по Бонижевскому)
 1,6

 Скорость кристаллизации
 Высокая

 Насыпная плотность (кг/дм³)
 1,2

 Размер зерна (ISO 14174)
 2 -20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Флюс общего назначения для сварки нержавеющей стали

Может использоваться для сварки бойлеров и сосудов высокого давления, а также при изготовлении труб Благодаря низкому содержанию кремния обеспечивает очень высокую ударную вязкость при низкой температуре

ВИДЫ УПАКОВКИ

Вес нетто (кг)

Sahara ReadyBag™ (SRB) 25

AW

P2007

классификация						
Флюс			П	ооволока		
ISO 14174		ISO 14343-A	AWS A5.9/ A5.9M		ISO 18274	AWS A5.14/ A5.14M
S A AF 2 64 AC H5	LNS 304L	S 19 9 L	ER308L	LNS NiCro 60/20	S Ni 6625	ERNiCrMo-3
	LNS 309L	S 24 12 L	ER309L	LNS NiCroMo 60/16	S Ni 6276	ERNiCrMo-4
	LNS 316L	S 19 12 3 L	ER316L	LNS NiCro 70/19	S Ni 6082	ERNiCr-3
	LNS 4462	S 22 9 3 N L	ER2209			
	LNS 318	S 19 12 3 Nb	ER318			
	LNS 347	S 19 9 Nb	ER347			
	LNS Zeron® 100X	S 25 9 4 N L	ER2594			
	LNS 4455	S 20 16 3 Mn L	ER316LMn			
	LNS 4500	S 20 25 5 Cu L	ER385			
	LNS 304H	S 19 9 H	ER308H			
	LNS 307	S 18 8 Mn	ER307*			

ОБЩЕЕ ОПИСАНИЕ

Флюс для сварки нержавеющей стали

Очень легкое отделение шлака

Цвет сварного шва аналогичен цвету нержавеющей стали

Кромки без скоса при сварке стыковых соединений

Высокие сварочные характеристики при сварке стали с содержанием никеля 9%

Пригоден для сварки на переменном токе

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Марка проволоки	ABS	LRS	ΤÜV	
LNS 304L	✓	✓		
LNS 309L	✓	✓		
LNS 316L LNS 4462	✓ 5YQ550	✓ S31803	•	

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]											
Марка проволоки	С	Mn	Si	Cr	Ni	Мо	N	Nb	Cu	W	FN
LNS 304L	0,015	1,5	0,5	19	10						08-10
LNS 309L	0,015	1,5	0,5	23	13						10-20
LNS 316L	0,015	1,5	0,5	18	12	2,5					08-10
LNS 4462	0,015	1,5	0,5	22	8	3,0	0,1				40-60
LNS 318	0,04	1,5	0,5	19	11	2,5		0,5			08-10
LNS 347	0,03	1,4	0,5	19	10			0,6			08-10
LNS Zeron® 100X	0,03	0,6	0,5	25	9,5	3,6		0,2	0,7	0,6	30-60
LNS NiCro 60/20	0,006	0,1	0,4	21,5	64,5	8,7	3,8			0,8	
LNS 4455	0,025	6	0,5	18,5	15	2,6	0,15				
LNS 4500	0,03	1,5	0,6	19	25	4,1			1,2		

ПС: После сварки

P2007: Bep. C-RU04-01/02/16

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел	Предел	Отн.	Ударна	я вязкост	ъ по Шар	nu (Дж)
Марка проволоки	Состояние*	mekyчести (МПа)	прочности (МПа)	удлинение (%)	-20°C	-40°C	-50°C	-196°C
LNS 304L	ПС	390	550	35	80	75		40
LNS 309L	Пζ	400	580	33		70		
LNS 316L	ПС	400	560	33	75	70		45
LNS 347	ПС	400	650	34			65	
LNS 4462	ПС	585	765	27		75		
LNS Zeron® 100X	ПС	670	880	21	70	45		
LNS NiCro 60/20	ПС	520	780	40				100
LNS 4439Mn		375	630	33				

СВАРИВА	ЕМЫЕ МАТЕРИА?	Ъ			
AISI	Mat.nr.	EN 10088-1/2	ASTM/ACI	UNS	Проволока
304L	1,4306	X2CrNi19-11	(TP) 304L	S30403	LNS 304L
304LN	1,4311	X2CrNiN18-10	(TP) 304LN	S30453	LNS 304L
316LN	1,4406	X2CrNiMoN17-11-2	(TP) 316LN	S31653	LNS 316L
316L	1,4404	X2CrNiMo17-12-2	(TP) 316L	S31603	LNS 316L
316L	1,4435	X2CrNiMo18-14-3	(TP) 316L	S31603	LNS 316L
316LN	1,4429	X2CrNiMoN17-13-3			LNS 316L
304	1,4301	X4CrNi18-10	(TP) 304	S30409	LNS 304L
321	1,4541	X6CrNiTi18-10	(TP) 321	S32100	LNS 304L/347
316	1,4401	X4CrNiMo17-12-2	(TP) 316	S31600	LNS 316L
316	1,4436	X4CrNiMo17-13-3			LNS 316L
347	1,4550	X6CrNiNb18-10	(TP) 347	S34700	LNS 304L/347
318	1,4580	X6CrNiMoNb17-12-2	316Cb	S31640	LNS 316L/318
318	1,4583	X10CrNiMoNb18-12(DIN)			LNS 316L/318
317LN	1,4439	X2CrNiMoN17-13-5	316LN	S31726	4439Mn
	1,4539	X1NCriMoCu25-20-5			4500
	1,3952	X2CrNiMoN18-14-3(DIN)			4455
	1,4462	X2CrNiMoN22-5-3			4462
			Zeron® 100	S32760	LNS Zeron® 100 X
	2,4856	NiCr22Mo9Nb(DIN)		N06625	LNS NiCro 60/20
	1,5637	12Ni14 (DIN)			LNS NiCro 60/20
	1,5680	12Ni19 (DIN)			LNS NiCro 60/20
	1,5662	X8Ni9 (DIN)			LNS NiCro 60/20

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC [+/-]

 Основность (по Бонижевскому)
 1,6

 Скорость кристаллизации
 Высокая

 Насыпная плотность (кг/дм³)
 1,2

 Размер зерна (ISO 14174)
 2 -20

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Флюс общего назначения для сварки нержавеющей стали

Может использоваться для сварки бойлеров и сосудов высокого давления, а также при изготовлении труб Благодаря низкому содержанию углерода обеспечивает высокую ударную вязкость при низких температурах

ΒΝΠΡΙ ΛΠΨΚυΒΚ

Упаковка	Вес нетто (kг)
Sahara ReadyBag™ (SRB)	25 40

P2000S

КЛАССИФИКАЦИЯ		
Флюс	Про	оволока
ISO 14174		ISO 14343-A
S A AF 2 64Cr DC H5	LNS 309L	S 24 12 L
	LNS 4462	S 22 9 3 N L
	LNS Zeron® 100X	S 25 9 4 N L

ОБЩЕЕ ОПИСАНИЕ

Для компенсации выгорания хрома в наплавленном металле имеет повышенное содержание Сг

Сварка разнородных сталей: нержавеющей и углеродистой стали

Предназначается для сварки первого слоя с избыточным легированием на углеродистую сталь

Хорошо подходит для применения в случаях, в которых требуется повышенное ферритное число

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Марка проволоки	ΤÜV		
LNS 309L	✓		
LNS 4462	✓		

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)										
Марка проволоки	С	Mn	Si	Cr	Ni	Мо	N	Cu	W	FN
LNS 309L	0,015	1,5	0,5	25	13					15-20
LNS 4462	0,015	1,5	0,5	24	8	3,0	0,1			40-60
LNS Zeron® 100X	0,02	0,5	0,4	26	9	3,7	0,2	0,7	0,6	30-60

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Предел	Предел	Отн.	Ударная вязкость по Шарпи (Дж)
Марка проволоки	mekyчести (МПа)	прочности (МПа)	удлинение (%)	-40°C
LNS 309L	450	600	33	80
LNS 4462	700	850	27	50
LNS Zeron® 100X	670	880	25	45

P2000S: Bep. C-RU23-01/02/16

P2000S

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Разнородные соединения Дуплексные стали

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Специально разработан для сварки соединений из нержавеющей и углеродистой стали. Также используется для предотвращения образования горячих трещин при сварке корневого шва плакированных и полностью аустенитных сталей

ХАРАКТЕРИСТИКИ ФЛЮСА

 Род тока
 DC (+/-)

 Основность (по Бонижевскому)
 1,6

 Скорость кристаллизации
 Высокая

 Насыпная плотность (kz/gм³)
 1,2

 Размер зерна (ISO 14174)
 1-16

ВИДЫ УПАКОВКИ

Ynakoßka	Bec нетто (kг)
Mewok	25
Sahara ReadyBag™ (SRB)	25

ЛИНЕЙКА PIPELINER®

Электроды с покрытием целлюлоз- ного типа
PIPELINER® 6P+604
PIPELINER® 7P+606
PIPELINER® 8P+608
Электроды с покрытием основного muna
PIPELINER® 16P610
PIPELINER® 18P612
Электроды для сварки высокопроч-
ных сталей, с покрытием основного
muna
PIPELINER® LH-D80614
PIPELINER® LH-D90616
PIPELINER® LH-D100618
Проволока сплошного сечения
PIPELINER® 70S-G620
PIPELINER® 80S-G621
PIPELINER® 80Ni1622
Порошковая проволока
PIPELINER® G60M-E624
PIPELINER® G70M626
PIPELINER® G70M-E 628
PIPELINER® G80M630
PIPELINER® G80M-E632
PIPELINER® G90M-E 634
PIPELINER® NR®-207+ 636
PIPELINER® NR®-208XP 638

IPELINER

Pipeliner®6P+

КЛАССИФИКАЦИЯ

AWS A5.1	E6010	A-Nr	1
ISO 2560-A	E 42 3 C 2 5	F-Nr	3
		9606 FM	1

ОБЩЕЕ ОПИСАНИЕ

Электрод для сварки труб во всех пространственных положениях, в том числе для сварки корневого шва «на спуск» Предназначен для сварки корневого шва труб класса прочности не выше X80 (K60), а также заполняющих и облицовочных проходов труб класса прочности не выше x60 (K52)

Хороший контроль дуги благодаря низкому образованию шлака

Легкое отделение шлака и хороший внешний вид шва

Обеспечивает большую глубину проплавления и хорошее сплавление с основным металлом

Качество сварного шва во всех пространственных положениях отвечает всем требованиям рентгеновского контроля

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА DC +/-

ХИМИЧЕСКИЙ	CULTAR H	ΔΠΠΔΒΠΕΗΗ	ΝΕΝ ΜΕΤΔΠΠΔ	[0/6]

С	Mn	Si	Р	S
0,11	0,55	0,18	0,009	0,009

ΜΕΧΔΗΝΨΕΓΚИΕ ΧΔΡΔΚΤΕΡΝΓΤΝΚΝ ΗΔΠΠΔΒΠΕΗΗΠΓΩ ΜΕΤΔΠΠΔ [%]

	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость no Шарпи (Дж) -29°C/-30°C
Требования: AWS A5.1	пс	мин. 331	мин. 430	мин. 22	мин. 27
ISO 2560-A		мин. 420	500-640	мин. 20	мин. 47
Средние значения		450	570	27	70

ВИДЫ УПАКОВКИ				
	Диаметр (мм) Длина (мм)	2,5 300	3,2 350	4,0 350
Металлический тибис	Bec нетто/eg. (kг)	4,7	4,5	4,5

Идентификационное обозначение: 6010

Цвет торца электрода: нет

Pipeliner*6P+: 8ep. C-RU23-01/02/16

Pipeliner®6P+

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X42, X46, X52, X56, X60 EN 10208-2 om L290 go L415

ДАННЫЕ ПО РА	сходу				
Размеры диам. х длина (мм)	Tok (A)	Pog moka			
2,5x300 3,2x350 4,0x350	50-85 75-135 100-175	DC+/- DC+/- DC+/-			

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ							
Пространственны	е положения сварки						
PH/5G на подъем	PJ/5G на cnyck						
90A	110A						
130A	150A						
	Пространственны PH/5G на подъем	Пространственные положения сварки РН/5G на подъем РЈ/5G на спуск 90A 110A					

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-1 перед сваркой требуется предварительный подогрев материала трубы L360 (X52). После завершения корневого шва следует выполнить «горячий» проход (в течение 5 мин) и только после этого снимать центратор

Электроды не требуют прокалки после вскрытия оригинальной упаковки (металлического тубуса)

PELINER

Pipeliner®7P+

КЛАССИФИКАЦИЯ

 AWS A5.1
 E7010-P1
 A-Nr
 1

 ISO 2560-A
 E 42 3 Z C 2 5
 F-Nr
 3

 9606 FM
 1

ОБШЕЕ ОПИСАНИЕ

Электрод с покрытием целлюлозного типа для вертикальной сварки на спуск

Пригоден для горячих, заполняющих и облицовочных проходов по трубам из стали класса прочности до X60 Хорошая видимость сварочной ванны

Большая глубина проплавления и точный контроль сварочной ванны

Подходит для сварки корневого прохода труб из стали класса прочности до Х80

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS

+

химичес	СКИЙ СОСТА	АВ НАПЛА	вленного	МЕТАЛЛА (9	%]		
С	Mn	Si	Р	S	Ni	Мо	
0,15	0,6	0,1	0,015	0,015	0,85	0,1	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

				Предел	Предел и прочности		Отн.		вязкость nu (Дж)
	Состояние	текучести е (МПа)	і прочностій (МПа)	удлинение (%)	-29°C	-40°C			
Требования: AWS A5.1 ISO 2560-A Средние значения	ПС	мин. 415 мин. 420 470		ин. 490 00-640 570	мин. 22 мин. 20 24	27 47 80	70		
ВИДЫ УПАКОВКИ									
	Диаметр Длина (мм		3,2 350	4,0 350	5,0 450				
Металлический тубус	Вес нетт	o/eg. (kz)	22,7	22,7	22,7				

Идентификационное обозначение: 7010-Р1

Цвет торца электрода:

Pipeliner°7P+: 8ep. C-RU02-01/02/16

Pipeliner®7P+

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Koq Tun

Трубная сталь

API 5LX X42, X46, X52, X56, X60 EN 10208-2 om L290 go L415

ДАННЫЕ ПО РАСХОДУ Размеры диам. х длина (мм) 3,2X350 65-130 DC+ 4,0X350 100-165 DC+ 5,0X450 130-210 DC+

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр	Пространственны	ые положения сварки	
[мм]	PJ/5G на cnyck		
3,2	110A		
4,0	150A		
5,0	165A		

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-2 перед сваркой требуется предварительный подогрев материала трубы L360-L415 (X52-X60) После завершения корневого шва следует выполнить «горячий» проход (в течение 5 мин) и только после этого снимать центратор

Электроды не требуют прокалки после вскрытия оригинальной упаковки (металлического тубуса)

^{*}Остаток электрода 35 мм

Pipeliner®8P+

AWS A5.5	E8010-P1	A-Nr	10
ISO 2560-A	E 46 4 1Ni C 2 5	F-Nr	3
		9606 FM	1

ОБШЕЕ ОПИСАНИЕ

Предназначается для сварки труб класса прочности не выше Х70 на спуск

Высокая сопротивляемость образованию пор, отсутствие дефектов при контроле рентгеновским излучением Высокая эффективность: заполнение стыков за меньшее число проходов

Исключительные механические характеристики наплавленного металла

Подходит для сварки корневого прохода труб из стали класса прочности до Х80

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

DC+

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

ABS

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Ni	Мо	Р	S
0,17	0,7	0,25	0,8	0,2	0,01	0,01

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Предел Предел текичести прочности		Отн. цалинение	Ударная вязкость no Шарпи (Дж)			
	Состояние	(МПа)	(MПа)	(%)	-29°C	-40°C	-46°C
Требования: AWS A5.5 ISO 2560-A		мин. 460 мин. 460	мин. 550 530-680	мин. 19 мин. 20	мин. 27	мин. 47	
Средние значения	ПС	495	590	24	80	60	50

	диаметр (мм) Длина (мм)	3,2 350	4,0 350	350
Металлический тибис	Bec Hemmo/ea. [kz]	4.5	4.5	4.5

Идентификационное обозначение: 8010-P1 PIPELINER 8P+ Цвет торца электрода: нет

Pipeliner*8P+: 8ep. C-RU22-01/02/16

Pipeliner®8P+

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X56, X60, X65, X70 EN 10208-2 om L360 go L485

ДАННЫЕ ПО РАСХОДУ						
Размеры guaм. х gлина (мм)	Tok (A)	Pog moka				
3,2x350	65-120	DC+				
4,0x350	100-165	DC+				
5,0x350	130-210	DC+				

ОПТИМАЛЬ	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ							
Диаметр	Пространственные	положения сварки						
[мм]	PH/5G на подъем	PJ/5G на cnyck						
3,2	90A	110A						
4,0	130A	150A						
5,0	150A	165A						

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-2 перед сваркой требуется предварительный подогрев материала трубы L360 - L485 (X56 - X70).

После завершения корневого шва следует выполнить «горячий» проход (в течение 5 мин) и только после этого снимать центратор

Электроды не требуют прокалки после вскрытия оригинальной упаковки (металлического тубуса) При необходимости в меньшей прочности корневого шва рекомендуется использовать PIPELINER 6P+

^{*}Остаток электрода 35 мм

Pipeliner®16P

КЛАССИФИКАЦИЯ

AWS A5.1	E7016 H4	A-Nr	1
ISO 2560-A	E 42 3 B 1 2 H5	F-Nr	4
		9606 FM	1

ОБШЕЕ ОПИСАНИЕ

Предназначен для сварки корневого шва труб класса прочности не выше X80 (К60) «на подъем»

Рекомендуется для сварки «горячего», заполняющих и облицовочных проходов труб класса прочности до X65 [включительно]

Высокие показатели ударной вязкости при низкой температуре

Гарантированное проплавление облегчает процесс сварки труб в затрудненных условиях

Электроды диаметром 2,5 мм и 3,2 мм рекомендуются для сварки корневого шва по открытому зазору при постоянном токе с прямой или обратной полярностью

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC/DC+

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	
0,06	1,3	0,5	0,013	0,009	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Предел Предел текичести прочности		Отн. удлинение	Ударная вязкость по Шарпи (Дж)		
	Состояние	(МПа)	(МПа)	(%)	-29°C/ -30°C	-40°C
Требования: AWS A5.1 ISO 2560-A Средние значения	ПС	мин. 400 мин. 420 470	мин. 490 500-640 590	мин. 22 мин. 20 26	мин. 27 мин. 47 120	90

ВИД	11	VП	ΛV	MI:	NIA
DNIT		2/11	AIN		INZ

	Диаметр (мм) Длина (мм)	2,5 350	3,2 350	4,0 350		
Металлический тубус	Bec нетто/eg. (kг)	22,7	22,7	22,7		

Идентификационное обозначение: 7016 H4 PIPELINER 16P Цвет торца электрода: нет

Pipeliner*16P: 8ep. C-RU23-01/02/16

Pipeliner®16P

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X42, X46, X52, X56, X60 EN 10208-2 om L290 go L415

ДАННЫЕ ПО РАСХОДУ Размеры диам. х длина (мм) 2,5x350 55-105 DC+ 3,2x350 4,0x350 75-135 DC+ 4,0x350 120-170 DC+

Пространственные положения сварки Диаметр (MM) PA/1G PB/2F PC/2G PF/3G на подъем PE/4G 2,5 80A 85A 85A 85A 80A 3.2 120A 115A 115A 115A 110A 170A 180A 180A 180A 160A 4,0

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-2 перед сваркой требуется предварительный подогрев материала трубы L360 - L415 (X52 - X60).

^{*}Остаток электрода 35 мм

22

Pipeliner®18P

КЛАССИФИКАЦИЯ

 AWS A5.5
 E8018-G-H4R
 A-Nr
 10

 ISO 2560-A
 E 50 6 Mn1Ni B 3 2 H5
 F-Nr
 4

 9606 FM
 2

UPILIEE ULINCAHNE

Предназначен для сварки заполняющих и облицовочных проходов стыков труб класса прочности до X70 на подъем Высокие показатели ударной вязкости при низких температурах вплоть до -60°C Гарантированное проплавление упрощает сварку ответственного назначения

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

AC / DC + / -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni
0,05	1,5	0,5	0,010	0,009	0,95

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

Bec нетто/eg. (kг)

		Предел	Предел Предел текичести прочности		Ударная вязкость по Шарпи (Дж)		
	Состояние	(МПа)	(МПа)	удлинение (%)	-40°C	-60°C	
Требования: AWS A5.5 ISO 2560-A Средние значения	ПС	мин. 460 мин. 500 550	мин. 550 560-720 640	мин. 19 мин. 18 24	140	мин. 47 80	

ВИДЫ УПАКОВКИ					
	Диаметр (мм) Длина (мм)	3,2 350	4,0 350		
Memanguueckuŭ muhuc	IIImuk & anuuuua	130	75		

4,0

Идентификационное обозначение: 8018-G H4R PIPELINER 18P

Цвет торца электрода: нет

4,2

Pipeliner*18P: 8ep. C-RU23-01/02/16

Pipeliner®18P

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X 56, X60, X65, X70, X80 EN 10208-2 om L360 go L485

ДАННЫЕ ПО Р	РАСХОДУ							
Размеры guaм. х gлина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Тепловложение прод при максимали	Производи- тельность наплавки ьном токе -	Bec / 1000 wm. (kz)	Шт. электродов на кг напл. металла	Кг электродов на кг наплавленного металла 1/N
			(c)*	Е (кДж)	H (kz/4)			
3,2x350 4,0x350	80-145 120-185	DC+ DC+	66 77	220 355	1,2 1,6	37,7 54,1	48 29	1,79 1,59

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ							
Диаметр		Г	 ространст	венные положения св	apku		
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем	
3,2	140A	120A	145A	120A	120A	120A	
4,0	150A	140A	150A	140A	140A	140A	
.,0	.50/ (.50/ (

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Согласно EN 1011-2 перед сваркой требуется предварительный подогрев материала трубы L360 - L485 (X56 - X70).

PELINER

Pipeliner®LH-D80

КЛАССИФИКАЦИЯ

 AWS A5.5
 E8045-P2 H4R
 A-Nr
 1

 ISO 2560-A
 E 46 4 Z B 4 5 H5
 F-Nr
 4

 9606 FM
 1/2

ОБЩЕЕ ОПИСАНИЕ

Специально предназначены для сварки на спуск

Электроды с основным видом покрытия для сварки «горячего» и заполняющих и облицовочных проходов трубных стыков на спуск

Рекомендуются для сварки труб класса прочности до Х70 (К60)

Хорошие показатели ударной вязкости при низких температурах вплоть до -46°C

Заостренный наконечник стержня и графитовый торец электрода упрощают зажигание дуги и позволяют быстро установить контроль над сварочной ванной

Специальная формила шлака позволяет легко управлять сварочной ванной

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

BC(3C4

AC / DC + / -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S
0,05	1,15	0,45	0,009	0,009

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел текичести	Предел прочности	Отн.	Ударная (по Шар	Зязкость nu (Дж)
	Состояние	(МПа)	(МПа)	удлинение (%)	-30°C	-46°C
Требования: AWS A5.5 ISO 2560-A Средние значения	ПС	мин. 460 мин. 460 490	мин. 550 530-680 580	мин. 19 мин. 20 27	мин. 27 мин. 47 80	50-95

ВИДЫ УПАКОВКИ					
	Диаметр (мм) Длина (мм)	3,2 350	4,0 350	4,5 350	
Металлический тубус	Bec нетто/eg. (kz)	4,5	4,5	4,5	

Идентификационное обозначение: LH-D80 8018-G

Цвет торца электрода: нет

Pipeliner*LH-D80: 8ep. C-RU23-01/02/16

Pipeliner®LH-D80

СВАРИВАЕМЫЕ МАТЕРИАЛЫ Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X60, X65, X70 EN 10208-2 om L415 go L485

ДАННЫЕ ПО РА	АСХОДУ	
Размеры guaм. х длина (мм)	Tok (A)	Pog moka
3,2x350 4,0x350 4,5x350	120-170 170-250 200-300	DC+ DC+ DC+

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ					
Диаметр	Пространственные положения сварки				
(мм)	РЈ/5G на спуск				
3,2	140-170A				
4,0	180-240A				
4,5	200-260A				

IPELINER

Pipeliner®LH-D90

КЛАССИФИКАЦИЯ

AWS A5.5	E9045-P2 H4R	A-Nr	10
ISO 18275-A	E 55 4 ZB 4 5 H5	F-Nr	4
		9606 FM	2

ОБЩЕЕ ОПИСАНИЕ

Электроды с основным видом покрытия для сварки «горячего» и заполняющих и облицовочных проходов трубных стыков на спуск

Для сварки mpy6 класса npoчносmu go X80 no cmaнgapmy API 5L

Высокая производительность наплавки и высокие показатели ударной вязкости при низких температурах вплоть до -46°C

Заостренный наконечник стержня и графитовый торец электрода упрощает зажигание дуги и позволяет быстро установить контроль за сварочной ванной

Специальная формила шлака позволяет легко управлять сварочной ванной

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC + / -

СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	Р	S	Ni	Cr	Мо
0,05	1,30	0,5	0,009	0,009	0,25	0,05	0,2

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

		Предел mekuчести	Предел	Отн.		о Мара вычан в разкос В разка	
	Состояние	(МПа)	прочности (МПа)	удлинение (%)	-29°C	-40°C	-46°C
Требования: AWS A5.5 ISO 18275-A Средние значения	ПС	мин. 530 мин. 550 575	мин. 620 610-780 645	мин. 17 мин. 18 27	мин. 27 95	мин. 47	60

ВИДЫ УПАКОВКИ				
	Диаметр (мм) Длина (мм)	3,2 350	4,0 350	

Металлический тубу с	Bec нетто/eq. (kг)	4,5	4,5
		-,-	.,-

Идентификационное обозначение: LH-D90

Цвет торца электрода: нет

Pipeliner*LH-D90: 8ep. C-RU24-01/02/16

Pipeliner®LH-D90

СВАРИВАЕМЫЕ МАТЕРИАЛЫ Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X65, X70, X80 EN 10208-2 om L415 go L555

ДАННЫЕ ПО РА	ДАННЫЕ ПО РАСХОДУ			
Размеры guaм. х длина (мм)	Tok (A)	Pog moka		
3,2x350 4,0x350 4,5x350	120-170 170-250 200-300	DC+ DC+ DC+		

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ				
Диаметр	Пространственные положения сварки			
(мм)	РЈ/5G на спуск			
3,2	140-170A			
4,0	180-240A			
4,5	200-260A			

NFR

Pipeliner®LH-D100

классификация

ОБЩЕЕ ОПИСАНИЕ

Электроды с основным видом покрытия для сварки «горячего» и заполняющих и облицовочных проходов трубных стыков на спуск

Для сварки mpy6 класса npoчносmu go X80 no cmaнgapmy API 5L

Высокая производительность наплавки и высокие показатели ударной вязкости при низких температурах вплоть до −46°C

Заостренный наконечник стержня и графитовый торец электрода упрощает зажигание дуги и позволяет быстро установить контроль над сварочной ванной

Специальная формила шлака позволяет легко управлять сварочной ванной

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

AC / DC + / -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

С	Mn	Si	P	S	Ni	Мо	
0,05	1,55	0,45	0,009	0,009	0,9	0,45	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Bec нетто/eq. (kz)

		Предел	Предел	Отн.	Ударная в по Шарп	
	Состояние	текучести (МПа)	прочности (МПа)	удлинение (%)	-29°C	-46°C
Требования: AWS A5.5 Средние значения	ПС	мин. 600 650	мин. 690 730	мин. 16 24	мин. 27 100	70

ВИДЫ УПАКОВКИ					
	Диаметр (мм) Длина (мм)	3,2 350	4,0 350		

4,5

Идентификационное обозначение:	LH-D100	10018-G

Металлический тубус

Цвет торца электрода: нет

Pipeliner*LH-D100: 8ep. C-RU24-01/02/16

Pipeliner® LH-D100

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X70, X80, X90 EN 10208-2 om L415 go L620

ДАННЫЕ ПО РАСХОДУ			
Размеры guaм. х gлина (мм)	Tok (A)	Pog moka	
3,2x350 4,0x350 4,5x350	120-170 170-250 200-300	DC+ DC+ DC+	

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ				
Диаметр	Пространственные положения сварки				
(мм)	РЈ/5G на спуск				
3,2	20-170A				
4,0	170-250A				
4,5	200-300A				

IPELINER

Pipeliner®70S-G

КЛАССИФИКАЦИЯ

AWS A5.18 ER70S-G A-Nr 1 Mat-Nr 1,5112 EN ISO 14341-A G 38 3 M G2Si / G 38 3 C G2Si F-Nr 6

9606 FM 1

ОБШЕЕ ОПИСАНИЕ

Специально разработана для полуавтоматической и автоматической сварки корневого шва труб в среде защитного газа

Хорошая жидкотекучесть сварочной ванны гарантирует высокую смачиваемость свариваемых кромок и равномерную форму шва

Обеспечивает чистию поверхность сварного шва

Упаковка из фольги предотвращает попадание влаги

Стабильно хорошие результаты при рентгеновском контроле

Предназначена для сварки труб класса прочности от X42 до X65 по API 5L во всех пространственных положениях Используется также для сварки корневого шва материалов класса прочности не выше API 5L X80

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M21 Смешанный газ Ar+ >15-25% CO₂ C1 Активный газ 100% CO₃

PA/1G

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ (%)

С	Mn	Si	Р	S
0,07	1,25	0,55	0,01	0,02

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Зашитный		Предел mekuчести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)
	283	Состояние	(M∏a)	(МПа)	[%]	-29°C
Средние значения	C1	ПС	425	525	25	80

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X42, X46, X52, X60 EN 10208-2 om L290 go L415

ΒΝΩΡΙ ΛΩΦΚΟΒΚΝ

Диаметр (мм)	1,1	1,3
Kaccema S200, 4.5 kz	Χ	Χ
Kaccema 22RR, 11.34 kz	Χ	Χ

PIPELINER* 70S-G: 8ep. C-RU24-01/02/16

классификация

AWS A5.18 ER80S-G **A-Nr** 1 **Mat-Nr** 1,5130 **EN ISO 14341-A** G 50 3 M G4Si1 **F-Nr** 6

9606 FM 1/2

ОБЩЕЕ ОПИСАНИЕ

Специально разработана для полуавтоматической и автоматической сварки корневого шва труб в среде защитного газа

Хорошая жидкотекучесть сварочной ванны гарантирует высокую смачиваемость свариваемых кромок и равномерную форму шва

Обеспечивает чистую поверхность сварного шва

Упаковка из фольги предотвращает попадание влаги

Стабильно хорошие результаты при рентгеновском контроле

В основном предназначается для сварки стальных труб класса прочности X65 до X80 по API 5L в любых пространственных положениях

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

M21 Смешанный газ Ar+ >15-25% CO.

ISO/ASME PA/1G

химический состав проволоки (%)

С	C Mn		Р	S	
0,09	1,55	0,60	0,012	0,007	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

	Защитный		Предел текичести	Предел прочности	Отн. иалинение	Ударная вязкость no Шарпи (Дж)
	283	Состояние	(M∏a)	(МПа)	(%)	-29°C
Средние значения	M21	ПС	634	710	23	140

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X42, X46, X52, X60 EN 10208-2 om L450 go L555

ВИДЫ УПАКОВКІ

Диаметр (мм)	1,1	1,3
Kaccema S200, 4.5 kz	X	Х
Kaccema 22RR 11 34 k2	Χ	Χ

PIPELINER* 80S-G: 8ep. C-RU24-01/02/16

IPELINER

Pipeliner®80Ni1

КЛАССИФИКАЦИЯ

 AWS A5.28
 ER80S-G
 A-Nr
 1
 Mat-Nr
 1,5112

 EN ISO 14341-A
 G 3Ni1
 F-Nr
 6

 9606 FM
 1/2

ОБЩЕЕ ОПИСАНИЕ

Микролегированная проволока сплошного сечения для сварки в среде защитных газов Pipeliner 80Ni1 предназначается для полуавтоматической сварки корневого шва, горячего прохода, заполняющих и облицовочных слоев стыков труб класса прочности до X100. Благодаря высоким показателям работы удара наплавленного металла на образцах Шарпи, 69-95 Дж при -50°C, Pipeliner 80Ni1 идеально подходит для сварки труб с высокими требованиями к ударной вязкости при низких температурах. Если Вам нужна проволока сплошного сечения для сварки высокопрочных труб или эксплуатации в экстремальных условиях, проволока Pipeliner® 80Ni1 станет для Вас хорошим выбором.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

ЗАЩИТНЫЕ ГАЗЫ (ПО ISO 14175)

PA/4C

M20/M21 75 - 95% аргон / CO₂

химиче	химический состав проволоки (%)												
С	Mn	Si	Р	S	Ni	Мо	Ti	Al					
0,07	1,55	0,70	0,11	0,10	0,90	<0,01	0,08	<0,01					

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

		Предел текучести	Предел прочности	2 —			
	Состояние	(МПа)	прочности (МПа)	(%)	-29°C	-50°C	
Требования: AWS A5.28	ПС C1 ПС M20	600 650	мин. 550 665 730	28 27	80 110	45 70	

ВИДЫ УПАКОВКИ			
Диаметр (мм)	1,0	1,2	
Kaccema S200, 4.5 kz	Χ	Χ	
Kaccema 22RR, 11.34 kz	Χ	Χ	

Pipeliner*80Ni1; 8ep. C-RU03-01/02/16

Pipeliner®80Ni1

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X42, X46, X52, X56, X60, X65, X70, X80

EN 10208-2 om L290 go L555

ДАННЫЕ ПО РАСХОДУ												
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)							
1,0 1,2	19 19	250-1400 320-1270	105-320 145-360	19-31 19-31	1,0-5,2 1,7-6,5							

Pipeliner® G60M-E

AWS A5.20 F71T1-1M-IH4 A-Nr Mat-Nr

AWS 45.36 E71T-1M21A4-CS1-JH4 F-Nr EN ISO 17632-A T 46 4 P M 1 H5 9606 FM

ОБШЕЕ ОПИСАНИЕ

Порошковая проволока для механизированной и полуавтоматической сварки с высокой производительностью наплавки (кг/ч) Высокая технологичность и минимальные временные затраты на послесварочную очистку благодаря оптимальному профилю шва при заполняющих и облицовочных проходах и легкому удалению шлака

Большая глибина проплавления помогает избежать появления дефектов

Сфокусированная и отчетливо видная дуга упрощает работу и обучение сварщиков

Стабильные механические характеристики при широком диапазоне тепловложения, ударная вязкость по Шарпи превышает 47 Дж npu -40°C

Очень низкое содержание диффузионного водорода в наплавленном металле (HDM <4 мл/100 гр.), долгое сохранение способности противостоять скапливанию влаги

РОД ТОКА

: Смешанный газ Ar+ (>15-25%) CO. M21 Расход газа: 15-25 л/мин.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

Защитный газ	ABS

M21

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный газ	C	Mn	Si	Ni	Р	5	HDM
M21	0,04	1,35	0,25	0,45	0,013	0,008	3 мл/100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%

	Защитный		Предел текучести	Предел прочности	Отн. удлинение		ная вязі Шарпи (
	283	Состояние	MΠa)	(МПа)	[%]	-20°C	-30°C	-40°C
Требования: AWS A5.20			мин. 400	мин. 480	мин. 22			
ISO 17632-A			мин. 460	530-680	мин. 20			мин. 47
Средние значения	M21	ПС	485	540	23	135	120	85

Диаметр (мм)	1,2
Пластиковая kaccema S200, 5.0 kг	Χ
Kaccema B300, 15 kz	Χ
Кассета S300 в алюм, мешке, 15 kz	Х

Pipeliner*G60ME: 8ep. C-RU04-11/05/16

Pipeliner® G60M-E

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Koq Tun

Конструкционная сталь общего назначения

EN10027-1 S235 - S460; J2, K2, N u NL, M u ML

Листы судостроительной стали

ASTM, ABS, DNV Copm A, D, om EH32 go 40; NV A,D,E 32-40; NV A,D,E 420-460

Трубная сталь

ISO 3183 L245-L415N, L245-L450O, L245M - L450M

API 5LX X42, X46, X52, X60, X65

Сталь для бойлеров и камер высокого давления

EN 10028-3 P235-460, N, NH, NL EN 10028-2 P235-355GH

Сталь с мелкозернистой структурой

EN 10025-2, -3, -4 S235, S275; S355, S420, S420, S460, S460, S460, S460 N, NL, M, ML

EN 10025 S355G, S420G

EN 10025-2, -3, -4 S235, S275; S355, S420, S460, S460, S460, S460, S460 N, NL, M, ML

EN 10025 -6 S4600, OL

ДАННЫЕ ПО І	РАСХОДУ					
Диаметр (мм)	Вылет электрода (мм)	Ckopocmь nogaчи npoволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла
1,2	20	445	120	21-23	1,75	1,13
		700	160	22-24	2,54	1,13
		955	200	25-27	3,45	1,13
		1270	240	27-29	4,73	1,13
		1590	270	30-32	6,2	1,13

l uaметр	Пространственные положения сварки								
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G				
1,2	130-280A 22-32B	150-280A 23-32B	150-230A 23-30B	160-240A 23-27B	150-220A 23-28B				

IPFI INFR

Pipeliner® G70M

КЛАССИФИКАЦИЯ

AWS A5.20 E7.1T-1M-JH8 / E71T-9M-JH8 A-Nr 1
EN ISO17632-A T 46 4 P M 2 H10 F-Nr 6
9606 FM 1

ОБЩЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока для полуавтоматической и механизированной сварки трубопроводов, в том числе горячих, заполняющих и облицовочных проходов

Плавный струйный перенос металла и низкий уровень разбрызгивания

Система образования шлака обеспечивает опору для сварочной ванны, высокое смачивание и хороший внешний вид шва в любых пространственных положениях

Проволока для одно- или многопроходной сварки труб из стали класса прочности до X70 включительно в любых пространственных положениях

Высокие механические характеристики наплавленного металла

Для сварки корневых проходов более предпочтительна проволока Pipeliner 70S-G

Хорошая подаваемость проволоки

Проволока диаметра 1,3 мм имеет название PIPELINER AUTOWELD° G70M и предназначена для применения с механизированными системами сварки триб

PIPELINER AUTOWELD* G70M отличается точным контролем химического состава и намотки проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+

M21 : Смешанный газ Ar+ (>15-25%) ${\rm CO_2}$ Расход газа: 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

Защитный газ	С	Mn	Si	Р	S	Ni
M21	0,05	1,45	0,40	0,013	0,011	0,35

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел mekuчести	Предел прочности	Отн. цалинение	Ударная вязкость по Шарпи (Дж)
	газ	Состояние		(МПа)	[%]	-40°C
Требования: AWS A5.20			мин. 400	мин. 480	мин. 22	мин. 27
ISO 17632-A			мин. 460	530-680	мин. 20	мин. 47
Средние значения	M21	ПС	560	645	26	125

ВИЛЫ УПАКОВКИ

Диаметр (мм)	1,1	1,3
Kaccema S200, 4.5 kz	Χ	Χ
Kaccema 22RR, 11.34 kz	Χ	Χ

Pipeliner*G70M: 8ep. C-RU23-01/02/16

Pipeliner® G70M

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь API 5LX

X42, X46, X52, X56, X60, X65, X70

EN 10208-2 om L290 go L485

ДАННЫЕ ПО	РАСХОДУ						
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ kг наплавленного металла	
1,1 1,3	19 19	440-1020 380-1140	130-275 155-315	23-30 22-31	1,8-5,4 1,6-4,9	1,21 1,22	

Pipeliner® G70M-E

AWS A5.29 : E81T1-GM-H4 EN ISO 17632-A : T 50 5 Z P M 2 H5

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока, легированная 1% Ni и 0,15% Mo, для сварки во всех пространственных

Специально разработана для сварки трибопроводов

Высокие сварочно-технологические характеристики, минимальное разбрызгивание, хороший внешний вид шва Технологична в использовании

Высокие показатели ударной вязкости наплавленного металла при низких температурах (мин 47 Дж по Шарпи npu -50°C)

Очень низкое содержание диффизионного водорода в наплавленном металле (HDM <5 мл / 100 г)

Стабильное качество продукции и оптимальный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC+ M21 : Смешанный газ Ar+ (>15-25%) CO. Pacxoq газа: 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%] Зашитный газ C Mn Si Ni Мо M21 0,06 1,5 0,2 0,013 0,010 0,95 0,15

МЕХАНИЧЕСКИЕ ХАРАК	ТЕРИСТИКИ	НАПЛАВЛЕН	НОГО МЕТАЛ	IЛA (%)				
	Защитный	Состояние	Предел mekyчести	Предел прочности	Отн. цалинение		ная вязі Шарпи (
	283		(МПа)	(МПа)	[%]	-20°C	-40°C	-50°C
Требования: AWS A5.29			мин. 470	550-690	мин. 19			
ISO 17632-A			мин. 500	560-720	мин. 18			мин. 47
Средние значения	M21	ПС	580	630	23	100	90	70

Диаметр (мм) 1,2
Kaccema S200, 4.5 kz X
Kaccema B300, 15 k2 X

Pipeliner*G70ME: 8ep. C-RU07-09/05/16

Pipeliner® G70M-E

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Код

Tun

Трубная сталь EN 10208

API 5LX

L360, L360NB, L360QB, L360MB, L415MB, L415NB, L450MB, L485MB

X52, X60, X65, X70

Сталь с мелкозернистой структурой

EN 10025 часть 3 S275, S355, S420, S460

S355, S420, S460, S500N, S460NL, S500NL, S500NC, S550NC EN 10025 часть 6

ДАННЫЕ ПО	РАСХОДУ						
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла	
1,2	20	445	130	20-22	1,6	1,20	
		700	180	23-25	2,5	1,20	
		950	220	25-27	3,4	1,20	
		1270	265	27-29	4,5	1,20	
		1590	305	30-32	59	120	

Диаметр		Γ	Іространств	Венные положения с	:Bapku	
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PJ/5G на cnyck	PE/4G
1,2	230-280A	230-280A	200-240A	200-240A	200-240A	160-220A
	26-32B	26-32B	25-32B	25-28B	25-28B	23-28B

Pipeliner® G80M

КЛАССИФИКАЦИЯ

AWS A5.29 : E101T1-GM-H8 EN 12535 : T 62 3 P M 2 H10

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока для полуавтоматической и механизированной сварки трубопроводов, в том числе горячих, заполняющих и облицовочных проходов

Плавный струйный перенос металла и низкий уровень разбрызгивания

Система образования шлака обеспечивает опору для сварочной ванны, высокое смачивание и хороший внешний вид шва в любых пространственных положениях

Проволока для одно- или многопроходной сварки труб из стали класса прочности до X80 включительно в любых пространственных положениях

Для сварки корневых проходов более предпочтительна проволока PIPELINER 70S-G или 80S-G

Высокие механические характеристики наплавленного металла

Хорошая подаваемость проволоки

Проволока диаметра 1,3 мм имеет название PIPELINER AUTOWELD® G80M и предназначена для применения с механизированными системами сварки труб

PIPELINER AUTOWELD® G80M отличается точным контролем химического состава и намотки проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC +

M21 : Смешанный газ Ar+ (>15-25%) CO₂ Pacxog газа: 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА (%)

7								
Защитный газ	С	Mn	Si	Р	S	Ni	Cr	Мо
M21	0,04	1,75	0,4	0,015	0,01	0,95	0,11	0,25

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]

	Защитный		Предел mekyчести	Предел прочности	Отн. удлинение	Ударная вя по Шарп	
	283	Состояние	(МПа)	(МПа)	[%]	-29°C/-30°C	-40°C
Требования: AWS A5.29			мин. 605	690-825	мин. 16		
EN 12535			620	700-890	мин. 18	мин. 47	
Средние значения	M21	ПС	680	720	24	55	47

ВИЛЫ УПАКОВКИ

Диаметр (мм)	1,1	1,3
Kaccema S200, 4.5 kz	Х	Х
Kaccema 22RR. 11.34 kz	Χ	Χ

Pipeliner*G80M: 8ep. C-RU24-01/02/16

Pipeliner® G80M

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

acc прочностти стпали / Rog

Трубная сталь

API 5LX X70, X80

EN 10208-2 om L485 go L555

ДАННЫЕ ПО РАСХОДУ	
	Скорость
	กกตลนแ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (В)	Производи- тельность наплавки (kz/ч)	K2 проволоки/ k2 наплавленного металла	
1,1	19	440-1020	130-275	23-30	1,8-4,1	1,21	
1,3	19	380-1140	155-315	22-31	1,6-4,9	1,22	

PELINER

Pipeliner® G80M-E

КЛАССИФИКАЦИЯ

AWS A5.29 : E91T1-GM-H4 EN ISO : T 55 4 Z P M 2 H5

18276-A

ОБШЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока, легированная 1% Ni и 0,4% Mo, для сварки в любых пространственных положениях Высокие сварочно-технологические характеристики, низкий уровень разбрызгивания, хороший внешний вид шва и технологичность в использовании

Исключительные механические характеристики наплавленного металла

Очень низкое содержание диффузионного водорода в наплавленном металле (HDM <5 мл/100 гр.)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

Специально разработана для сварочных процессов с высоким уровнем тепловложения

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОД ТОКА

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Расход газа: 15-25 л/мин.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%] Защитный газ C Mn Si P S Ni Mo M21 0,06 1,4 0,3 0,013 0,01 0,95 0,4

МЕХАНИЧЕСКИЕ ХАРАК	ТЕРИСТИКИ	НАПЛАВЛЕН	НОГО МЕТАЛ	ІЛА (%)			
	Защитный		Предел mekuчести	Предел прочности	Отн. цалинение	Ударная по Шар	вязкость nu (Дж)
	газ	Состояние	(МПа)	(МПа)	[%]	-40°C	-40°C
Требования: AWS A5.29 EN ISO 18276-A			мин. 540 мин. 550	620-760 640-820	мин. 17 мин. 18	мин. 47	
Средние значения	M21	ПС	695	740	21		65

ВИДЫ УПАКОВКИ			
Диаметр (мм)	1,2		
Kaccema S200, 4.5 kz	Χ		
Kaccema B300, 15 kz	Χ		

Pipeliner°G80ME: 8ep. C-RU07-11/05/16

Pipeliner® G80M-E

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tur

Трубная сталь

API 5LX X60, X65, X70, X80 EN 10208-2 om L360 go L555

ДАННЫЕ ПО І	АННЫЕ ПО РАСХОДУ									
Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ кг наплавленного металла				
1,2	20	445	130	20-22	1,6	1,20				
		700	180	23-25	2,5	1,20				
		950	220	25-27	3,4	1,20				
		1270	265	27-29	4,5	1,20				
		1590	305	30-32	5,9	1,20				

Диаметр		П	ространств	енные положения о	:варки	
[MM]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PJ/5G на cnyck	PE/4G
1,2	230-280A	230-280A	200-240A	200-240A	200-240A	160-220A
	26-32B	26-32B	25-32B	25-28B	25-28B	23-28B

PFI INFR

Pipeliner® G90M-E

КЛАССИФИКАЦИЯ

AWS A5.29 : E111T1-GM-H4 EN ISO : T 69 4 Z P M 2 H5

18276-A

ОБЩЕЕ ОПИСАНИЕ

Газозащитная порошковая проволока рутилового типа для сварки высокопрочных сталей класса прочности X70-X80 во всех пространственных положениях

Технологична в использовании

Высокие механические характеристики наплавленного металла (мин. 50 Дж по Шарпи при -40°С)

Очень низкое содержание диффизионного водорода в наплавленном металле (HDM <5 мл/100 гр.)

Постоянно высокое качество продукции и точный контроль легирования

Хорошая подаваемость проволоки

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОДТОКА

DC + M21 : Смешанный газ Ar+ (>15-25%) CO₂ Расход газа: 15-25 л/мин.

химический со	OCTAB HA	АПЛАВЛ	ЕННОГО	МЕТАЛ.	ЛА [%]			
Защитный газ	С	Mn	Si	Р	S	Ni	Мо	
M21	0,06	1,5	0,2	0,015	0,010	2,0	0,5	

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%] Ударная вязкость Предел Предел Отн. no Шарпи (Дж) Защитный текучести прочности идлинение Состояние (МПа) (МПа) [%] -40°C газ Требования: AWS A5.29 мин. 680 760-900 мин. 15 770-970 EN ISO 18276-A мин. 690 мин. 17 мин. 47 Средние значения M21 ПС 740 79N 19 65

ВИДЫ УПАКОВКИ		
Диаметр (мм)	1,2	1,6
Kaccema S200, 4.5 kz	Χ	
Kaccema B300, 15 kz	Χ	Χ

Pipeliner®G90ME: 8ep. C-RU07-11/05/16

Pipeliner® G90M-E

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X70, X80

EN 10208-2 om L485 go L555

ИННЫЕ ПО	РАСХОДУ					
Циаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производи- тельность наплавки (кг/ч)	Кг проволоки/ kг наплавленного металла
1,2	20	445	130	20-22	1,6	1,20
		700	180	23-25	2,5	1,20
		950	220	25-27	3,4	1,20
		1270	265	27-29	4,5	1,20
		1590	305	30-32	5,9	1,20
1,6	20	320	170	21-23	1,9	1,20
		510	235	22-24	3,1	1,20
		635	275	24-25	3,9	1,20
		760	310	25-27	4,7	1,20
		890	350	27-29	5,6	1,20
		1015	385	28-30	6,4	1,20
		1080	400	30-31	6,8	1,20

ОПТИМАЛЬН	ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ В ЗАЩИТНОМ ГАЗЕ Ar + (>15-25)% CO,								
Диаметр	иаметр Пространственные положения сварки								
[мм]	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G				
1,2	230-280A 26-32B	230-280A 26-32B	200-240A 25-32B	200-240A 25-28B	160-220A 23-28B				
1,6	250-350A 24-29B	250-350A 24-29B	230-280A 24-28B	220-260A 24-26B	170-240A 22-26B				

ды

Pipeliner® NR®-207+

КЛАССИФИКАЦИЯ

AWS A5.29 : E71T8-K6

ОБЩЕЕ ОПИСАНИЕ

Высокие сварочно-технологические свойства при выполнении горячего, заполняющих и облицовочных проходов труб класса прочности от X42 до X70 по API 5L на спуск

Самозащитная порошковая проволока. Не требует применения защитного газа или сварочного флюса Обеспечивает качественную сварку в условиях умеренного ветра без необходимости создавать укрытие Высокие характеристики дуги и подачи проволоки

Высокая устойчивость к образованию трещин, результаты испытания на раскрытие трещины (СТОD) и ударная вязкость наплавленного металла

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC -

химиче	СКИЙ СОСТ	АВ НАПЛАВ	зленного і	МЕТАЛЛА (%]	
С	Mn	Si	Р	S	Ni	Al
0.05	1 22	n 25	n n1	N N1	n 87	11

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)									
		Ударная Предел Предел Отн. по Ша текучести прочности удлинение							
	Состояние	(МПа)	(МПа)	[%]	-29°C				
Требования: AWS A5.29 Средние значения	пс	мин. 400 435	485-620 545	мин. 20 30	мин. 27 160				

ВИДЫ УПАКОВКИ		
Диаметр (мм)	2,0	
Kaccoma 14C 6 35 ka	Y	

Pipeliner*NR®-207+; 8ep. C-RU24-01/02/16

PIPELINEF

Pipeliner® NR®-207+

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

API 5LX X42, X46, X52, X56, X60, X65, X70

EN 10208-2 om L290 go L485

ДАННЫЕ ПО РАСХОДУ

Диаметр (мм)	Вылет электрода (мм)	Скорость подачи проволоки (см/мин.)	Сварочный mok (A)	Напряжение дуги (B)	Производительность наплавки (кг/ч)
2,0	19	170-330	210-305	18-21	2,0-3,7

IPFI INFR

Pipeliner® NR®-208XP

КЛАССИФИКАЦИЯ

AWS A5.29 : E81T8-G

ОБЩЕЕ ОПИСАНИЕ

Оптимальный выбор для вертикальной сварки горячих, заполняющих и облицовочных проходов на спуск трубной стали класса прочности от API 5L X42 до X80

Самозащитная порошковая проволока. Не требует применения защитного газа или сварочного флюса Обеспечивает качественную сварку в условиях умеренного ветра без необходимости создавать укрытие Высокие характеристики дуги и подачи проволоки

Высокая ударная вязкость наплавленного металла при низких температурах до -29°C Для монтажа магистральных трубопроводов для эксплуатации в условиях низкой температуры

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ (ISO/ASME)

РОД ТОКА

DC -

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА [%]									
С	Mn	Si	Р	S	Ni	Cr	Мо	Al	
0,02	2,15	0,12	0,005	0,002	0,75	0,04	0,02	1,0	

MEXAHUYECKUE XAPAK I EPUC I ИКИ НАПЛАВЛЕННОГО МЕТАЛЛА [%]								
	Состояние	Предел текучести (МПа)	Предел прочности (МПа)	Отн. удлинение (%)	Ударная вязкость по Шарпи (Дж) -29°C			
	Состиояние	(IVII Id)	(IVII Id)	[70]	-29 C			
Требования: AWS A5.29 Средние значения	ПС	мин. 470 495	500-690 570	мин. 19 27	200			

ВИДЫ УПАКОВКИ	
Диаметр (мм)	2,0
Kaccema 14C, 6.35 kz	Χ

Pipeliner*NR*-208XP: 8ep. C-RU01-01/02/16

PIPELINER

Pipeliner® NR®-208XP

СВАРИВАЕМЫЕ МАТЕРИАЛЫ

Класс прочности стали / Kog Tun

Трубная сталь

2.0

API 5LX X42, X46, X52, X56, X60, X65, X70, X80

170-330

EN 10208-2 om L290 go L555

19

ДАННЫЕ ПО Р	РАСХОДУ					
		Скорость			Производи-	
		nogaчu			тельность	
Диаметр	Вылет	проволоки	Сварочный	Напряжение	наплавки	
[MM]	электрода (мм)	(см/мин.)	mok (A)	gyzu (B)	(kz/u)	

17-20

1,8-3,5

195-295

Где возникает большинство дефектов?

Большинство дефектов встречается в корне шва. Если доступ к шву открыт только с одной стороны, то такие дефекты чаще всего являются результатом недостаточного сплавления. При сварке с обеих сторон дефекты обычно вызваны включениями шлака из-за некачественной шлифовки или строжки. Шлифовка и строжка сами по себе являются дорогостоящими и трудоемкими процедурами, при этом удаленный металл, очевидно, нужно заменить наплавленным. Именно поэтоми дефекты в корне шва триднее и дороже всего истоянить.

Как свести к минимуму число дефектов в корне шва?

Tak kak без опорной подкладки только высококвалифицированные сварщики способны обеспечить полное проплавление материала при корневом проходе без образования дефектов, рекомендуем обратить внимание на керамические подкладки LNB от Линкольн Электрик. Линейка LNB представляет собой керамические ленты-подкладки, которые присоединяют к обратной стороне сварного шва. Состав керамики обеспечивает опору для расплавленной поверхности и легко отламывается после застывания металла. Так как это временные подкладки, их можно использовать там, где не допискается применение постоянных поокладок из соображений исталости или коррозии металла.

Kakue преимущества galom kepaмические подкладки LNB om Lincoln Electric?

- Возможность проведения корневой сварки на более высоких токах, что обеспечивает хорошее сплавление.
- Качество корневых проходов меньше зависит от квалификации сваршика.
- · Позволяют свести k минимуму сварку в потолочном положении. Возможность сварки судовых палуб сверху.
- Снижают число перемещений. Рабочие изделия не нижно переворачивать, чтобы выполнить сварки обратной стороны шва.
- Снижают вероятность дефектов благодаря хорошеми сплавлению.
- Упрощают сварку при некачественной подгонке изделий. Более крупная сварочная ванна, опирающаяся на керамическую подкладки. позволяет заполнять широкие неточно подогнанные зазоры.
- Не требиет защиты обратной стороны шва инертным газом.

Каковы особенности материалов LNB?

- Продукты LNB не впитывают влагу. Их изготавливают из плотной, негигроскопичной керамики. В сочетании со сварочными материалами с низким содержанием диффузионного водорода в наплавленном металле они позволяют обеспечить максимальную надежность при сварке материалов, склонных в водородному растрескиванию.
- Материалы LNB инертны и не вносят в сварочнию ванни нежелательные элементы.
- Продукты LNB позволяют контролировать усиление обратной стороны сварного шва. Остывший в контакте с керамической подкладкой наплавленный металл имеет гладкую поверхность, несколько выпуклую форму и обычно не требует послесварочной чистки или шлифовки.
- Продукты LNB легко прикрепляются к обратной стороне сварного шва и выдерживают стандартную температуру
 предварительного подогрева. Подкладки надежно устанавливают алюминиевой клейкой лентой или стальными
 зажимами с пружиной. Контакт с керамической подкладкой не оказывает никакого отрицательного влияния на
 свойства наплавленного металла.
- Ленты LNB можно использовать со многими материалами, в т. ч. конструкционной сталью, низколегированной и нержавеющей сталью, а также многими процессами, включая ручную дуговую сварку и сварку большинством распространенных проволок сплошного сечения для сварки в защитной газе СО₃ или газовых смесях. Применение Outershield, Cor-A-Rosta, других порошковых проволок, самозащитных проволок Innershield или проволок для сварки под флюсом с керамическими подкладками позволяет увеличить их и без того высокую производительность.
- Керамические подкладки LNB выпускаются в различных формах и размерах для широкого спектра задач.
- Препятствуют выделению нежелательных газов во время сварки.

ПРОДУКТОВАЯ ЛИНЕЙКА					
LNB 6 : D = 6 LNB 9 : D = 9 LNB 12: D = 11.3 Dauha 600 MM	Продукт LNB 6 лента LNB 9 лента LNB 12 лента В основном для углерю общего назначения.	Артикул 640007 640014 640021 одистой стал	100 72 60	Метров/короб. 60 43,2 36 оконструкций	GMAW+FCAW
12.5 LNB 21 9 9 Dлина 600 мм	Продукт LNB 21 лента	Артикул 640083	Шт./kopo6ke 56	Метров/короб. 33,6	
13.3 13.3 13.2 13.2 13.2 13.2 13.2 13.2	Продукт LNB 21-150 лента LNB 21-150 рельс	Артикул 640090 640021	Шт./kopoбke 56 63	Метров/короб. 33,6 37,8	Используется с проволокой сплошного сечения LNM и металлопорошковой проволокой, например, Outershield MC 710-H и Outershield MC 715-H
2 11.8 LNB 30 2 2 2 2 DDUHA 600 MM	Продукт LNB 30 лента	Артикул 640151	Шт./kopoбke 56	Метров/короб. 33,5	
11.5 LNB 30 - 150 28 Dлина 600 мм	Продукт LNB 30-150 лента LNB 30-150 рельс	Артикул 640168 640175	Шт./kopoбke 56 63	Mempo8/kopo6. 33,6 37,8	Используется с порошковой проволокой наподобие Outershield и Cor-A-Rosta
	Продукт LNB 40 лента LNB 41 рельс Элементы крепятся . Пригодны для сварки Легко гнутся			Метров/короб. 28,8 24 алей	
Metal Rall	Магни	тный зажим,	артикул 640236		magnet insulation

ПРОДУКЦИЯ МЕЖГОСМЕТИЗ-МЦЕНСК

Электроды для РДС	
Basic One	644
Omnia 46	646
Conarc 52	648
Conarc 53	650
Conarc 74	652
AHO-4	654
AHO-21	656
AHO-36	658
MFM-50K	660
MP-3	662
MP-3C	664
03Л-6	666
ТМЛ-1У	668
ТМЛ-3У	670
ТМУ-21У	672
УОНИ-13/45	674
УОНИ-13/55	676
УОНИИ-13/55	678
УОНИИ-13/55R	680
ЭЖТ-1	682
Проволока для сварки в среде защиг	пных
газов или под слоем флюса	
S2Mo	684
CB-08A	685
Св-08Г2С	
СВ-08ГА	
CB-08FHM	688
C6-08FCMT	
CB-08XFCMA	
Св-08ХГСМФА	691
CB-08XM	
Св-овхмфа	
C8-10HMA	
Прутки для аргонодуговой сварки	

PODYKTЫ MFM

Basic One

КЛАССИФИКАЦИЯ

ΓΟCT : 9466, 9467

TY : 1211-134-27286438-2011

ΠΕΙΙΙΕΕ ΠΠИΓΔΗΜΕ

ISO/ASME

не

PA/1G

Высококачественный электрод общего применения для ручной дуговой сварки во всех пространственных положениях низкоуглеродистых и низколегированных сталей с нормативным пределом прочности до 540 МПа (включительно).

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

1

ς

PG/5G на cnuck

POD TOKA

Постоянный mok обратной noлярности (DC+)

<u>ОДОБРЕНИЯ СЕРТ</u>ИФИКАЦИОННЫХ АГЕНТСТВ

НАКС: Ø 2.5, 3.0, 4.0, 5.0 мм — ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК. РМРС (4Y40H10)

ςi

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА

	14111	٠,٠			
более 0,10	1,0-1,6	0,2-0,6	не более 0,025	не более 0,025	

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА Временное Ударная Относительное Pa6oma ygapa Предел Температира сопротивление, вязкость. ку, Дж испытаний, °С текучести МПа удлинение МΠа Дж/см², KCU520 420 22 127 +20 60 -20 40 47 -40 Диаметр, мм 2.5 3.0 4.0 5.0 Длина, мм 350 350 450 450 5,5 Картонная коробка, кг 3,5 4,5 5.5

Basic One

ОБЩАЯ ТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kг
2,5/350	65-90	DC+	8,5-9,0	1,5
3,0/350	100-140	DC+	8,5-9,0	1,5
4,0 / 450	140-190	DC+	8,5-9,0	1,5
5,0 / 450	190-240	DC+	8,5-9,0	1,5

JE DEVUMMLI CDADUM DAI	ПОЛНЯЮШИХ ПРОХОDOB
 HE BEANNIVIDI UDYARANI SYAH	

	Положения при сварке							
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G снизу- вверх	PG/3G cверху- вниз	PE/4G	PF/5G снизу- вверх	PG/5G cверху- вниз
2.5	65-90	65- 90	65-80	65-80	65-900	65-80	65-80	65-80
3.0	100-140	100-140	100-130	90-120	100-140	90-120	90-120	90-120
4.0	140-190	140-190	130-150	120-160	140-170	120-140	120-140	120-140
5.0	190-240	190-240	_	_	_	_	_	_

ПРИМЕЧАНИЯ / РЕКОМЕНDAЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 250-300°С в течение 2-3 часов.

Omnia 46

: 9466, 9467 ГОСТ

ТУ : 1211-134-27286438-2011

ОБЩЕЕ ОПИСАНИЕ

Высококачественный электрод общего применения для ручной дуговой сварки во всех пространственных положениях низкоиглеродистых сталей с нормативным пределом прочности до 450 МПа (включительно).

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

ISO/ASME

POD TOKA

Переменный и постоянный ток обратной полярности (AC/DC+)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС: Ø 2.5, 3.0, 4.0, 5.0 мм — ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА

С	Mn	Si	S	Р		
не более 0.10	0 4-0 7	0.2-0.5	не более О О25	не более О О25		

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА Временное Ударная Предел Относительное Pa6oma ygapa Температура сопротивление, вязкость. текцчести МПа ку, Дж испытаний, °С удлинение МПа Дж/см2, КСU 450 360 22 50 35 +20 30 20 -20 Диаметр, мм 2.5 3.0 4.0 5.0 350 Длина, мм 350 450 450 Картонная 1 5 6.5 5.5 kopo6ka, kz

Omnia 46

ОБЩАЯ ТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kг
2,5/350	65-90	AC / DC-	8,5-9,0	1,7
3,0/350	100-140	AC/DC	8,5-9,0	1,7
4,0 / 450	140-190	AC/DC	8,5-9,0	1,7
5,0 / 450	190-240	AC/DC	8,5-9,0	1,7

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ
--

	Положения при сварке							
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G снизу- вверх	PG/3G cверху- вниз	PE/4G	PF/5G снизу- вверх	PG/5G сверху- вниз
2.5	65-90	65- 90	65-80	65-80	65-900	65-80	65-80	65-80
3.0	100-140	100-140	100-130	90-120	100-140	90-120	90-120	90-120
4.0	140-190	140-190	130-150	120-160	140-170	120-140	120-140	120-140
5.0	190-240	190-240	_	_	_	_	_	_

Прокалка перед сваркой: 100-120°С в течение 1 часа.

КЛАССИФИКАЦИЯ

ISO 2560-A : 1272-094-27286438-2012

ОБЩЕЕ ОПИСАНИЕ

Электрод с с основным видом покрытия для сварки углеродистых и низколегированных конструкционных сталей с пределом прочности 540 МПа. Сварка во всех пространственных положениях, кроме вертикального направления сверху-вниз. Стабильное горение дуги и легкое отделение шлака. Высокие сварочно-технологические свойства при сварке корня шва, обеспечивающие хорошее проплавление и качественное формирование обратного валика. Сварка корня шва труб с классом прочности до К60 (588 МПа — нормативный предел прочноссти). Содержание диффузионного водорода в металле шва менее 5 мл/100 гр.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

POD TOKA

ISO/ASME PA/1G

PC/2G

РF/3G на

PE/4G

PF/5G на

AC/DC +/-

ХИМИЧЕСКИЙ С	ОСТАВ НАПЛАВЛ	ІЕННОГО МЕТАЛІ	ПА		
С	Mn	Si	S	Р	Содержание диффуз. Водорода
0,06	1,2	0,4	0,010	0,015	4 мл./100 гр.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАПЛАВЛЕННОГО МЕТАЛЛА (%)							
	Состояние	Предел mekyчести	Предел прочности	Отн. удлинение	٠, ٠	вязкость pnu (Дж)	
		(МПа)	(МПа)	[%]	-20°C	-29°/-30°C	
Требования: AWS A	5.1	мин. 400	мин. 490	мин. 22	27		
ISO 2560)-A	мин. 420	500-640	мин. 20		мин. 47	
Средние значен	ия ПС	510	560	28	100	80	
виды упаковки							
Дı Д <i>і</i>	иаметр (мм) пина (мм)		3,2 350				
Карт. коробка Ве	с нетто/eg. (kг)	4,7	4,5				

Идентификационное обозначение: 7016-1 / CONARC 52

Цвет торца электрода: черный

Conarc® 52: Bep. RU 05

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь	
	Cm0, Cm2cn, Cm3cn, Cm4kn u gp.
Судостроительная сталь	
	Copma A, B, D, om AH32 go EH40
Трубная сталь	
	До К54 (вкл.), корень шва — до К60
	X42, X46, X52, X60 no API 5L
Сталь для бойлеров и сосудов выс. давления	
	18K, 20K, 16FC, 10F2C u gp.
Ответственные конструкции	
	17Г1С, 09ГС, 10ХСНД, 10Г2С1 u gp.

ДАННЫЕ ПО Р	АСХОДУ							
Размеры guaм. х длина (мм)	Tok (A)	Pog moka	Время горения дуги - на элект	Тепловложение прод при максимал	Производи- тельность наплавки ьном токе -	Bec / 1000 um.	Шт. электродов на кг напл.	Кг электродов на кг наплавленного
			(c)*	Е (кДж)	H (kz/4)	(kz)	металла	металла 1/N
2,5x350 3,2x350	50-80 60-120	DC+ DC+	59 68	100,6 179,9	0,71 1,02	18,5 30,3	86 52	1,59 1,57

^{*}Остаток электрода 35 мм

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ									
Диаметр			Пространс	твенные положения (cBapku				
(мм)	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем			
2,5	85A	85A	85A	75A	85A	55A			
3,2	120A	115A	115A	115A	115A	115A			

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из упаковки электроды нужно прокалить в течение 2-4 часов при 350 $\pm 25^{\circ}$ С

КЛАССИФИКАЦИЯ

AWS A5.1 : E7016-1

ISO 2560-A : E 42 5 B 12 H5 FOCT 9467-75 mun 350A

ОБШЕЕ ОПИСАНИЕ

Электрод с основным видом покрытия для сварки углеродистых и низколегированных конструкционных сталей с пределом прочности до 540 МПа. Высокие показатели ударной вязкости металла шва при температуре -40°С. Высокие сварочно-технологические свойства при выполнении как заполняющих и облицовочных слоев, так и корня шва. Сварка во всех пространственных положениях, кроме сверху-вниз. Содержание диффузионного водорода в металле шва менее 5 мл/100г.

Используется для сварки кольцевых швов неповоротных стыков нефте-газопроводов различных условий прокладки из труб с классом прочности до К54 (включительно). Хорошо зарекомендовал себя при сварке корня шва труб классом прочности до К60.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME PA/16

AC/DC +/-

химический	СОСТАВ НАПЛА	ВЛЕННОГО МЕТЛ	АЛЛА		
С	Mn	Si	S	Р	Содержание диффуз. Водорода
0,06	1,3	0,4	0,015	0,018	3 мл./100 гр.

ПС	текучести (МПа) мин. 400 мин. 420 520	(М і мин. 500-	ности Па) . 490 -640 75	удлинение - (%) мин. 22 мин. 20 28	- 20°C 140	- 46°С мин. 27 130	- 50°С мин. 47 100
ПС	мин. 420	500	-640	мин. 20	140		
ПС	520	57	75	28	140	130	100
етр (мм)	2,5	3,2	4,0				
a (mm)	350	350	450				
emmo/eg. (ka	2) 4,7	4,5	5,6				
9	(мм) mmo/eg. (k	[MM] 350 mmo/eg. [k2] 4,7	[MM] 350 350 mmo/eg. [kz] 4,7 4,5	[MM] 350 350 450 mmo/eg. [kz] 4,7 4,5 5,6	[MM] 350 350 450 mmo/eg. [kz] 4,7 4,5 5,6	(MM) 350 350 450 mmo/eg. (kz) 4,7 4,5 5,6	(MM) 350 350 450

СВАРИВАЕМЫЕ МАТЕРИАЛЫ	
Класс прочности стали / Код	Tun
Конструкционная сталь	
	Cm0, Cm2cn, Cm3cn, Cm4kn u gp.
Судостроительная сталь	
	Copma A, B, C, D om AH32 go EH40
Трубная сталь	
	До К54 (вкл.), корень шва — до К60
	X42, X46, X52, X60 no API 5L
Сталь для бойлеров и сосудов выс. давления	
	18K, 20K, 16FC, 10F2C u gp.
Ответственные конструкции	
	17Г1С, 09Г2С, 10ХСНД, 10Г2С1 u gp.

ДАННЫЕ ПО І	РАСХОДУ							
Размеры guaм. х длина (мм)	Tok (A)	Pog moka	Время горения дуги - на электро (c)*	Тепло- вложение og при максим E (кДж)	Производи- тельность наплавки альном токе - Н (кг/ч)	Bec / 1000 wm. (kz)	Шт. электродов на кг напл. металла	Кг электродов на кг наплавленного металла 1/N
2,5x350 3,2x350 4,0x450	40-80 70-120 100-160	DC+ DC+	59 68	100,6 179,9	0,71 1,02	18,5 30,3	86 52	1,59 1,57

^{*}Остаток электрода 35 мм

ОПТИМАЛЬН	НЫЕ РЕЖИМЬ	Ы СВАРКИ ЗА	хочп хишокнпопа	одов		
Диаметр		Просп	ранственные полож	кения свар	ku	
[мм]	PA/1G	PC/2G	PF/3G на подъем	PE/4G	PH/5G на подъем	
2,5	75A	70A	75A	70A	75A	
3,2	100A	110A	100A	100A	100A	
4,0	150A	140A	130A	125A	125A	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

После извлечения из упаковки электроды нужно прокалить в течение 2-4 ч. при 350 \pm 25°C

FOCT : 9466, 9467

<u> 3 60- Conarc 74- d -УД</u> ТУ : 1272-148-27286438-2015 E517 - 526

AWS A5.5 : E8018 - G

ОБЩЕЕ ОПИСАНИЕ

Электроды Conarc 74 предназначены для сварки углеродистых и низколегированных конструкционных сталей с пределом прочности до 588 МПа с повышенными требованиями к механическим свойствам металла шва при низких температирах.

Электроды Conarc 74 предназначены для сварки и ремонта заполняющих и облицовочных слоев шва труб прочностных классов от K55 go K60.

Область применения: сварка нефте- и газопроводов, строительство оффшорных сооружений, судостроение, сварка сосудов высокого давления и других металлоконструкций.

РОДТОКА ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ DC+ ISO/ASME PA/1G, 1F PR/2F PC/2G

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

NAKS: в процессе утверждения

химический со	СТАВ НАПЛАВЛЕН	НОГО МЕТАЛЛА, %			
С	Mn	Si	Ni	Р	S
0,03-0,10	1,4-1,9	0,15-0,75	0,7-1,0	≤0,020	≤0,010

МЕХАНИЧЕСКИ	МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА, НЕ МЕНЕЕ							
Свойства	наплавленного	металла при	Работа удара при испытании наплавленного металла					
	растяжении	<u> </u>	на ударный изгиб					
Предел прочности, МПа Rm	Предел mekyчести, МПа	Относительное удлинение, %	Температура испытания, °С	Среднее значені для трех образц с V-образным надрезом, Дж	ов для трех образцов с U-образным			
588-720	≥515	≥20	-60	≥47	≥80			
ВИДЫ УПАКОВ	КИ							
Диаметр, м	М	2,5	3,2	4,0	5,0			
Длина, мм		350	350	450	450			
Bec нетто / yna	k., kz	4,7	4,5	5,6	5,6			
Артикул	EDI	R01449	EDR01450	EDR01451	EDR01452			
РЕКОМЕНДУЕМ	1ЫЕ РЕЖИМЫ C	ВАРОЧНОГО ТОКА						
Номинальны	ый диаметр эле	kmpoga, мм	2,5	3,2	4,0 5,0			
Сила	moka npu c8ap	ke, A	55-80	80-145 120) -185 180-240			

КЛАССИФИКАЦИЯ

ΓΟCT : 9466, 9467

TY : 1272-094-27286438-2012

ОБЩЕЕ ОПИСАНИЕ

Электрод общего применения для ручной дуговой сварки конструкций из углеродистых марок сталей с содержанием углерода до 0,25% во всех пространственных положениях, кроме вертикального на спуск.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME

РF/5G на подъем

Переменный / постоянный mok обратной полярности (AC/DC+)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС: Ø3, 4, 5мм – ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА											
С	Mn	Si	S	Р							
не более 0,10	0,55-0,80	не более 0,2	не более 0,040	не более 0,045							

МЕХАНИЧЕСКИЕ СВОЙСТВА	НАПЛАВЛЕННОГО МЕТА	ΑΠΠΑ				
Временное conpomuвление, МПа			mypa ıuŭ, °C	Ударная вязкость, КСИ Дж/см2		
450	18	+20		18 +20		78
ВИДЫ УПАКОВКИ						
Диаметр, мм	3,0	3,25	4,0	5,0		
Длина, мм	350	350	450	450		
Картонная коробка, кг	4,0	4,0	5,0	5,0		

ОБЩАЯ ТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kг
3,0/350	100-140	AC / DC+	8,0-8,5	1,6 - 1,65
3,25/350	120-150	AC / DC+	8,0-8,5	1,6 - 1,65
4,0 / 450	170-210	AC / DC+	8,0-8,5	1,6 - 1,65
5,0 / 450	190-270	AC / DC+	8,0-8,5	1,6 – 1,65

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ										
Quauamn			Положени	я при сварке						
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G cнизу-вверх	PE/4G	PF/5G cнизу-88epx				
3,0	100-140	100-140	100-130	90-110	100-120	90-110				
3,25	120-150	120-150	120-140	90-120	100-130	90-120				
4,0	170-210	170-210	160-190	140-150	140-170	140-150				
5,0	190-270	190-270	170-250	150-170	_	150-170				

ПРИМЕЧАНИЯ/РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 170-190°С в течение 40 минут.

<u>КЛА</u>ССИФИКАЦИЯ

LUCT : 9466, 9467

ТУ : 1272-081-27286438-2004

Высококачественный электрод общего применения для ручной дуговой сварки конструкций из углеродистых марок сталей по ГОСТ 380 (ст 0, ст 1, ст 2, ст 3 всех степеней раскисления) и ГОСТ 1050 (05 kn, 08 kn, 08 nc, 10 kn, 10 nc, 10, 15 kn, 15 nc, 15, 20, 20 kn, 20 nc) во всех пространственных положениях.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

ISO/ASME

на cnyck

РОДТОКА

Переменный mok / постоянный ток любой полярности (AC / DC)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

УкрСЕПРО

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА c Si S Mn не более 0,10 0,50-0,80 не более 0,2 не более 0,040 не более 0,045

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА										
Временное сопротивление, МПа		Относительное удлинение	Temnepamypa ucni °C	Ударная вязкость, КСИ Дж/см2						
450		18	+20		78					
ВИДЫУПАКОВКИ										
Диаметр, мм	2,0	2,5	3,0	4,0	5,0					
Длина, мм	300	350	350	450	450					
Картонная коробка, кг	3,5	3,5	4,0	5,0	5,0					

ОБЩАЯ ТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kz
2,0/300	50-90	AC / DC	7.0-8.0	1,65
2,5/350	60-110	AC / DC	7.0-8.0	1,65
3,0/350	90-140	AC / DC	7.0-8.0	1,65
4,0 / 450	160-220	AC / DC	7.0-8.0	1,65
5,0 / 450	190-240	AC / DC	7.0-8.0	1,65

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Положения при сварке								
Диаметр,				PF/3G	PG/3G		PF/5G	PG/5G
ММ	PA/1G	PB/2F	PC/2G	снизу-	сверху-	PE/4G	снизу-	сверху-
				вверх	вниз		вверх	вниз
2.0	50-90	50-90	50-85	50-70	70-90	50-70	50-70	70-90
2.5	60-110	60-110	60-110	60-90	80-100	70-100	60-90	80-100
3.0	90-140	90-140	90-140	80-110	100-130	90-120	80-110	100-130
4.0	160-220	160-220	160-220	140-180	_	_	140-180	_
5.0	180-240	180-240	170-240	160-200	_	_	-	_

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 110-130°С в течение 40 минут.

Возможно использование для сварки корневого шва металла большой толщины.

Рекомендуемое напряжение холостого хода переменного тока 45-55В.

<u>КЛА</u>ССИФИКАЦИЯ

LUCT : 9466, 9467

ТУ : 1272-018-46204995-99

Высококачественный электрод общего применения для ручной дуговой сварки низкоуглеродистых сталей с нормативным пределом прочности до 450 МПа (включительно) во всех пространственных положениях. Высокие сварочно-технологические свойства на поверхностях с плохой подготовкой кромок и сборкой.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

вверх

сверху-вниз

снизи-вверх

сверху-вниз

Переменный ток / постоянный mok обратной полярности (DC+/AC+)

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА, %

С	Si	Mn	Cr	Ni	Мо	W	S	Р
не более 0,10	не более 0,5	1,5 - 2,5	12,5-15,5	основа	13,5-16,0	3,5-4,5	не более 0.020	не более 0,030

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

HAKC

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛА ШВА:

	Временное	Относит.	Температура испытания,	Ударная
	сопротивление, МПа	удлинение, %	°C	вязкость, Дж/см2
Стандарты по ГОСТ	450	20	+20	78

зиды упаковки							
Диаметр (мм)	Длина (мм)	Картонная коробка, вес (k2)					
2,0	300	3,5					
2,5	300	3,5					
3,0	350	4,0					
4,0	450	5,0					
5.0	450	5.0					

Насколько нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

АДИКААТ КАЩАО			
Диаметр <i>!</i> Длина (мм)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kz наплавленного металла, kz
2,0 / 300	DC+/AC+	8,5-9,0	1,7
2,5/300	DC+/AC+	8,5-9,0	1,7
3,0 / 350	DC+/AC+	8,5-9,0	1,7
3,25/350	DC+/AC+	8,5-9,0	1,7
4,0 / 450	DC+/AC+	8,5-9,0	1,7
5,0 / 450	DC+/AC+	8,5-9,0	1,7

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

		Пространственные положения сварки									
_	Диаметр (мм)	PA/1G	PB/2F	PC/2G	PF/3G снизу- вверх	PG/3G cверху- вниз	PE/4G	PF/5G снизу- вверх	PG/5G cверху- вниз		
	2,0	50-90	50-90	50-70	50-70	70-90	50-70	50-70	70-90		
	2,5	60-110	60-110	60-90	60-90	80-100	70-100	60-90	80-100		
	3,0	80-110	80-110	80-110	80-110	100-130	90-120	80-110	100-130		
	3,25	110-160	110-160	100-140	100-140	110-150	100-140	100-140	110-150		
	4,0	100-170	100-170	140-150	140-150	150-170	140-170	140-150	150-170		

150-170

ПРИМЕЧАНИЯ / РЕКОМЕНЛАЦИИ ПО ПРИМЕНЕНИЮ

130-210 130-210 150-170

5,0

Прокалка перед сваркой: 100-120°С в течение 1 часа.

150-170

M C M C

LUCT : 9466, 9467

ТУ : 1272-064-27286438-2003

ОБЩЕЕ ОПИСАНИЕ

Электроды предназначены для сварки ответственных конструкций из углеродистых и низколегированных марок сталей, когда к металлу сварных швов предъявляют повышенные требования по пластичности и ударной вязкости. Рекомендуются для заварки дефектов трубопроводов сетей водоснабжения и теплоснабжения при проведении ремонтных работ, при сквозных повреждениях трубопровода, находящегося под остаточным давлением воды до 1 атм.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME PA/1G

сверху-вниз

Переменный ток / постоянный mok обратной полярности (DC+/AC+)

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА, %

С	Si	Mn	S	Р	
не более 0,11	0,15- 0,45	0,5 - 0,8	не более 0,030	не более 0,040	

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛА ШВА

Временное сопротивление разрыви МПа (кгс/мм2)	Относительное удлинение (%)	Ударная вязкость ан, Дж/см2 (кгсм/см2)		
500-610 (50-61)	22	85 (8,5)		

ВИДЫ УПАКОВКИ			
Диаметр (мм)	Длина (мм)	Картонная коробка, вес (кг)	
2,0	300	3,5	
2,5	300	3,5	
3,0	350	4,0	
3,25	350	4,0	
4,0	400	5,0	
5,0	400	5,0	

ΜΓΜ-50K

АДИКААТ КАЩАС			
Диаметр / длина (мм)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kг
2,0/300	DC+/AC+	8,7	1,8
2,5/300	DC+/AC+	8,7	1,8
3,0/350	DC+/AC+	8,7	1,8
3,25/350	DC+/AC+	8,7	1,8
4,0 / 450	DC+/AC+	8,7	1,8
5,0 / 450	DC+/AC+	8,7	1,8

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОЕ

	Пространственные положения сварки								
PA/1G	PB/2F	PC/2G	PF/3G снизу-вверх	PE/4G	G/5G сверху-вниз				
50-70	50-70	50-70	50-70	50-80	50-70				
70-100	70-100	60-90	60-90	80-100	60-90				
80-120	80-120	70-100	70-100	70-100	70-100				
100-140	100-140	90-130	90-130	100-140	90-130				
140-190	140-190	130-140	130-140	140-170	130-140				
190-240	190-240	160-200	160-200	_	160-200				
	50-70 70-100 80-120 100-140 140-190	PA/1G PB/2F 50-70 50-70 70-100 70-100 80-120 80-120 100-140 100-140 140-190 140-190	PA/1G PB/2F PC/2G 50-70 50-70 50-70 70-100 70-100 60-90 80-120 80-120 70-100 100-140 100-140 90-130 140-190 130-140	PA/1G PB/2F PC/2G PF/3G снизу-8верх 50-70 50-70 50-70 50-70 70-100 70-100 60-90 60-90 80-120 70-100 70-100 70-100 100-140 100-140 90-130 90-130 140-190 140-190 130-140 130-140	PA/1G PB/2F PC/2G PF/3G CHU3Y-88epx PE/4G 50-70 50-70 50-70 50-70 50-80 70-100 70-100 60-90 60-90 80-100 80-120 80-120 70-100 70-100 70-100 100-140 100-140 90-130 90-130 100-140 140-190 140-190 130-140 130-140 140-170				

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 90-110°С в течение 1 часа.

MP-3

КЛАССИФИКАЦИЯ

ΓΟCT : 9466, 9467

TY : 1272-022-46204995-99

ОБШЕЕ ОПИСАНИЕ

Электрод общего применения для ручной дуговой сварки во всех пространственных положениях, кроме вертикальной сварки на спуск, углеродистых сталей с массовой долей углерода до 0,25%.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME

PF/4G

Переменный или постоянный ток обратной полярности (AC / DC+)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

HAKC (\emptyset 3, 4, 5 MM - Π TO, Ω XHB Π);

PMPC, kamezopuя 2;

УkpСЕПРО;

ФС ЭТАН (no ОСТ 5.9224-75).

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА

ANIIIN LECKING COCKETING TO THE TRANSPORT								
С	Mn	Si	S	Р				
не более 0,12	0,5-0,8	0,07-0,2	не более 0,04	не более 0,045				

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА								
Временное сопротивление, МПа		Относительное удлинение	Температура испо °С	Ударная вязкость, КСИ Дж/см2				
450		18	+20	78				
видыупаковки								
Диаметр, мм	2,0	2,5	3,0	4,0	5,0			
Длина, мм	300	300	350	450	450			
Картонная коробка, кг	3,5	3,5	4,0	5,0	5,0			

MP-3

ОБЩАЯТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kz
2,0/300	50-90	AC / DC+	8,0-8,5	1,7
2,5/350	60-110	AC / DC+	8,0-8,5	1,7
3,0/350	80-110	AC / DC+	8,0-8,5	1,7
4,0 / 450	100-170	AC / DC+	8,0-8,5	1,7
5,0 / 450	130-210	AC / DC+	8,0-8,5	1,7

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Quanama		Положения при сварке							
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G снизу-вверх	PE/4G	PF/5G снизу-вверх			
2.0	50-90	50-90	50-70	50-70	50-70	50-70			
2.5	60-110	60-110	60-90	60-90	70-100	60-90			
3.0	80-110	80-110	70-100	70-100	70-100	70-100			
4.0	100-170	100-170	90-150	90-150	80-140	90-150			
5.0	130-210	130-210	110-180	110-180	_	110-180			

ПРИМЕЧАНИЯ/РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 150-180°С в течение 40-60 минут.

MP-3C

<u>КЛА</u>ССИФИКАЦИЯ

LUCT : 9466, 9467

ТУ : 1272-094-27286438-2012

Высококачественный электрод общего применения для ручной дуговой сварки конструкций из углеродистых марок сталей по ГОСТ 380 (ст 0, ст 1, ст 2, ст 3 всех степеней раскисления) и ГОСТ 1050 (05 kn, 08 kn, 08 nc, 10 kn, 10 nc, 10, 15 kn, 15 nc, 15, 20, 20 kn, 20 nc) во всех пространственных положениях.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

Переменный mok / постоянный ток любой полярности (AC / DC)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС: Ø3, 4, 5мм – ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК.

DC/2G

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА c Si S Mn не более 0,10 0,5-0,8 не более 0,3 не более 0,04 не более 0,045

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА									
Временное сопротивление, МПа	Относительное удлинение		Температура испытані °C	ıŭ. J.	Ударная вязкость, КСИ Дж/см2				
450	22		+20		78				
ВИДЫ УПАКОВКИ									
Диаметр, мм	2,0	2,5	3,0	4,0	5,0				
Длина, мм	300	350	350	450	450				
Картонная коробка, кг	3,5	3,5	4,0	5,0	5,0				

MP-3C

ОБЩАЯ ТАБЛИЦА				
Диаметр <i> /</i> Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kz
2,0/300	50-90	AC / DC	7.0-8.0	1,65
2,5/350	60-110	AC / DC	7.0-8.0	1,65
3,0/350	90-140	AC / DC	7.0-8.0	1,65
4,0 / 450	160-220	AC / DC	7.0-8.0	1,65
5,0 / 450	180-260	AC / DC	7.0-8.0	1,65

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр,	Положения при сварке								
мм	PA/1G	PB/2F	PC/2G	PF/3G снизу-вверх	PG/3G сверху-вниз	PE/4G	PF/5G снизу-вверх	PG/5G сверху-вниз	
2.0	50-90	50-90	50-85	50-70	70-90	50-70	50-70	70-90	
2.5	60-110	60-110	60-110	60-90	80-100	70-100	60-90	80-100	
3.0	90-140	90-140	90-140	80-110	100-130	90-120	80-110	100-130	
4.0	160-220	160-220	160-220	140-180	_	_	140-180	_	
5.0	180-260	180-260	170-240	160-200	_	_	_	_	

ПРИМЕЛУНИЯ / РЕКОМЕНЦУПИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 110-130°С в течение 40 минут.

<u>КЛА</u>ССИФИКАЦИЯ

ΓΟCT : 9466, 10052

TY : 1273-010-46204995-99

OFILIFE ОПИСАНИЕ

Электрод для ручной дуговой сварки литья и проката из высоколегированных сталей марок 20X23H13, 20X23H18 и им подобных, когда к металлу шва предъявляются высокие требования относительно стойкости к межкристаллитной коррозии. Могут быть использованы для сварки конструкций из стали марки 20X25H2OC2 и углеродистых сталей со сталями аустенитного класса.

Сварка во всех пространственных положениях, кроме вертикального на спуск.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

Постоянный ток обратной полярности (DC+)

ISO/ASME

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС: Ø3.0, 4.0 мм – KO, НГДО, ОХНВП;

УкрСЕПРО.

химическийс	ОСТАВ НАПЛ	АВЛЕННОГО МЕТА	АЛЛА			
С	Mn	Si	Ni	Cr	S	Р
не более 0,12	1,0-2,5	не более 1,0	11,5-14,0	22,5-27,0	не более 0,02	не более 0,030

МЕХАНИЧЕСКИЕ СВОИСТВА НАПЛАВЛЕННОГО МЕТАЛЛА							
Временное conpomuвление, МПа	Относит. удлинение, %	Ударная вязкость, Дж/см2, КСU		Температура испытаний °С			
540	25	88		+20			
виды упаковки							
Диаметр, мм	2,0	3,0	4,0	5,0			
Длина, мм	300	350	450	450			
Картонная коробка, кг	3,5	4,0	5,0	5,0			

03Л-6

ОБЩАЯ ТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kz наплавленного металла, kz
2,0/300	40-60	DC+	11,5	1,6
3,0/350	60-80	DC+	11,5	1,6
4,0 / 450	120-140	DC+	11,5	1,6
5,0 / 450	140-160	DC+	11,5	1,6

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ							
			Положени	я при сварке			
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PF/5G на подъем	
2,0	40-60	40-60	50-70	50-70	50-70	50-70	
3,0	60-80	60-80	70-90	70-90	70-90	70-90	
4,0	120-140	120-140	100-125	100-125	100-125	100-125	
5,0	140-160	140-160	135-160	135-160	_	135-160	

Примелуний / Бекоменцупии по применению

Прокалка перед сваркой: 330-350°С в течение 1 часа.

ТМЛ-1У

<u>КЛА</u>ССИФИКАЦИЯ

LUCT : 9466, 9467

ТУ : 1272-049-27286438-2002

Электрод для ручной дуговой сварки паропроводов из сталей марок 12МХ, 15МХ, 15Х1М1Ф и 20ХМФЛ, работающих при температуре до 540°С, и элементов поверхностей нагрева из сталей марок 12X1МФ, 12Х2МФСР и 12Х2МФБ независимо от рабочей температуры. Сварка во всех пространственных положениях, кроме вертикального на спуск.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME

Постоянный ток обратной полярности (DC+)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

HAKC: Ø3.0, 4.0, 5.0 mm: KO, ΟΧΗΒΠ;

УкрСЕПРО.

химический	СОСТАВ НАПЛА	\ВЛЕННОГО МЕТ <i>А</i>	ANNA			
С	Mn	Si	Cr	Мо	S	Р
0.06-0.12	0.5-0.9	0.15-0.40	0.8-1.2	0.4-0.7	не более 0.025	не более 0.035

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА							
Временное conpomuвление, МПа	Термообработка образцов, °C	Относительное удлинение	Ударная вязкость, Дж/см2, КСU	Температура испытаний °С			
470	725	18	88,2	+20			
ВИДЫУПАКОВКИ							
Диаметр, мм	3,0		4,0	5,0			
Длина, мм	350		450	450			
Картонная коробка, І	k2 4,0		5,0	5,0			

ТМЛ-1У

ОБЩАЯ ТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kz наплавленного металла, kz
3,0 / 350	90-115	DC+	9,0	1,5
4,0 / 450	130-170	DC+	9,0	1,5
5,0 / 450	170-200	DC+	9,0	1,5

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮ	

			Положени			
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G	PE/4G	PF/5G
	r A/ IU	F D/ZI	F C/20	на подъем	F L/40	на подъем
3.0	90-115	90-115	75-100	75-100	60-90	75-100
4.0	130-170	130-170	110-140	110-140	100-120	110-140
5.0	170-200	170-200	140-170	140-170	_	140-170

ПРИМЕЧАНИЯ/РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 360-400°С в течение 1 часа.

Сварка производится короткой дугой по тщательно зачищенным поверхностям. Возможно кратковременное удлинение дуги без образования пор. Допускается сварка в узкую разделку с общим углом скоса кромок 15 градусов.

ТМЛ-3У

<u>КЛА</u>ССИФИКАЦИЯ

ΓΟCT : 9466, 9467

TY : 1272-46204995-2000

ОБЩЕЕ ОПИСАНИЕ

Электрод для ручной дуговой сварки паропроводов из сталей марок 12X1MФ, 15X1M1Ф, 20XMФ и 15X1M1ФЛ, работающих при температуре до 570°С и сварки элементов поверхностей нагрева из сталей марок 12X1МФ, 12X2МФСР и 12X2МФБ независимо от рабочей температуры, а также для заварки дефектов элементов конструкций из этих марок сталей.

Сварка во всех пространственных положениях, кроме вертикального на спуск.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME PA/16

Постоянный ток обратной полярности (DC+)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

HAKC: Ø3.0, 4.0, 5.0 mm, KO, ΟΧΗΒΠ;

УкрСЕПРО.

химически	ий состав н	ІАПЛАВЛЕННО	ОГО МЕТАЛЛ	A			
С	Mn	Si	Cr	Mo	V	S	Р
0.06-0.12	0 5-0 9	0.15-0.40	0 8-1 25	0 4-0 7	0.1-0.3	не более О О25	не более О ОЗО

МЕХАНИЧЕСКИЕ СВОИС	ТВАНАПЛАВЛЕННОГ	О МЕТАЛЛА		
Временное	Термообработка	Относительное	Ударная вязкость,	Температура
сопротивление, МПа	образцов, °С	удлинение	Дж/см2, KCU	испытаний °С
490	725	16	78,5	+20
ВИДЫ УПАКОВКИ				
Диаметр, мм	3,0	4	4,0	5,0
Длина, мм	350	2	150	450
Картонная коробка, ка	4,0	!	5,0	5,0

ТМЛ-3У

ОБЩАЯ ТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kz наплавленного металла, kz
3,0/350	90-115	DC+	9,5	1,5
4,0 / 450	130-170	DC+	9,5	1,5
5,0 / 450	170-200	DC+	9,5	1,5

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХО	рдов

Положения при сварке						
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G	PE/4G	PF/5G
	r A/ IU	F D/ZI	на подъем		F L/40	на подъем
3,0	90-115	90-115	75-100	75-100	60-90	75-100
4,0	130-170	130-170	110-140	110-140	100-120	110-140
5,0	170-200	170-200	140-170	140-170	_	140-170

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 380-400°С в течение 1 часа.

Сварка производится короткой дугой по тщательно зачищенным поверхностям. Возможно кратковременное удлинение дуги без образования пор.

РОДУКТЫ МГМ

TMY-21Y

классификация

ΓΟCT : 9466, 9467

TY : 1272-039-46204995-2000

ОБЩЕЕ ОПИСАНИЕ

Электрод для ручной дуговой сварки ответственных металлоконструкций и трубопроводов из углеродистых и низколегированных сталей энергетического оборудования тепловых и атомных электростанций. Сварка во всех пространственных положениях, кроме вертикального на спуск.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME

Постоянный mok обратной полярности (DC+)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

MENALUMIECUME CROMCERA HARIGAR GELILIOFO META GGA

НАК С: Ø3.0, 4.0 мм — K0, ОХНВП; УкрСЕПРО.

С Mn Si S P 0,07-0,12 0,7-1,0 0,20-0,43 не более 0,03 не более 0,035

MEXAHUAETKNE TRONT I RA	MEXAHUAECKUE CRONCI RA HAIIIYARIJEHHOI O METAJIJIA						
Временное	Относительное	Ударная вязкость, Дж/	Температура испытаний				
сопротивление, МПа	удлинение, %	см2, КСИ	°C				
490	320	127	+20				
ВИДЫ УПАКОВКИ							
Диаметр, мм	3,0	4,0	5,0				
Длина, мм	350	450	450				
Картонная коробка, кг	4,0	5,0	5,0				

TMY-21Y

ОБЩАЯ ТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kz наплавленного металла, kz
3,0 / 350	90-115	DC+	9,0	1,7
4,0 / 450	130-170	DC+	9,0	1,7
5,0 / 450	170-200	DC+	9,0	1,7

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ						
Положения при сварке						
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G	PE/4G	PF/5G
	FA/IU	F D/ZI	1 6/20	на подъем	F L/40	на подъем
3.0	90-115	90-115	75-100	75-100	60-90	75-100
4.0	130-170	130-170	110-140	110-140	100-120	110-140
5.0	170-200	170-200	140-170	140-170	_	140-170

ПРИМЕЧАНИЯ/РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 360-400°С в течение 1 часа.

РОДУКТЫ МГМ

УОНИ-13/45

<u>КЛА</u>ССИФИКАЦИЯ

ΓΟCT : 9466, 9467

TY : 1272-024-46204995-99

ΠΕΙΙΙΕΕ ΠΠИΓ ΔΗΜΕ

Высококачественный электрод для ручной дуговой сварки особо ответственных конструкций из углеродистых и низколегированных сталей, когда к металлу сварного шва предъявляются повышенные требования относительно пластичности и ударной вязкости. Сварка во всех пространственных положениях, кроме вертикального на спуск.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME

Постоянный ток обратной полярности (DC+)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС, Ø 3.0, 4.0, 5.0 мм — КО, МО, НГДО, ОХНВП, ПТО; РМРС (3H10); УкоСЕПРО.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА

С	Mn	Si	S	Р
не более 0,11	0,35-0,7	0,12-0,25	не более 0,03	не более 0,035

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА

Временное conpomивление, МПа	Предел mekyчести, МПа	Относительное удлинение	Ударная вязкость, Дж/ см2	Paбoma ygapa KV, Дж	Температура испытаний, °С
410	305	22	147		+20
			60	47	-20
ВИДЫ УПАКОВКИ					
Диаметр, мм	2,0	2.5	3.0	4.0	5.0
Длина, мм	300	350	350	450	450
Картонная коробка, І	k 2 3,5	3,5	4,0	5,0	5,0

УОНИ-13/45

ОБЩАЯ ТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kг
2,0/300	35-60	DC+	9,0-10,0	1,4
2,5/350	40-70	DC+	9,0-10,0	1,4
3,0 / 350	80-100	DC+	9,0-10,0	1,4
4,0 / 450	130-160	DC+	9,0-10,0	1,4
5,0 / 450	180-210	DC+	9,0-10,0	1,4

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PF/5G на подъем
2,0	35-60	35-60	35-55	30-50	30-50	30-50
2,5	40-70	40-70	40-65	40-60	40-60	40-60
3,0	80-100	80-100	75-90	70-90	70-90	70-90
4,0	130-160	130-160	120-150	130-140	130-140	130-140
5,0	180-210	180-210	_	160-180	-	160-180

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 300-350°С в течение 1 часа.

Сварка производится предельно короткой дугой, по тщательно зачищенным поверхностям.

ІРОДУКТЫ МГМ

УОНИ-13/55

<u>КЛА</u>ССИФИКАЦИЯ

ΓΟCT : 9466, 9467

TY : 1272-024-46204995-99

UPILIEE UUNC VHNE

Высококачественный электрод для ручной дуговой сварки особо ответственных конструкций из углеродистых и низколегированных сталей, когда к металлу сварного шва предъявляются повышенные требования по пластичности и ударной вязкости. Рекомендуются для сварки конструкций, работающих в условиях пониженных температур и знакопеременных нагрузках. Сварка во всех пространственных положениях кроме вертикального сверху вниз.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME PA/16

Постоянный ток обратной полярности (DC+)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС: Ø 3.0, 4.0, 5.0 мм — ГО, КО, МО, НГДО, ОХНВП, ПТО;

PMPC (3YH10); YkpCEΠPO.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА

С	Mn	Si	S	Р
не более 0,11	0,6-1.2	0.2-0.5	не более 0,03	не более 0,035

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПЛАВЛЕННОГО МЕТАЛЛА							
Временное conpomuвление, МПа	Предел mekyчести, МПа	Относительное удлинение	Ygapнaя вязkocmь, Дж/см2	Paбoma ygapa KV, Дж	Температура испытаний, °С		
490	375	20	127		+20		
			60	47	-20		
			мин. 29		-40		
виды упаковки							
Диаметр, мм	2,0	2.5	3.0	4.0	5.0		
Длина, мм	300	350	350	450	450		
Картонная короб	ka, kz 3,5	3,5	4,0	5,0	5,0		

УОНИ-13/55

ОБЩАЯТАБЛИЦА				
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kz наплавленного металла, kz
2,0/300	35-60	DC+	8,5-9,5	1,4
2,5/350	40-70	DC+	8,5-9,5	1,4
3,0/350	80-100	DC+	8,5-9,5	1,4
4,0 / 450	130-160	DC+	8,5-9,5	1,4
5,0 / 450	180-210	DC+	8,5-9,5	1,4

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

	Положения при сварке							
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PF/5G на подъем		
2,0	35-60	35-60	35-55	30-50	30-50	30-50		
2,5	40-70	40-70	40-65	40-60	40-60	40-60		
3,0	80-100	80-100	75-90	70-90	70-90	70-90		
4,0	130-160	130-160	120-150	130-140	130-140	130-140		
5,0	180-210	180-210	_	160-180	_	160-180		

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 300-350°C в течение 1 часа.

Сварка производится предельно короткой дугой по тщательно зачищенным поверхностям.

РОДУКТЫ МГМ

УОНИИ-13/55

КЛАССИФИКАЦИЯ

ΓΟCT : 9466, 9467 ΟCT : 5.9224-75

TY : 1272-136-27286438-2009

ОБШЕЕ ОПИСАНИЕ

Высококачественный электрод для ручной дуговой сварки конструкций из стали марок 10XCH2Д и 48KC, а также для сварки этих марок со сталями Cm3, BCm3, 09F2, 10F2C1Д-35, 10F2C1Д-40, 10XCHД, MC-1, Cm3c, 10, 15, 20 и поковками из углеродистых и дисперсионно-упрочняемых сталей или сварки литья и поковок между собой. Сварка во всех пространственных положениях, кроме вертикального на спуск.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME

0,65-1.2

ΜΕΧ ΔΗΝΎΕΓΚ ΝΕ ΓΒΟЙΓΤΒΑ Η ΔΠΩΑΒΩΕΗΗΟΓΟ ΜΕΤΑ ΩΩΑ

Постоянный mok обратной полярности (DC+)

не более 0,03

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

HAKC: Ø 3.0, 4.0, 5.0 MM, CK, KCM;

не более 0,11

ФС ЭТАН.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА C Mn Si S P

0.18 - 0.5

не более 0,03

MEXAIN IECKNE COONCIL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110101.12171313			
Временное сопротивление, МПа	Относительное идлинение, %		Ударная вязкость Дж/см2, КСИ	, Темпера	тура испытаний, °С
530	20		130		+20
ВИДЫ УПАКОВКИ	_	-	_	-	
Диаметр, мм	2,0	2,5	3,0	4,0	5,0
Длина, мм	300	350	350	450	450
Картонная коробка, кг	3,5	3,5	4,0	5,0	5,0

УОНИИ-13/55

ОБЩАЯТАБЛИЦА	АДИПЛААТ РА							
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kг				
2,0/300	55-65	DC+	8,5-9,5	1,6				
2,5/350	70-90	DC+	8,5-9,5	1,6				
3,0/350	100-130	DC+	8,5-9,5	1,6				
4,0 / 450	160-210	DC+	8,5-9,5	1,6				
5,0 / 450	220-280	DC+	8,5-9,5	1,6				

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

	Положения при сварке						
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PF/5G на подъем	
2,0	55-65	55-65	55-65	55-65	55-65	55-65	
2.5	70-90	70-90	60-80	60-80	60-80	60-80	
3.0	100-130	100-130	90-120	90-120	90-120	90-120	
4.0	160-210	160-210	130-160	130-160	130-160	130-160	
5.0	220-280	220-280	160-210	160-210	_	160-210	

ПРИМЕЧАНИЯ / РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 350-400°C в течение 1-2 часов.

Сварка производится предельно короткой дугой по тщательно зачищенным поверхностям.

РОДУКТЫ МГМ

УОНИИ-13/55R

<u>КЛА</u>ССИФИКАЦИЯ

ΓΟCT : 9466, 9467

TY : 1272-082-27286438-2004

ОБЩЕЕ ОПИСАНИЕ

Высококачественный электрод для ручной дуговой сварки стыковых и тавровых соединений ответственных конструкций из углеродистых и низколегированных сталей с пределом текучести до 355 МПа включительно, соответствующих категориям А, В, D, А32, В32, D32, А36 и D36 по ГОСТ 5521 и Правилам РМРС. Сварка во всех пространственных положениях, кроме вертикального на спуск.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASME

Постоянный mok обратной полярности (DC+)

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

MENALUMIECUME CROMCTRA META GGA III

PMPC (3Y40H10), YkpCEΠPO.

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА								
С	Mn	Si	S	Р				
не более 0,11	0,9-0-1,35	0,25-05	не более 0,030	не более 0,030				

МЕХАНИЧЕСКИЕ СВОИСТВА М Временное Предел conpomuвление, mekyчести МПа МПа		ГАЛЛА ШВА				
		Относит. Относит. сужение, % удлинение, %		Ygapнaя вязкость, Дж/см2, KCU	Paбoma ygapa KV, Дж	Температура испытаний, °С
450-660	не менее 420	не менее 65	не менее 24	не менее 70	не менее 47	-20
виды упаковкі	И					
Диаметр, мм		2,5	3,0	4,	0	5,0
Длина, мм		350	350	45	0	450
Картонная короб	ika, kz	3,5	4,0	5,	0	5,0

УОНИИ-13/55R

ОБЩАЯТАБЛИЦА					
Диаметр / Длина (мм)	Tok (A)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kг	
2,5/350	70-90	DC+	8,0-8,5	1,7	
3,0/350	100-130	DC+	8,0-8,5	1,7	
4,0 / 450	160-190	DC+	8,0-8,5	1,7	
5,0 / 450	180-240	DC+	8,0-8,5	1,7	

ОПТИМАЛЬНЫЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ

Положения при сварке						
Диаметр, мм	PA/1G	PB/2F	PC/2G	PF/3G на подъем	PE/4G	PF/5G на подъем
2,5	70-90	70-90	60-90	60-90	60-90	60-90
3,0	100-130	100-130	90-120	90-120	90-120	90-120
4,0	160-190	160-190	130-160	130-160	130-160	130-160
5,0	180-240	180-240	160-200	160-200	_	160-200

ПРИМЕЧАНИЯ/РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 360-400°С в течение 2 часов.

Рекомендуемое напряжение холостого хода источника постоянного тока не менее 65В

Применение электродов в судостроении регламентируется отраслевым стандартом РД5Р.9083.

KUVLCNWNKVIINA

ΓΟCT : 9466, 9467

TY : 1272-252-01124323-2008

ОБЩЕЕ ОПИСАНИЕ

Электроды предназначены для наплавки и ремонта деталей грузовых вагонов.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

РОДТОКА

ISO/ASMF PA/1G

PB/2F

Постоянный ток обратной полярности (DC+)

ХИМИЧЕСКИЙ СОСТАВ НАПЛАВЛЕННОГО МЕТАЛЛА, %							
С	Si	Mn	Cr	V	Ti	S	Р
Не более 0,15	0,5-0,9	1,1-1,5	0,5-0,8	0,04-0,10	0,01-0,08	Не более 0,030	Не более 0,040

Твёрдость НRС, металла после наплавки без термической обработки должна составлять 24-31.

ВИДЫ УПАКОВКИ			
Диаметр (мм)	Длина (мм)	Картонная коробка, вес (kг)	
3,0	350	4,0	
4,0	450	5,0	
5,0	450	5,0	

ЭЖТ-1

АДИЛААТ КАЩАО			
Диаметр / Длина (мм)	Pog moka	Коэффициент наплавки, г/А ч	Расход электродов на 1 kг наплавленного металла, kг
3,0 / 350	DC+	12,0-12,5	1,6
4,0 / 450	DC+	12,0-12,5	1,6
5,0 / 450	DC+	12,0-12,5	1,6

ОПТИМАЛЬНЫЕ РЕХ	ВОДОХОРП ХИДИНОПАЕ РЕЖИМЫ СВАРКИ ЗАПОЛНЯЮЩИХ ПРОХОДОВ					
(Lucy ampluu)	Пространственные положения сварки					
Диаметр (мм)	PA/1G	PB/2F				
3,0	120-160	120-160				
4,0	180-220	180-220				
5,0	260-280	260-280				

ПРИМЕЧАНИЯ/РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Прокалка перед сваркой: 370-390°С в течение 2 часов.

При сварке электрод рекомендуется наклонить на 20-40° от вертикали в направлении сварки (дуга направляется на ванни), чтобы не gonyckamb затекания шлака вперед дуги.

S2Mo

<u>КЛА</u>ССИФИКАЦИЯ

ΓΟCT : 2246-70

TY : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки низкоуглеродистых и низколегированных сталей повышенной и высокой прочности, сварки труб и металлоконструкций под слоем флюса.

Обеспечивает образование надежных и аккуратных швов, гарантирует стабильное горение дуги. Рядная намотка на кассетах К-300 и К-415, в мотках прямоугольного сечения МП-100 и упорядоченная крестобразная укладка в большегрузных бухтах Б-500 позволяет добиться стабильности размотки, снизить отходы проволоки и увеличить эксплуатационный срок оборудования.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ ВИД ЗАЩИТЫ Флюс PANG, PRIZE PCZG

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС (НГДО)

химическ	ий состав	проволоки	1, %		
С	Mn	Si	S	Р	Мо
0,06-0,10	0,95-1,20	0,05-0,20	≤0,005	≤0,012	0,45 - 0,65

ВИДЫ УПАКОВКИ									
Диаметр, мм	0,8	1,0	1,2	1,4	1,6	2,0	3,0	4,0	5,0
D200									
K300							Х	X	Х
K415							Х	X	Х
МП-100							Х	X	Х
Б-500							Х	Х	Х
Бочка «Ариадна»									

Do ma / paagma

^{*}Примечание: намотка проволоки диаметра 0,8 мм и 1,0 мм на D200 — послойная

<u>КЛА</u>ССИФИКАЦИЯ

ΓΟCT : 2246-70

TY : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки низкоуглеродистых и низколегированных сталей под слоем флюса и в газовой смеси. Обеспечивает образование надежных и аккуратных швов, гарантирует стабильное горение дуги. Рядная намотка на кассетах К-300 и К-415, в мотках прямоугольного сечения МП-100 и упорядоченная крестобразная укладка в большегрузных бухтах Б-500 позволяет добиться стабильности размотки, снизить отходы проволоки и увеличить эксплуатационный срок оборудования.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

видзашить

ISO/ASME

Χ

Флюс, газовая смесь 80% Ar + 20% CO₂

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

HAKC (Ø 2MM – KCM, CK), ΦC 3TAH

СОСТАВ ПРОВОЛОКИ %

С	Mn	Si	S	Р
0,06-0,09	0,8-1,1	≤0,06	≤0,008	≤0,012

Диаметр, мм	0,8	1,0	1,2	1,4	1,6	2,0	3,0	4,0
D200								
K300						X	X	x

K300	X	X	Х	>
K415	Х	Χ	Х	>
МП-100	Х	Χ	Х	>
Б-500	Х	Х	Х	X

5,0

X X

Χ

ОДУКТЫ МГМ

CB-08F2C

КЛАССИФИКАЦИЯ

ΓΟCT : 2246-70

TY : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки низкоуглеродистых и низколегированных сталей в углекислом газе и газовой смеси.

Обеспечивает образование надежных и аккуратных швов, гарантирует стабильное горение дуги.

Рядная намотка на кассетах К-300 и К-415, в мотках прямоугольного сечения МП-100 и упорядоченная крестобразная укладка в большегрузных бухтах Б-500 позволяет добиться стабильности размотки, снизить отходы проволоки и увеличить эксплуатационный срок оборудования.

Специализированная упорядоченная послойная укладка проволоки в упаковке «Ариадна» позволяет использовать роботизированные системы сварки и увеличить коэффициент использования сварочного оборудования за счёт уменьшения времени простоя из-за смены кассет.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

видзашить

ISO/ASME PA/1G,

CO₂ и газовая смесь 80% Ar + 20% CO₂,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

YkpCenpo, ΦC 3TAH.

PMPC [Ø 0.8-1.6MM - 2YMS [CO.]. 3YMS [Ar+CO.].

НАКС (Ø 0,8 мм, 1 мм, 1,2 мм, 1,6 мм, 2 мм, 3 мм, 4 мм, 5 мм - ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК; Ø 1,2 мм, 1,6 мм - КСМ);

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ. %

//////////////////////////////////////		1710 111 000	7101171, 70				
С	Mn	Si	S	Р	Мо	Ni	Cr
0,05-0,11	1,8-2,1	0,7-0,95	≤0,025	≤0,03	≤0,15	≤0,25	≤0,2

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛА ШВА, ТИПИЧНЫЕ ЗНАЧЕНИЯ:

Временное сопротивление, МПа	mek	редел учести, МПа	Отно удлинен		Температура испытания, °С	Работа удара KV при испытании н ударный изгиб, при сварке в смес газов, Дж				
≥400	≥400 ≥305		×2.	7	0		≥47			
2400	:	2303	≥22		-20		≥47			
ВИДЫУПАКОВКИ										
Диаметр, мм	0,8	1,0	1,2	1,4	1,6	2,0	3,0	4,0	5,0	
D200	Х	Х	х	Х	Х					
K300	Х	Х	Х	Х	Х	Х	X	х	Х	
K415						Х	X	х	Х	
МП-100						Χ	X	Х	Х	
Б-500						Χ	Х	Х	Х	
Бочка «Ариадна»		Х	Х	Х	Х	Χ				

Hackonoko нам известно, все сведения в этих таблицах были верны на момент публикации. На сайте www.lincolnelectric.ru Вы сможете найти самую последнюю информацию. Также на нашем сайте доступны спецификации безопасности.

С8-08ГА

LUCT · 2246-70

ТУ : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки низкоуглеродистых и низколегированных сталей в углекислом газе и газовой смеси. Обеспечивает образование надежных и аккуратных швов, гарантирует стабильное горение дуги. Рядная намотка на kaccemax K-300 и K-415, в мотках прямоугольного сечения МП-100 и упорядоченная крестообразная укладка в большегрузных бухтах Б-500 позволяет добиться стабильности размотки, снизить отходы проволоки и увеличить эксплуатационный срок оборудования.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

ISO/ASME

Флюс, газовая смесь 80% Ar + 20% CO,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС (Ø1,6мм, 2,4 мм, 3 мм — ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК; Ø 2 мм, 4 мм, 5 мм — КСМ, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК: Ø4 мм, 5 мм — НГДО) PMPC (Ø 3 mm, 4 mm, 5 mm - 2YTM (AH-47))

химический состав проволоки, %

C	Mn	Si	S	Р
0,06-0,09	0,8-1,1	≤0,06	≤0,008	≤0,012

МЕХ АНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛА IIIBA. ТИПИЧНЫЕ ЗНАЧЕНИЯ:

Временное сопротивление, МПа	meky	egeл чести, ИПа	Относип удлинение		мпература пытания, °С	Работа удара KV при испытании ударный изгиб, при сварке в смес газов, Дж			
≥400	≥	305	≥22		0		2	≥47	
ВИДЫ УПАКОВКИ									
Диаметр, мм	0,8	1,0	1,2	1,4	1,6	2,0	3,0	4,0	5,0
D200					Х				
K300					Х	Х	х	х	X
K415					Х	Х	х	х	X
МП-100						Х	х	х	X
Б-500						Х	х	х	X
Бочка «Ариадна»					Х	Х			

^{*}Примечание: намотка проволоки диаметра 0,8 мм и 1,0 мм на D200 — послойная

СВ-08ГНМ

LUCT · 2246-70

ТУ : 1227-058-27286438-2007

Применяется для сварки низкоуглеродистых и низколегированных сталей повышенной и высокой прочности, сварки труб и металлоконструкций под слоем флюса и в газовой смеси.

Обеспечивает образование надежных и аккуратных швов, гарантирует стабильное горение дуги.

Рядная намотка на kaccemax K-300 и K-415, в мотках прямоцгольного сечения МП-100 и упорядоченная крестообразная цкладка в большегрузных бухтах Б-500 позволяет добиться стабильности размотки, снизить отходы проволоки и увеличить эксплуатационный срок оборудования.

Специализированная ипорядоченная послойная икладка проволоки в unakoвke «Ариадна» позволяет использовать роботизированные системы сварки и увеличить коэффициент использования сварочного оборудования за счёт уменьшения времени простоя из-за смены кассет.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

видзашиты

Флюс, газовая смесь 80% Ar + 20% CO.

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС (Ø1,6мм – ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК, Ø3 мм, 4 мм, 5 мм – НГДО)

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ, % Mn ς

С	Mn	Si	S	Р	Мо	Ni	Cr
0,05-0,09	0,6-1,0	0,2-0,4	≤0,008	≤0,012	0,9-1,05	0,6-0,85	≤0,3

виды упаковки									
Диаметр, мм	0,8	1,0	1,2	1,4	1,6	2,0	3,0	4,0	5,0
D200					Х				
K300					Х	X	X	Х	X
K415						X	X	Х	X
МП-100						Х	X	Х	Х
Б-500						X	Х	Х	Х
Бочка «Ариадна»					Х	X			

^{*}Примечание: намотка проволоки диаметра 0,8 мм и 1,0 мм на D200 — послойная

Св-овгсмт

КЛАССИФИКАЦИЯ

ΓΟCT : 2246-70

TY : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки низкоуглеродистых и низколегированных сталей в газовой смеси.

Обеспечивает образование надежных и аккуратных швов и гарантирует стабильное горение дуги.

Рядная намотка на кассетах позволяет добиться стабильности размотки, снизить отходы проволоки и цвеличить эксплуатационный срок оборудования.

Специализированная упорядоченная послойная укладка проволоки в упаковке «Ариадна» позволяет использовать роботизированные системы сварки и увеличить коэффициент использования сварочного оборудования за счёт уменьшения времени простоя из-за смены кассет.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

випзашиты

Газовая смесь 80% Ar + 20% CO₃

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС (Ø1,2 мм – КСМ, ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК; Ø3 мм – ГО, КО, НГДО, ОТОГ, ОХНВП, ПТО, СК)

PF/4G

химическ	ий соста	в проволо	КИ, %							
C	Mn	Si	S	Р	М	ס				
0,06-0,11	1,0-1,3	0,4-0,7	≤0,025	≤0,03	0,2-	0,4				
виды упан	КОВКИ									
Диамет	пр, мм	0,8	1,0	1,2	1,4	1,6	2,0	3,0	4,0	5,0
D20	0	Х	Х	Х	Х	Х				
K30	0	Х	Х	X	Х	Х				
K41	5	Х	Х	Х	Х	Х				
МП-1	00									
Б-50	00					Х				
Бочка «Ар	иадна»		Х	Х	Х	Х				

^{*}Примечание: намотка проволоки диаметра 0,8 мм и 1,0 мм на D200 — послойная

РОДУКТЫ МГМ

СВ-08ХГСМА

КЛАССИФИКАЦИЯ

ΓΟCT : 2246-70

TY : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки теплоустойчивых и низколегированных сталей типа XM, а также металлоконстрикций в газовой смеси.

Обеспечивает образование надежных и аккуратных швов, гарантирует стабильное горение дуги.

Рядная намотка на кассетах К-300 и К-415, в мотках прямоугольного сечения МП-100 и упорядоченная крестобразная укладка в большегрузных бухтах Б-500 позволяет добиться стабильности размотки, снизить отходы проволоки и увеличить эксплуатационный срок оборудования.

Специализированная упорядоченная послойная укладка проволоки в упаковке «Ариадна» позволяет использовать роботизированные системы сварки и увеличить коэффициент использования сварочного оборудования за счёт уменьшения времени простоя из-за смены кассет.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

видзашиты

ISO/ASME PA/1

Газовая смесь 80% Ar + 20% CO

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

химический состав проволоки. %

НАКС (Ø1,2 мм – KO, MO, НГДО, ОТОГ, ОХНВП, Ø 2 мм, 2,5 мм – ГДО, KO, MO, НГДО, ОТОГ, ОХНВП, ПТО, СК)

	С	Mn	Si	S	Р	Мо	Ni	Cr			
	0,06-0,1	1,15-1,45	0,45-0,7	≤0,025	≤0,025	0,4-0,6	≤0,3	0,85-	1,15		
	виды уп	АКОВКИ									
	Диаме	тр, мм	0,8	1,0	1,2	1,4	1,6	2,0	3,0	4,0	5,0
	D2	200			х	X	Χ				
	K3	00			X	Х	Χ	Χ	Х	х	
1	K4	115						Χ	Χ	Х	
	МП	-100						Χ	Χ	Х	
	Б-!	500						Χ	Χ	Х	
	Бочka « <i>A</i>	\риадна»			Х	X	Х	Χ			

пРОДУКТЫ МГМ

Св-овхгсмфа

КЛАССИФИКАЦИЯ

ΓΟCT : 2246-70

TY : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки теплоустойчивых и низколегированных сталей типа XM, а также металлоконстрикций в газовой смеси.

Обеспечивает образование надежных и аккуратных швов и гарантирует стабильное горение дуги. Рядная намотка на кассетах К-300 и К-415, в мотках прямоугольного сечения МП-100 и упорядоченная крестобразная укладка в большегрузных бухтах Б-500 позволяет добиться стабильности размотки, снизить отходы проволоки и увеличить эксплуатационный срок оборудования.

Специализированная упорядоченная послойная укладка проволоки в упаковке «Ариадна» позволяет использовать роботизированные системы сварки и увеличить коэффициент использования сварочного оборудования за счёт уменьшения времени простоя из-за смены кассет.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

ВИДЗАШИТЬ

Газовая смесь 80% Ar + 20% CO₂,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

VINNIANTECKINĂ COCTA D EDODOGOKIA

НАКС (Ø1,2 мм, 1,6 мм, 2 мм, 2,5 мм, 3 мм – КО, МО, НГДО, ОТОГ, ОХНВП)

C Mn Si S P Mo Ni Cr 0,06-0,1 1,2-1,5 0,45-0,7 ≤0,025 ≤0,025 0.5-0.7 ≤0,3 0,95-1,2 ВИДЫ УПАКОВКИ Диаметр, мм 0,8 1,0 1,2 1,4 1,6 2,0 3,0 4, D200 x x x x x x x x K300 x	V 5 0,2-0,35
ВИДЫ УПАКОВКИ Диаметр, мм 0,8 1,0 1,2 1,4 1,6 2,0 3,0 4,0 D200 x x x	5 0,2-0,35
Диаметр, мм 0,8 1,0 1,2 1,4 1,6 2,0 3,0 4,0 D200 x x x x	
D200 x x x	
	0 5,0
K300 x x x x x	
K415 X X	
МП-100 х х х	(
Б-500 х х х	
Бочка «Ариадна» х х х х	

ІРОДУКТЫ МГМ

CB-08XM

КЛАСС ИФИКАЦИЯ

ΓΟCT : 2246-70

TY : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки теплоустойчивых и низколегированных сталей типа XM, а также металлоконструкций в газовой смеси.

Обеспечивает образование надежных и аккуратных швов и гарантирует стабильное горение дуги. Рядная намотка на кассетах К-300 и К-415, в мотках прямоугольного сечения МП-100 и упорядоченная крестобразная укладка в большегрузных бухтах Б-500 позволяет добиться стабильности размотки, снизить отходы проволоки и увеличить эксплуатационный срок оборудования.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

видзашить

ISO/ASME PA/1G,

Газовая смесь 80% Ar + 20% CO.,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС (Ø2 мм, – КО, МО, НГДО, ОТОГ, ОХНВП)

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ, %									
С	Mn	Si	S	P	Mo	Ni	Cr		
0,06-0,1	0,35-0,6	0,12-0,3	≤0,025	≤0,03	0,5-0,7	≤0,3	0,9-1,2		

ВИДЫ УПАКОВКИ									
Диаметр, мм	0,8	1,0	1,2	1,4	1,6	2,0	3,0	4,0	5,0
D200									
K300						х	х	Х	
K415						х	Х	Х	
МП-100						х	Х	Х	
Б-500						х	Х	Х	
Бочка «Ариадна»						X			

пРОДУКТЫ МГМ

СВ-08ХМФА

LOCE : 2246-70

ТУ : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки теплоустойчивых и низколегированных сталей типа ХМ, а также металлоконструкций в газовой смеси.

Обеспечивает образование надежных и аккуратных швов, гарантируют стабильное горение дуги.

Рядная намотка на kaccemax K-300 и K-415, в мотках прямоугольного сечения МП-100 и упорядоченная крестообразная укладка в большегрузных бухтах Б-500, позволяет добиться стабильности размотки, снизить отходы проволоки, увеличить эксплуатационный срок оборудования.

Специализированная упорядоченная послойная укладка проволоки в упаковке «Ариадна» позволяет использовать роботизированную систему сварки, увеличить коэффициент использования сварочного оборудования за счёт уменьшения времени простоя из-за смены кассет.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

ISO/ASME

Газовая смесь 80% Аг + 20% CO.,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС (Ø2 мм, 3 мм, 4 мм, – KO, MO, НГДО, ОТОГ, ОХНВП)

ХИМИЧЕСКИЙ СОСТАВ ПРОВОЛОКИ, %									
С	Mn	Si	S	Р	Мо	Ni	Cr	٧	
0,06-0,1	0,35-0,6	0,12-0,3	≤0,025	≤0,025	0,5-0,7	≤0,3	0,9-1,2	0,15-0,3	

Диаметр, мм 8,0 1,0 1,2 1.4 1.6 2.0 3.0 4.0 5,0 D200 Х K300 K415

MΠ-100

Б-500

Бочка «Ариадна»

CB-10HMA

КЛАССИФИКАЦИЯ

ΓΟCT : 2246-70

TY : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяется для сварки низкоуглеродистых и низколегированных сталей повышенной и высокой прочности и металлоконструкций под слоем флюса и в газовой смеси.

Обеспечивает образование надежных и аккуратных швов, гарантирует стабильное горение дуги.

Рядная намотка на кассетах К-300 и К-415, в мотках прямоугольного сечения МП-100 и упорядоченная крестобразная укладка в большегрузных бухтах Б-500 позволяет добиться стабильности размотки, снизить отходы проволоки и увеличить эксплуатационный срок оборудования.

Специализированная упорядоченная послойная укладка проволоки в упаковке «Ариадна» позволяет использовать роботизированные системы сварки и увеличить коэффициент использования сварочного оборудования за счёт уменьшения времени простоя из-за смены кассет.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

ВИД ЗАЩИТЫ

Флюс, газовая смесь 80% Ar + 20% CO₂

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

НАКС (Ø1,6 мм — СК, КСМ, Ø2 мм, 4 мм, 5 мм — КСМ, ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК; Ø3мм — ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК)

химически	Й СОСТАВ ПР	оволоки, %					
С	Mn	Si	S	Р	Мо	Ni	Cr
0,07-0,12	0,4-0,7	0,12-0,35	≤ 0,01	≤ 0,012	0,45-0,55	1,0-1,5	≤ 0,2

виды упаковки									
Диаметр, мм	0,8	1,0	1,2	1,4	1,6	2,0	3,0	4,0	5,0
D200					Х				
K300					Х	Х	Х	х	Х
K415						Х	Х	х	Х
МП-100						Х	Х	Х	Х
Б-500						Х	Х	х	Х
Бочка «Ариадна»					Х	X			

^{*}Примечание: намотка проволоки диаметра 0,8 мм и 1,0 мм на D200 — послойная

CB-08F2C

КЛАССИФИКАЦИЯ

ΓΟCT : 2246-70

TY : 1227-058-27286438-2007

ОБЩЕЕ ОПИСАНИЕ

Применяются для сварки низкоуглеродистых и низколегированных сталей в углекислом газе и газовой смеси. Обеспечивают образование надежных и аккуратных швов, гарантируют стабильное горение дуги.

ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

ВИДЗАЩИТЫ

ISO/ASME PA/1G,

PG-5G

CO₂ и газовая смесь 80% Ar + 20% CO₃,

ОДОБРЕНИЯ СЕРТИФИКАЦИОННЫХ АГЕНТСТВ

YkpCenpo, ΦC 3TAH,

PMPC (Ø 0,8-1,6MM - 2YMS (CO2), 3YMS (Ar+CO2),

НАКС [Ø 0,8 мм, 1 мм, 1,2 мм, 1,6 мм, 2 мм, 3 мм, 4 мм, 5 мм – ГДО, ГО, КО, МО, НГДО, ОТОГ, ОХНВП, ПТО, СК; Ø 1,2 мм, 1,6 мм – КСМ);

химический состав проволоки. %

C	Mn	Si	S	Р	Мо	Ni	Cr	
0,05-0,11	1,8-2,1	0,7-0,95	≤0,025	≤0,03	≤0,15	≤0,25	≤0,2	

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛА ШВА. ТИПИЧНЫЕ ЗНАЧЕНИЯ:

Временное сопротивление, МПа	Предел mekyчести, МПа	Относит. удлинение, %	Температура испытания, °C	Работа удара KV при испытании на ударный изгиб, при сварке в смеси газов, Дж
≥400	>400 >305 >22		0	≥47
≥400	≥505	222	-20	≥47

BNUPLAUVKUBKI

Диаметр, мм	2,0	3,0
Картонная упаковка, 10 kг	Х	Х

Контактные данные Линкольн Электрик Россия

АДРЕС ПРЕДПРИЯТИЯ:

АО «Межгосметиз — Мценск», ООО «Торговый Дом «Межгосметиз» Россия, 303031, Орловская область, г. Мценск, ул. Советская, 98A За более подробной информацией обращайтесь на наш сайт:

www.lincolnelectric.ru

		1	
	Электронная почта	Телефон / Факс	Моб. телефон
Генеральный gupekmop			
• Фредерик Грифхорст		8 (48646) 2-23-63 / 2-38-33	
Кредитный контролёр		8 (48646) 2-46-35	
ОТДЕЛ СОПРОВОЖДЕНИЯ ПРОДАЖ			
Руководитель отдела сопровожденияия г	продаж		
• Елена Солдатова	esoldatova@lincolnelectric.eu	8 (48646) 3-48-61	+7 910 305 53 35
		8 (48646) 4-08-61	
Специалисты отдела		8 (48646) 3-21-99	
сопровождения продаж		8 (48646) 4-04-75	
		8 (48646) 2-28-81	
РЕГИОНАЛЬНЫЕ ПРЕДСТАВИТЕЛИ			
Центральный и Приволжский ФО			
- Павел Афоничкин	pafonichkin@lincolnelectric.eu	8 (48646) 2-65-59	+7 919 260 7212
• Андрей Маткаримов	amatkarimov@lincolnelectric.eu	8 (495) 660-94-04	+7 917 567 2580
Северо-Западный ФО			
• Валерий Мамонов	vmamonov@lincolnelectric.eu		+7 911 721 2991
Южный ФО			
• Александр Питкевич	apitkevich@lincolnelectric.eu		+7 988 059 8388
Уральский, Сибирский и Дальневосточный	Φ0		
• Роман Портной	rportnoy@lincolnelectric.eu		+7 912 383 44 98
· Алексей Митрофанов	amitrofanov@lincolnelectric.eu		+7 912 260 3735
• Андрей Каськов	akaskov@lincolnelectric.eu		+7 906 907 74 65
Страны СНГ			
• Александр Тулупов	atulupov@lincolnelectric.eu	8 (495) 660-94-04	+7 910 474 7527
ТЕХНИЧЕСКАЯ И СЕРВИСНАЯ ПОДДЕРЖКА			
Технический руководитель			
• Олег Колюпанов	okolyupanov@lincolnelectric.eu	8 (495) 660-94-04	+7 916 194 1818
Техническая поддержка			
• Андрей Жигунов	azhigunov@lincolnelectric.eu		+7 911 840 2144
Сервисное обслуживание			
• Павел Михальков	pmikhalkov@lincolnelectric.eu		+7 915 501 5700
Менеджер по трубному производству и сп	проительству трубопроводов		
· Илья Боkamый	ibokatyi@lincolnelectric.eu	8 (495) 660-94-04	+7 917 510 0710
ДЕПАРТАМЕНТ МАРКЕТИНГА		8 (48646) 3-11-18	
ДЕПАРТАМЕНТ ЛОГИСТИКИ И СНАБЖЕНИЯ		8 (48646) 3-26-96	

ПОЛИТИКА ПОДДЕРЖКИ КЛИЕНТОВ

Компания Lincoln Electric занимается производством и продажей сварочного оборудования высокого класса, а также расходных материалов и оборудования для реаки. Наша задача — не просто удовлетворить потребности наших клиентов, но и превзойти их ожидания. При необходимости покудатеми могут обратиться к Lincoln Electric за дополнительной информацией по использованию наших продуктов. В таких случаях мы предоставляем клиентам всю доступную информацие по использованию наших продуктов. В таких случаях мы предоставляем клиентам всю доступную информации и поруштися за надежность такой информации и не несет за нее никакой ответственности. В отношении подовной информации и рекомендаций мы отказываемся от предоставления какой-пибо гарантии, в том числе гарантии того, что поряс прододет клиентура для какой-пибо предоставлению цели. В практических сображений мы также не можем взять на себя ответственность за обновление или исправление подовной информации или рекомендаций после их предоставления. Кроме этого, предоставление информации и рекомендаций не образует, не расширяет и не изменяет никаких гарантийных обязательствов в связи с продокажи нашей продукции.

Lincoin Electric — ответственный производитель, но ответственность за правильный выбор и использование продукции Lincoin Electric несет именно покупатель. Результаты применения данных методов производства и эксплуатационных требований зависят от множества факторов вне контроля Lincoin Electric.

Подлежит уточнению — насколько нам известно, все указанные здесь сведения были верны на момент печати. На сайте www.lincolnelectric.com Вы сможете найти самую последнюю информацию.